説明

Fターム[5F140BE07]の内容

Fターム[5F140BE07]に分類される特許

61 - 80 / 1,900


【課題】高耐圧トランジスタ形成に適した半導体装置の新規な製造方法を提供する。
【解決手段】
半導体装置の製造方法は、シリコン基板に第1導電型第1領域と、第1領域に接する第2導電型第2領域を形成し、ゲート絶縁膜を形成し、第1領域と第2領域とに跨がるゲート電極を形成し、ゲート電極上から第2領域上に延在する絶縁膜を形成し、ゲート電極をマスクとし第2導電型不純物を注入してソース領域およびドレイン領域を形成し、ゲート電極および絶縁膜を覆って金属層を形成し熱処理を行って、ソース領域、ドレイン領域及びゲート電極にシリサイドを形成し、層間絶縁膜にソース領域、ドレイン領域、ゲート電極に達する第1、第2、第3コンタクトホール、及び絶縁膜に達する孔を形成し、第1〜第3コンタクトホール及び孔に導電材料を埋め込み、第1〜第3導電ビアと、孔の内部に配置された導電部材とを形成する。 (もっと読む)


【課題】第2の部分の寄生容量を低下させることにより、半導体装置の特性を向上させる。
【解決手段】MISトランジスタは、半導体基板上に設けられたゲート絶縁膜と、ゲート絶縁膜上に設けられ、第1の幅W1を有する第1の部分と第2の幅W2を有する第2の部分とを有するゲート電極を有する。第2の部分の側壁上には、酸化シリコン膜が設けられている。第2の部分に接するゲート絶縁膜は、第1の部分に接するゲート絶縁膜よりも厚くなっている。 (もっと読む)


【課題】相互接続構造の珪化物層と、ロープロファイルバンプを含む、バンプ間ショートを防止したパワーMOSFETからなる半導体デバイスおよび製造方法を提供する。
【解決手段】基板上にソース領域160およびドレイン領域170を有し、珪化物層174が、ソース領域およびドレイン領域の上に配置されている。第1の相互接続層194が、珪化物層上に形成されており、ソース領域に接続される第1のランナー196と、ドレイン領域に接続される第2のランナー198とが配置される。第2の相互接続層214が、第1の相互接続層上に形成されており、第1のランナーに接続される第3のランナー216と、第2のランナーに接続される第4のランナー218とを含む。第3の相互接続層234が形成され、ソースパッド236、ソースバンプ240が電気的に接続される。 (もっと読む)


【課題】FETデバイスにおける閾値電圧をより良く制御できるデバイスの提供。
【解決手段】基板101と、基板101の上のSiGe層103と、SiGe層上の半導体層105と、基板、SiGe層及び半導体層に隣接した絶縁層109aと、絶縁層に隣接した一対の第1のゲート構造体111と、絶縁層上の第2のゲート構造体113とを含む電界効果トランジスタ(FET)と、FETを形成する方法である。絶縁層は、SiGe層の側面、並びに半導体層の上面、半導体層の下面及び導体層の側面に隣接していることが好ましい。SiGe層は、炭素を含むことが好ましい。一対の第1のゲート構造体が、第2のゲート構造体に対して実質的に横断方向にあることが好ましい。さらに、第1のゲート構造体の対は、絶縁層によりカプセル封入されることが好ましい。 (もっと読む)


【課題】オン電流が大きい半導体装置及びその製造方法を提供する。
【解決手段】実施形態に係る半導体装置は、単結晶シリコンからなり、上面が(100)面であり、前記上面にトレンチが形成された基板と、少なくとも前記トレンチの内部に設けられたゲート電極と、前記基板における前記トレンチを挟む領域に形成されたソース・ドレイン領域と、前記基板と前記ゲート電極との間に設けられたゲート絶縁膜と、を備える。前記トレンチは、シリコンの(100)面からなる底面、前記底面に接し、シリコンの(111)面からなる一対の斜面、及び前記斜面に接し、シリコンの(110)面からなる一対の側面により構成されており、前記ソース・ドレイン領域は、前記側面及び前記斜面に接し、前記底面の中央部には接していない。 (もっと読む)


