説明

Fターム[5F140BH27]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ソース、ドレイン領域及びSD近傍領域 (10,828) | ソース、ドレイン材料 (598)

Fターム[5F140BH27]の下位に属するFターム

多結晶 (39)

Fターム[5F140BH27]に分類される特許

61 - 80 / 559


【課題】ゲート耐電圧が高くかつオン抵抗が低減されたノーマリオフ型GaN系FETを提供する。
【解決手段】ノーマリオフ型GaN系FETは、第1種GaN系半導体からなるチャネル層4と、このチャネル層上で互いに隔てて設けられた第2種GaN系半導体からなる一対の電子供給層5と、これら電子供給層の間でチャネル層を覆うゲート絶縁膜7と、チャネル層にオーミックコンタクトしているソース電極およびドレイン電極と、ゲート絶縁膜上に形成されたゲート電極とを備え、ゲート絶縁膜はチャネル層上に順次堆積された第1と第2の絶縁層を含み、第1絶縁層7aはSiの酸化物、窒化物および酸窒化物のいずれかからなりかつ5nm以下の厚さを有し、第2絶縁層7bは第1絶縁層に比べて大きなε×Eを有し、ここでεは誘電率を表し、Eは絶縁破壊電界を表している。 (もっと読む)


【課題】オン抵抗を低減することができるGaN−MISトランジスタ、GaN−IGBT、およびこれらの製造方法を提供する。
【解決手段】ゲート電極(M)16とSiNゲート絶縁膜(I)13と半導体層(GaN)12とのMIS構造を有するGaN−MISトランジスタ150であって、半導体層は、オーミックコンタクト用nGaN領域14が離間した2箇所に形成され、SiNゲート絶縁膜は、2箇所のオーミックコンタクト用nGaN領域の基板反対側表面に熱CVD法により成膜されたSiN膜である。 (もっと読む)


【課題】ストレスライナー膜によるチャネル領域の効果的な歪みによりキャリア移動度が向上した半導体装置およびその製造方法を提供する。
【解決手段】本発明の一態様に係る半導体装置100は、素子分離パターンを有する溝12を有する半導体基板2と、溝2の側面上に形成された側壁10と、半導体基板2の溝12に囲まれた領域に形成された、半導体基板2中にチャネル領域8を有するMOSFET3と、MOSFET3上および溝12内の側壁10上に連続して形成された、チャネル領域8に歪みを発生させるストレスライナー膜11とを有する。 (もっと読む)



【課題】Si混晶層における選択成長用マスクの開口率の違いによりエピタキシャル成長が不均一となることを防止すると共に、半導体素子のキャリア移動度を向上できるようにする。
【解決手段】半導体装置は、半導体基板100の上部に形成された素子分離膜101と、素子分離膜に囲まれてなる素子活性領域102と、該素子活性領域102に形成され正孔をキャリアとするチャンネル領域100aとを有するP型MIS−FET200Pと、素子分離膜における素子活性領域102の周辺部に形成された複数のダミー活性領域105とを備えている。複数のダミー活性領域105のうち、正孔の移動方向と対向する位置に形成されたダミー活性領域のみをシリコンとゲルマニウムとを含むSiGe付きダミー活性領域106としている。 (もっと読む)


【課題】耐電圧、耐熱性、耐放射線性、及び高速性が優れ、かつ、チャネル領域を短くでき、素子の応答性が高いダイヤモンド半導体素子を高精度で製造できる半導体素子の製造方法を提供する。
【解決手段】第1のダイヤモンド半導体領域1の表面上に、絶縁膜2と多層金属電極層3と犠牲層4とを積層し、犠牲層4上に、局所的にレジスト5をパターン形成する。多層金属電極層3の最上層は、Pt又はPt合金により形成する。そして、レジスト5をマスクとして第1の犠牲層、多層金属電極層及び絶縁膜をエッチングした後、レジスト5を除去して、第1のダイヤモンド半導体領域1上に絶縁膜2と金属電極層3と第1の犠牲層4との積層体をパターン形成する。その後、第1のダイヤモンド半導体領域1上に、不純物の高濃度ドープ層7を形成する。その後、犠牲層4をエッチング除去し、高濃度ドープ層7上に金属電極8を形成する。 (もっと読む)


【課題】チャネルに応力が印加されるMOSトランジスタの特性のばらつきを防ぐことができる半導体装置の製造方法を提供すること。
【解決手段】半導体基板10の上にゲート絶縁膜を形成する工程と、ゲート絶縁膜の上にゲート電極14cを形成する工程と、ゲート電極14cの側面にサイドウォール15a、15bを形成する工程と、サイドウォール15a、15bを形成した後に、有機アルカリ溶液又はTMAHをエッチング液として用いて、ゲート電極14cの横の半導体基板10に穴10a、10bを形成する工程と、穴10a、10bにソース/ドレイン材料層18a、18bを形成する工程とを有する。 (もっと読む)


