説明

Fターム[5F140BA16]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | 基板材料 (9,253) | エピタキシャル基板 (980)

Fターム[5F140BA16]の下位に属するFターム

Fターム[5F140BA16]に分類される特許

141 - 160 / 662


【課題】エンハンスメントモードのIII族窒化物トランジスタを提供する。
【解決手段】第1のIII族窒化物体110と第2のIII族窒化物体112との間に形成されているとともに二次元電子ガスを有している伝導チャネルを具えるIII族窒化物トランジスタ100において、伝導チャネルに中断領域を生ぜしめるために電荷を内部に閉じ込めた少なくとも1つのゲート誘電体層125と、伝導チャネルの中断領域を復元するように作用しうるゲート電極123とを具える。 (もっと読む)


【課題】素子面積を増加させることなく、高耐圧の半導体装置を実現させる。
【解決手段】第1導電型のソース領域13が設けられた第2導電型のベース領域12と、ベース領域に隣接する第1導電型のドリフト領域と、ドリフト領域15の表面から内部にかけて設けられた絶縁体層と、ドリフト領域の表面に設けられた、第1導電型のドレイン領域14と、ベース領域の表面に設けられたゲート酸化膜と、ゲート酸化膜上に設けられたゲート電極20と、ソース領域に接続された第1の主電極と、ドレイン領域に接続された第2の主電極と、を備え、ソース領域とドレイン領域とは、半導体層の表面に対して垂直な方向からみて少なくともライン状に略平行に延在しており、絶縁体層とベース領域とにより挟まれた部分の前記ドリフト領域の長さは、略平行に延在している方向に対して略垂直な方向の長さよりも、略平行に延在している方向の長さのほうが短い。 (もっと読む)


【課題】チャネル移動度のような電気的特性の優れた半導体装置およびその製造方法を提供する。
【解決手段】半導体装置1は、<01−10>方向における(0−33−8)面に対するオフ角が−3°以上+5°以下である主表面2Aを有し、炭化珪素からなる基板2と、基板2の主表面2A上にエピタキシャル成長により形成され、炭化珪素からなるp型層4と、p型層4の表面に接触するように形成された酸化膜8とを備えている。そして、p型層4と酸化膜8との界面から10nm以内の領域における窒素原子濃度の最大値は1×1021cm−3以上となっている。 (もっと読む)


【課題】トランジスタの閾値電圧を高くする。
【解決手段】フローティング電極110は半導体層102上に形成されており、絶縁層はフローティング電極110上に形成されている。バイアス電極134は、絶縁層を介してフローティング電極110の一部に対向することにより、フローティング電極110と容量結合し、かつフローティング電極110が半導体層102にチャネル領域を形成しない大きさの電圧が印加される。制御電極132は、絶縁層を介してフローティング電極110の他の部分に対向することにより、フローティング電極110と容量結合し、かつトランジスタのオン/オフを制御するための制御電圧が入力される。 (もっと読む)


【課題】化合物半導体装置のソース電極、ドレイン電極及びゲート電極を形成するいずれの領域においても、残渣のない良好な半導体/金属界面が得られるようにする。
【解決手段】化合物半導体装置の製造方法を、基板1上に化合物半導体積層構造4を形成する工程と、化合物半導体積層構造上に金属膜5A〜5Cを形成する工程と、金属膜上にソース電極7及びドレイン電極8を形成する工程と、金属膜の一部を酸化又は窒化して、金属酸化物膜又は金属窒化物膜5CXを形成する工程と、金属酸化物膜又は金属窒化物膜上にゲート電極9を形成する工程とを含むものとする。 (もっと読む)


【課題】特性を十分に向上することができる半導体装置の製造方法を提供する。
【解決手段】半導体装置の製造方法は、SiC膜11を形成する工程と、このSiC膜11の表面にSiを供給した状態で、このSiC膜11を熱処理する熱処理工程と、熱処理工程によってSiC膜11の表面に得られたファセットをチャネル16とする工程とを備えている。このようにすれば、Siを供給した状態でSiC膜11を熱処理することにより、SiC膜11をエネルギ的に安定な表面状態に再構成させることができる。その結果、一周期が100nm以上のファセットが得られ、ファセットの平坦部分の長さを従来に比べて長くすることができる。したがって、界面準位の密度を減少することによりキャリアの移動度を向上することができ、半導体装置の特性を十分に向上することができる。 (もっと読む)


【課題】GaN系半導体/ゲート絶縁膜の界面特性、及び、ゲート絶縁膜の膜質が共に良好である半導体トランジスタを提供する。
【解決手段】半導体トランジスタ11は、GaN系の半導体から成る活性層3と、活性層3上に形成されたゲート絶縁膜とを備える。ゲート絶縁膜は、活性層3上に形成され、Al,HfO,ZrO,La,Yから成る群から選択された1つ以上の化合物を含む第1の絶縁膜6と、第1の絶縁膜6上に形成され、SiOから成る第2の絶縁膜7とを有する。 (もっと読む)