【課題】トレンチを均一に形成することができる半導体装置の製造方法を提供する。
【解決手段】実施形態に係る半導体装置の製造方法は、第1の材料からなる第1部分及び前記第1の材料とは異なる第2の材料からなる第2部分を含む被加工基材上に、前記第1部分の直上域に配置され第3の材料からなる第3部分及び前記第2部分の直上域に配置され前記第3の材料とは異なる第4の材料からなる第4部分を含み、前記第3部分及び前記第4部分の双方に開口部が形成されたマスク膜を形成する工程と、前記マスク膜をマスクとして、前記第4の材料のエッチングレートが前記第3の材料のエッチングレートよりも高く、前記第1の材料のエッチングレートが前記第2の材料のエッチングレートよりも高くなるような条件でエッチングを施すことにより、前記第1部分及び前記第2部分をそれぞれ選択的に除去する工程と、を備える。 (もっと読む)


【課題】耐圧の向上が図られる半導体装置を提供する。
【解決手段】n-型半導体領域には、ドレイン領域となるn-型の拡散領域が形成されている。n-型の拡散領域の周囲を取囲むようにp型の拡散領域が形成されている。p型の拡散領域には、ソース領域となるn+型の拡散領域が形成されている。n-型の拡散領域の直下には、p-型の埋め込み層13が形成されている。n-型の半導体領域の領域には、高電位が印加されるn+型の拡散領域が形成され、そのn+型の拡散領域の表面上には電極が形成されている。電極とドレイン電極とは、配線20によって電気的に接続されている。配線20の直下に位置する部分に、p-埋め込み層13に達するトレンチ3aが形成されて、ポリシリコン膜81が形成されている。 (もっと読む)


【課題】安定に動作する半導体装置を提供する。
【解決手段】本明細書に開示する半導体装置は、基板11内に形成された第1導電型のウェル13と、ウェル13上にゲート絶縁膜17を介して配置されるゲート電極18と、ゲート電極18を挟んで基板11内に対向して配置される第2導電型のソース領域15及びドレイン領域16と、基板11内にソース領域15と隣接して配置され、ウェル1に電気的に接続される第1導電型のウェルタップ19と、ウェル13とウェルタップ19とに接し、ウェル13よりも不純物濃度が高く、第1導電型を有するポケット領域20と、を備える。 (もっと読む)


【課題】チャネル領域を拡大することが可能な半導体装置の製造方法を提供する。
【解決手段】素子分離用の溝部3を形成した後、素子分離絶縁膜4として、当該溝部3に埋め込まれた状態で基板2の面上を覆うシリコン酸化膜26,31を形成する工程と、シリコン酸化膜26,31上に少なくとも埋め込みゲート用の溝部10を形成する位置に開口部を有するマスクパターンを形成する工程と、マスクパターンの開口部を通してシリコン酸化膜31を異方性エッチングにより選択的に除去することによって、当該シリコン酸化膜31に第1の溝部9と同じ幅及び深さとなる第2の溝部10を形成する工程と、第2の溝部10の底面及び側面に位置するシリコン酸化膜26,31を等方性エッチングにより選択的に除去することによって、当該第2の溝部10を活性領域6に形成される第1の溝部9よりも深く、且つ、第1の溝部9よりも大きい幅とする工程とを含む。 (もっと読む)


【課題】半導体処理の方法が提供される。
【解決手段】いくつかの実施形態によれば、高い有効仕事関数を有する電極が形成される。この電極は、トランジスタのゲート電極であってもよく、導電材料の第1の層を堆積し、第1の層を水素含有ガスに露出し、第1の層に導電材料の第2の層を堆積することにより、high−kゲート誘電体に形成されてもよい。第1の層は、基板がプラズマ又はプラズマ発生ラジカルに露出されないプラズマ無しプロセス(non−plasma process)を用いて堆積される。第1の層が露出される水素含有ガスは、励起された水素種を含んでもよく、これは水素含有プラズマの一つであってもよく、水素含有ラジカルであってもよい。第2の層を堆積する前に、第1の層もまた、酸素に露出されてもよい。ゲートスタックのゲート電極の仕事関数は、いくつかの実施形態において約5eV又はそれ以上であってもよい。 (もっと読む)