【課題】トンネルFETの閾値ばらつきの抑制をはかる。
【解決手段】Si1-x Gex (0<x≦1)の第1の半導体層13上にゲート絶縁膜21を介して形成されたゲート電極22と、Geを主成分とする第2の半導体と金属との化合物で形成されたソース電極24と、第1の半導体と金属との化合物で形成されたドレイン電極25と、ソース電極24と第1の半導体層13との間に形成されたSi薄膜26とを具備した半導体装置であって、ゲート電極22に対しソース電極24のゲート側端部とドレイン電極25のゲート側端部とは非対称の位置関係にあり、ドレイン電極25のゲート側の端部の方がソース電極24のゲート側の端部よりも、ゲート電極22の端部からゲート外側方向に遠く離れている。 (もっと読む)


【課題】メタルゲート電極内に基板面に対して平行な金属とシリコンなどとの境界又はシリサイドとシリコンなどとの境界を含むメタルゲート電極において、トランジスタの接続抵抗が小さく、高速動作時のトランジスタの遅延又はトランジスタ特性のばらつきなどの特性劣化の懸念がなく、且つ、低コストな構造を有する半導体装置を提供する。
【解決手段】半導体装置は、半導体基板101上に、ゲート絶縁膜105と、pMIS用金属材料109又はnMIS用金属材料111と、ゲート電極材料112と、ゲート側壁メタル層122とを備えている。 (もっと読む)


【課題】貼り合わせSOI基板を使用せずに、容易なプロセスにより、高速なMIS電界効果トランジスタを提供する。
【解決手段】p型のSi基板1上に、一部に空孔4を有するシリコン酸化膜2が設けられ、空孔4を挟んでシリコン酸化膜2上に延在したp型のSOIC基板(Si)5が設けられ、シリコン窒化膜3により素子分離されている。空孔4に自己整合して、SOIC基板5上にゲート酸化膜10を介してゲート電極11が設けられ、ゲート電極11の側壁にサイドウォール12が設けられ、SOIC基板5には、ゲート電極11に自己整合してn型ソースドレイン領域(7、8)及びサイドウォール12に自己整合してn型ソースドレイン領域(6、9)が設けられ、n型ソースドレイン領域には、バリアメタル15を有する導電プラグ16を介してバリアメタル18を有するCu配線19が接続されている構造からなるNチャネルのMIS電界効果トランジスタ。 (もっと読む)


幅広い電子デバイスのアレイ及びシステムにおける電力消費を低減する一式の新たな構造及び方法が提供される。これらの構造及び方法の一部は、大部分が、既存のバルクCMOSのプロセスフロー及び製造技術を再利用することで実現され、半導体産業及びより広いエレクトロニクス産業がコスト及びリスクを伴って代替技術へ切り替わることを回避可能にする。これらの構造及び方法の一部は、深空乏化チャネル(DDC)設計に関係し、CMOSベースのデバイスが従来のバルクCMOSと比較して低減されたσVTを有することと、チャネル領域にドーパントを有するFETの閾値電圧VTがより正確に設定されることとを可能にする。DDC設計はまた、従来のバルクCMOSトランジスタと比較して強いボディ効果を有することができ、それにより、DDCトランジスタにおける電力消費の有意義な動的制御が可能になる。様々な効果を達成するようDDCを構成する手法が数多く存在し得るとともに、ここに提示される更なる構造及び方法は、更なる利益を生み出すように単独あるいはDDCとともに使用され得る。
(もっと読む)


【課題】ピッティング不良が抑制され、簡単な工程を通じて形成することができる高性能の半導体素子の製造方法を提供する。
【解決手段】半導体基板にゲート電極を形成する段階と、ゲート電極に側壁スペーサを形成する段階と、側壁スペーサの両側の半導体基板を一部エッチングしてトレンチを形成する段階と、トレンチ内にSiGe混晶層を形成する段階と、SiGe混晶層上にシリコン層を形成する段階と、シリコン層の面の結晶方向に従って、エッチング率が異なるエッチング液を利用してシリコン層の一部をエッチチングすることによって111傾斜面を有するシリコンファセット(Si facet)を含むキャッピング層を形成する段階と、を有する。キャッピング層を含むことによって半導体素子でホールの移動度が高まる。キャッピング層内のピッティング不良が減少することによって半導体素子の特性が良好になる。 (もっと読む)


【課題】 置換ゲート工程で発生する不良を防止できる半導体装置の製造方法を提供する。
【解決手段】本発明による半導体装置の製造方法は、半導体基板上にゲート絶縁膜および犠牲ゲート電極を含むゲートパターンを形成する段階、前記半導体基板および前記ゲートパターン上にエッチング停止層および絶縁層を形成する段階、前記エッチング停止層が露出するまで前記絶縁層を除去する段階、前記犠牲ゲート電極が露出するまで前記エッチング停止層をエッチバックする段階、前記犠牲ゲート電極を除去し、結果物の全体構造の上面に金属層を形成する段階、前記絶縁層が露出するまで前記金属層を除去する段階、および前記金属層を所定の深さでエッチバックする段階を含む。 (もっと読む)