【課題】横方向延伸を減少し、素子サイズを小さくすることができる半導体装置を提供する。
【解決手段】半導体基板上に延伸し、STI領域を間に有する第1および第2のフィンを形成する。STI領域の上面と第1および第2のフィンの上面の間の寸法を第1の高さとし、STI領域の第1と第2のフィンとの間の間隙内に誘電材料を堆積し、STI領域の上面上に上面を有して、誘電材料の上面と第1および第2のフィンの上面との寸法を第2の高さとし、第2の高さは、第1の高さより低くなるように誘電材料を堆積した後、第1および第2のフィン上でそれぞれ誘電体の上方に、第1および第2のフィン延伸をエピタキシャル成長で形成する。 (もっと読む)


【課題】ダイヤモンド薄膜内に存在する結晶欠陥、不純物等を減少させ、高品質なダイヤモンド薄膜を作製可能なダイヤモンド薄膜作製方法を提供すること。
【解決手段】ダイヤモンドが安定な高圧力下でアニールを行う。これにより、結晶中に含まれる格子欠陥等が回復、除去され、ダイヤモンド結晶薄膜を高品質化する事ができる。「(ダイヤモンドが)安定な、安定に」とは、ダイヤモンドがグラファイト化せずにダイヤモンドの状態を保つ状態を指す。ダイヤモンドが安定にアニール出来る領域内でアニールを行う温度(アニール温度、とも呼ぶ)Tおよびアニールを行う圧力(アニール圧力、とも呼ぶ)Pが決定される。この領域は、図21に示される、P>0.71+0.0027TまたはP=0.71+0.0027Tを満たし、なおかつP≧1.5GPaの領域である。このような領域は、図21中の斜線部分である。 (もっと読む)


【課題】イオン注入したダイヤモンドの高温高圧アニールにより起こるダイヤモンド表面のエッチングを防ぎ、従来の方法では得られない高品質P型、N型ダイヤモンド半導体を得るダイヤモンド半導体の作製方法を提供すること。
【解決手段】ダイヤモンド基板5−11を用意し、そのダイヤモンド基板5−11上にマイクロ波プラズマCVD装置を用い、メタンを反応ガスとして基板温度700℃でダイヤモンド薄膜5−12を1μm積層する。上記ダイヤモンド薄膜5−12にイオン注入装置を用い、加速電圧60kV、ドーズ量1×1014cm−2でドーパントを打ち込む。その後、イオン注入ダイヤモンド薄膜5−13上に保護層(白金)5−14を形成する。表面に保護層5−14が形成されたイオン注入ダイヤモンド薄膜5−13を、超高温高圧焼成炉内に配置し、3.5GPa以上、600℃以上の圧力、温度下でアニールする。 (もっと読む)


【課題】占有面積が小さく、所望の耐圧と熱破壊の防止を両立した保護トランジスタを提供する。
【解決手段】ゲート長方向の一方の側でゲート直下の領域に隣接しているゲート・ドレイン間領域REgdが、ゲート幅方向に互いに隣接する領域として、第1領域REgd1と第2領域REgd2とを有する。第1領域は、ドレイン耐圧が相対的に大きく、第2領域は、ドレイン電極(ドレインコンタクト部に設けられているシリサイド層10D)からの距離が平面視で第1領域より遠く、ドレイン耐圧が相対的に小さい。このため、耐圧が低いゲート・ドレイン間領域REgd2の加熱部分Aからドレインコンタクト部が遠いが、面積は小さく(または拡大しない)構造となっている。 (もっと読む)


【課題】貼り合わせSOI基板を使用せずに、容易なプロセスにより、高速なMIS電界効果トランジスタを提供する。
【解決手段】p型のSi基板1上に、一部に空孔4を有するシリコン酸化膜2が設けられ、空孔4を挟んでシリコン酸化膜2上に延在したp型のSOIC基板(Si)5が設けられ、シリコン窒化膜3により素子分離されている。空孔4に自己整合して、SOIC基板5上にゲート酸化膜10を介してゲート電極11が設けられ、ゲート電極11の側壁にサイドウォール12が設けられ、SOIC基板5には、ゲート電極11に自己整合してn型ソースドレイン領域(7、8)及びサイドウォール12に自己整合してn型ソースドレイン領域(6、9)が設けられ、n型ソースドレイン領域には、バリアメタル15を有する導電プラグ16を介してバリアメタル18を有するCu配線19が接続されている構造からなるNチャネルのMIS電界効果トランジスタ。 (もっと読む)


【課題】素子面積が小さくしかも素子の耐圧の高い半導体装置およびその製造方法を提供する。
【解決手段】基板11と、基板上に設けられた一導電型の第1の半導体層13と、第1の半導体層上に設けられた一導電型で低不純物濃度の第2の半導体層15と、アイソレーション領域50によって分離された素子領域71内に形成されたMOSトランジスタ75と、素子領域内に一主面から第1の半導体層に達して設けられた一導電型で高不純物濃度の領域17と、領域17とMOSトランジスタのドレイン領域35との間に設けられた絶縁領域60であって、一主面10から第1の半導体層13に達し、基板11に達していない絶縁領域60とを備える。 (もっと読む)