【課題】細孔の周囲を囲む細孔壁の材料が膜厚方向に任意に制御されたナノ多孔質薄膜、およびその製造方法を提供することにある。
【解決手段】本発明によるナノ多孔質構造を有するナノ多孔質薄膜は、膜厚方向に沿って複数の層領域を有し、前記複数の層領域は、第一の細孔を有する第一の層領域と第二の細孔を有する第二の層領域とを含み、前記第一の細孔と前記第二の細孔は貫通し、前記第一の層領域と前記第二の層領域とを構成する材料が異なることを特徴とする。 (もっと読む)


【課題】ESD耐量を向上させたLDMOSFETを備える半導体装置を提供する。
【解決手段】半導体層200よりも高濃度のP型の押込拡散領域440は、半導体層200の表層から底面まで設けられている。押込拡散領域440よりも低濃度のP型の第1ウェル領域300は、半導体層200に、平面視で一部が押込拡散領域440と重なるように設けられている。N型のドレインオフセット領域540は、半導体層200に、平面視で第1ウェル領域300と接するように設けられている。ドレインオフセット領域540よりも高濃度のN+型のドレイン領域520は、ドレインオフセット領域540内に設けられている。ドレインオフセット領域540よりも高濃度のN型の第2ウェル領域560は、半導体層200のうち、ドレインオフセット領域540の下に位置して、平面視でドレイン領域520と重なる領域に設けられている。 (もっと読む)


【課題】シンカー層を含むエピタキシャル層の厚さを増大させても耐圧性能の向上が可能な半導体装置及びその製造方法を提供する。
【解決手段】半導体装置1は、第1導電型の埋め込み拡散層16Na,16Nd,16Nbを有する支持基板10と、第1導電型と同じ導電型のシンカー層21Na,21Nbを有するエピタキシャル層20と、シンカー層21Na,21Nbから離れた領域でエピタキシャル層20上に形成された電極層31とを備える。支持基板10の上層部は、エピタキシャル層の上面に向けて突出する凸状部10Pa,10Pbを有し、シンカー層21Na,21Nbは、エピタキシャル層20の上面近傍から凸状部10Pa,10Pbにおける埋め込み拡散層16Na,16Nbにまで延在する不純物拡散領域からなる。 (もっと読む)


【課題】コンタクトホールの一部が素子分離領域上に配置された構造の半導体装置において、短絡及び接合漏れ電流の増大を抑制する。
【解決手段】半導体装置50は、半導体基板10における活性領域10aを取り囲むように形成された溝15bに素子分離絶縁膜15aが埋め込まれた素子分離領域15と、活性領域10aに形成された不純物領域26と、半導体基板10上を覆う層間絶縁膜28と、層間絶縁膜28を貫通し、活性領域10a上及び素子分離領域15上に跨って形成されたコンタクトプラグ34と、少なくともコンタクトプラグ34下方において、不純物領域26上に形成された金属シリサイド膜33とを備える。素子分離領域15は、コンタクトプラグ34の下方において、素子分離絶縁膜15と活性領域10aとの間に設けられた保護絶縁膜35を更に有する。 (もっと読む)


【課題】半導体装置の信頼性を向上させる。
【解決手段】ゲート電極GE1,GE2、ソース・ドレイン用のn型半導体領域SD1及びp型半導体領域SD2を形成してから、半導体基板1上にNi−Pt合金膜を形成し、第1の熱処理を行って合金膜とゲート電極GE1,GE2、n型半導体領域SD1及びp型半導体領域SD2とを反応させることで、(Ni1−yPtSi相の金属シリサイド層13aを形成する。この際、Niの拡散係数よりもPtの拡散係数の方が大きくなる熱処理温度で、かつ、金属シリサイド層13a上に合金膜の未反応部分が残存するように、第1の熱処理を行う。その後、未反応の合金膜を除去してから、第2の熱処理を行って金属シリサイド層13aを更に反応させることで、Ni1−yPtSi相の金属シリサイド層13bを形成する。第2の熱処理の熱処理温度は580℃以上で、800℃以下とする。 (もっと読む)