【課題】チャネル領域に応力を印加しつつ、基板やソース/ドレイン領域においてリーク電流の発生が効果的に抑制された半導体装置を提供する。
【解決手段】半導体装置は、第1導電型の不純物を含み、素子形成領域170を有する半導体基板101と、素子形成領域170上にゲート絶縁膜132を挟んで形成されたゲート電極125と、ゲート電極125の両側方に形成され、第2導電型の不純物を含むソース/ドレイン領域150とを備える。素子形成領域170のうちゲート電極の両側方に位置する領域には、半導体基板101の主面に対して傾いた半導体単結晶のファセット面を露出させる側壁を有し、コーナー部が丸められたリセス130が形成されており、ソース/ドレイン領域150は、リセス130に埋め込まれたシリコン混晶で構成されている。 (もっと読む)


【課題】MISトランジスタにおけるシリコン混晶層からなるソースドレイン領域を、不純物の拡散による不具合を防止しながらチャネル領域に近づけることができるようにする。
【解決手段】半導体装置は、半導体基板10からなるn型の活性領域の上に、ゲート絶縁膜12を介在させて形成されたゲート電極13と、活性領域におけるゲート電極13の両側方の領域に形成されたp型ソースドレイン領域20と、活性領域における各p型ソースドレイン領域20の側面からそれぞれゲート電極13の下側に向かって形成されたn型ポケット領域18とを有している。p型ソースドレイン領域20は、シリコンとIV族元素との混晶層からなり、混晶層は、ゲート長方向におけるゲート電極側の側面がゲート電極側に突き出す凸部20aを有している。凸部20aの先端は、ポケット領域18によって覆われている。 (もっと読む)


【課題】ゲート電極抵抗の増大や工程数の増加を招くことなく、シリコン混晶層を用いた歪技術により、半導体装置の高性能化を実現する。
【解決手段】半導体基板100における第1のゲート電極106Aから見て第1の絶縁性サイドウォールスペーサ111Aの外側に第1のソースドレイン領域114Aを形成する。その後、半導体基板100における第2のゲート電極106Bから見て第2の絶縁性サイドウォールスペーサ111Bの外側にリセス部119を形成すると共に、第2のゲート電極106Bを部分的に除去する。その後、リセス部109内に、第2のソースドレイン領域114Bとなるシリコン混晶層120を形成する。 (もっと読む)


量子井戸トランジスタは、ゲルマニウムの量子井戸チャネル領域を有する。シリコンを含有したエッチング停止領域が、チャネル近くへのゲート誘電体の配置を容易にする。III−V族材料のバリア層がチャネルに歪みを付与する。チャネル領域の上及び下の傾斜シリコンゲルマニウム層によって性能が向上される。複数のゲート誘電体材料によって、high−k値のゲート誘電体の使用が可能になる。
(もっと読む)


トランジスタは、基板と、基板上の一対のスペーサと、基板上且つスペーサ対間のゲート誘電体層と、ゲート誘電体層上且つスペーサ対間のゲート電極層と、ゲート電極層上且つスペーサ対間の絶縁キャップ層と、スペーサ対に隣接する一対の拡散領域とを有する。絶縁キャップ層は、ゲートにセルフアラインされるエッチング停止構造を形成し、コンタクトエッチングがゲート電極を露出させることを防止し、それにより、ゲートとコンタクトとの間の短絡を防止する。絶縁キャップ層は、セルフアラインコンタクトを実現し、パターニング限界に対して一層ロバストな、より幅広なコンタクトを最初にパターニングすることを可能にする。
(もっと読む)


本開示の実施形態により、例えば横型電界効果トランジスタなどの集積回路デバイスに歪みを与える技術及び構成が提供される。集積回路デバイスは、半導体基板と、該半導体基板と結合された第1のバリア層と、第1のバリア層に結合された、第1の格子定数を持つ第1の材料を有する量子井戸チャネルと、量子井戸チャネルに結合されたソース構造とを含む。ソース構造は、第1の格子定数とは異なる第2の格子定数を持つ第2の材料を有し、量子井戸チャネルに歪みを与える。その他の実施形態も開示される。
(もっと読む)


低寄生抵抗であるチャネル歪みされたマルチゲートトランジスタとその製造方法に係る。ゲートを連結したチャネル側壁の高さがHsiである半導体フィンのチャネル領域の上にゲートスタックを形成されてよく、ゲートスタックに隣接する半導体フィンのソース/ドレイン領域内に、エッチングレートを制御するドーパントを注入してよい。ドーピングされたフィン領域をエッチングして、半導体フィンの、略Hsiに等しい厚みを除去して、ゲートスタックの一部の下にある半導体基板の部分を露呈させるソース/ドレイン延長キャビティを形成してよい。露呈した半導体基板の上に材料を成長させて、再成長したソース/ドレイン・フィン領域を形成して、ソース/ドレイン延長キャビティを充填して、ゲートスタックからの長さを、チャネルの長さに実質的に平行な方向に離れる方向に延ばしてよい。 (もっと読む)


61 - 80 / 559