【課題】 LDD領域の長さを精度良く調整可能で、高周波動作に適用できる非対称な横方向二重拡散型MISFETを提供する。
【解決手段】 第1導電型のウェル1の上方にゲート絶縁膜3を介してゲート電極5を形成する工程、ウェル1に第2導電型の不純物イオン注入によりドレイン領域7を形成する工程、ウェル1の上方にゲート電極5が形成されるゲート電極領域とドレイン領域7を少なくとも覆い、ゲート電極領域とドレイン領域の間が開口したマスクパターン層を形成する工程、マスクパターン層をマスクとして自己整合的に、マスクパターン層で覆われていない領域に第2導電型の不純物イオン注入によりドレイン領域より低濃度のLDD拡散領域6を形成する工程、及び、ウェル1のゲート電極5を挟んでドレイン領域7の反対側の領域に第2導電型の不純物イオン注入によりLDD拡散領域より高濃度のソース領域を形成する工程を有する。 (もっと読む)


【課題】ソース領域およびドレイン領域とゲート電極との位置制御性を向上させ、製造バラツキを低減する。
【解決手段】窒化物半導体を用いた半導体装置10は、窒化物半導体層2に所定間隔を隔てて形成されたソース領域3およびドレイン領域4の間のチャネル領域上に形成され、少なくとも一部がシリサイド合金から形成されたゲート電極6を備え、ソース領域3上にあるゲート電極6の端からゲート電極6と上下に重なるソース領域3の端までの距離L1と、ドレイン領域4上にあるゲート電極6の端からゲート電極6と上下に重なるドレイン領域4の端までの距離L2と、が等しい。 (もっと読む)


【課題】パワーMOSFETを備える半導体装置のコストの低減を図る。
【解決手段】半導体装置1では、P型の半導体基板2上に、N型の半導体層3が積層されている。そして、半導体装置1は、LDMOS領域5に、ボディ領域8、ドレインバッファ領域9、ソース領域11およびゲート電極14などからなるLDMOSFETを備えている。すなわち、半導体装置1は、LDMOSFETを備えながら、厚膜SOI基板ではなく、N型の半導体層3が直上に設けられたP型の半導体基板2を採用している。そして、フィールド絶縁膜13上に7つのフィールドプレート15が設けられ、そのフィールドプレート15の間隔がボディ領域8側(ソース領域11側)ほど小さくされている。 (もっと読む)


【課題】IGBTのESD耐性を高くしつつ、IGBTのバイポーラトランジスタを確実に動作させる。
【解決手段】シンカー層115は第1導電型ウェル102に接しており、かつ第1導電型コレクタ層108及び第2導電型ドリフト層104から離れている。シンカー層115の表層には、第2導電型拡散層(第2の第2導電型高濃度拡散層)116が形成されている。第2導電型拡散層116はシンカー層115より不純物濃度が高い。第2導電型拡散層116と第1導電型コレクタ層108は、素子分離絶縁膜16を介して互いに分離している。 (もっと読む)


【課題】IGBTを構成するバイポーラトランジスタのターンオフ時間を短くし、かつIGBTを構成するバイポーラトランジスタを動作しやすくする。
【解決手段】シンカー層115は第1導電型ウェル102及び第2導電型ドリフト層104それぞれに接しており、かつ第1導電型コレクタ層108から離れている。シンカー層115の表層には、第2導電型拡散層(第2の第2導電型高濃度拡散層)116が形成されている。第2導電型拡散層116はシンカー層115より不純物濃度が高い。第2導電型拡散層116と第1導電型コレクタ層108は、素子分離絶縁膜16を介して互いに分離している。 (もっと読む)


【課題】ゲート閾値電圧を低下させることなく、チャネル移動度を向上できる炭化珪素MOSFETを提供する。
【解決手段】炭化珪素半導体装置200は、炭化珪素基板10と、炭化珪素基板10上に形成された炭化珪素層20と、炭化珪素層20上に形成されたゲート絶縁膜30と、ゲート絶縁膜30を介して炭化珪素層20上の所定位置に形成され、III族軽元素であるB、AlまたはGaをp型ドーパントとして含む多結晶シリコンからなるゲート電極40とを有する。そして、ゲート電極40中の上記p型ドーパントを、ゲート電極40直下の炭化珪素層20とゲート絶縁膜30との界面近傍に拡散させ、上記p型ドーパントによって界面近傍の不純物準位をパッシベーションする。 (もっと読む)


量子井戸トランジスタは、ゲルマニウムの量子井戸チャネル領域を有する。シリコンを含有したエッチング停止領域が、チャネル近くへのゲート誘電体の配置を容易にする。III−V族材料のバリア層がチャネルに歪みを付与する。チャネル領域の上及び下の傾斜シリコンゲルマニウム層によって性能が向上される。複数のゲート誘電体材料によって、high−k値のゲート誘電体の使用が可能になる。
(もっと読む)


141 - 160 / 662