【課題】オン抵抗を低減し、かつ高耐圧で駆動することが可能な半導体装置を提供する。
【解決手段】当該高耐圧トランジスタは、第1の不純物層PEPと、第1の不純物層PEPの内部に形成される第2の不純物層HVNWと、第2の不純物層HVNWを挟むように、第1の不純物層PEPの内部に形成される1対の第3の不純物層OFBおよび第4の不純物層PWと、第3の不純物層OFBから、第2の不純物層HVNWの配置される方向へ、主表面に沿って突出するように、第1の不純物層PEPの最上面から第1の不純物層PEPの内部に形成される第5の不純物層OFB2と、第2の不純物層HVNWの最上面の上方に形成される導電層GEとを備える。第4の不純物層PWにおける不純物濃度は、第3および第5の不純物層OFB,OFB2における不純物濃度よりも高く、第5の不純物層OFB2における不純物濃度は、第3の不純物層OFBにおける不純物濃度よりも高い。 (もっと読む)


【課題】 CMOS型半導体装置におけるデュアルゲート構造のゲート電極をエッチングにより形成する時に、局所的なゲート絶縁膜の「突き抜け」やゲート電極サイドエッチ等の欠陥が発生することを防止できる製造方法を提供する。
【解決手段】 ゲート絶縁膜5を介して半導体基板1上に形成されたシリコン膜等の、実質的に不純物を含まない半導体膜6を選択的にエッチングしてゲート電極7を形成する。隣接するゲート電極7間の領域をレジスト等の絶縁膜9で埋め込む。さらに例えば所定のゲート電極7が形成された領域を覆うマスク層10を形成し、絶縁膜9とマスク層10とをマスクとして、マスク層10で覆われないゲート電極7にイオン注入等の手段により所定導電型の不純物を導入する。同様の方法を用いてマスク層10で覆われていたゲート電極7に異なる導電型の不純物を導入する。 (もっと読む)


【課題】キャリア移動度(チャネル移動度)を増加させて、オン電流を増加させること。
【解決手段】トランジスタを形成するための半導体基板(10)は、主面(11a)を持つシリコン基板(11)と、このシリコン基板(11)の主面(11a)上に形成された歪緩和SiGe層(12)と、この歪緩和SiGe層(12)上に形成された歪Si層(13)と、を含む。 (もっと読む)


【課題】ゲート絶縁膜に劣化が生じることを抑制する。
【解決手段】ハードマスクを用いて素子分離溝102を形成した後、素子分離溝102に素子分離膜20を埋め込む。次いで、ハードマスクの窒化シリコン膜210を除去する。次いで、ハードマスクの表面酸化膜200を薄くする。その後、シリコン基板100を熱酸化することにより、表面酸化膜を厚くして再酸化膜202を形成する。次いで、第1素子形成領域101及び第2素子形成領域103に位置するシリコン基板に、再酸化膜202を介してチャネル不純物を注入する。次いで、再酸化膜202を除去する。次いで、第1素子形成領域101に位置するシリコン基板100に、ゲート絶縁膜110及びゲート電極120を形成する。 (もっと読む)


【課題】第1のトランジスタと第2のトランジスタが、ぞれぞれのドレイン領域とソース領域を共有して同一の半導体基板上に形成される構成の半導体装置の製造において、それぞれのトランジスタのソース領域およびドレイン領域の直下に埋め込み絶縁膜を効率的に形成できる製造方法を提供する。
【解決手段】半導体基板上にそれぞれのトランジスタのソース領域およびドレイン領域に対応してトレンチを形成し、前記トレンチをSiGe混晶層と半導体層を順次形成することにより充填し、さらに第1のトランジスタのソース領域および第2のトランジスタのドレイン領域直下のSiGe混晶層を、素子分離溝を介して選択エッチングにより除去し、第1のトランジスタのドレイン領域および第2のトランジスタのソース領域として共有される拡散領域直下のSiGe混晶層を、前記拡散領域に形成した孔を介して選択エッチングし、除去する。 (もっと読む)


61 - 80 / 1,900