説明

Fターム[5F140BH27]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ソース、ドレイン領域及びSD近傍領域 (10,828) | ソース、ドレイン材料 (598)

Fターム[5F140BH27]の下位に属するFターム

多結晶 (39)

Fターム[5F140BH27]に分類される特許

81 - 100 / 559


サブストレートとサブストレートの上に形成された半導体ボディを有する半導体デバイスである。半導体ボディはソース領域とドレイン領域を有している。ソース領域、ドレイン領域、またはその組み合わせは、第一の側面、第二の側面、及び上面を有している。第一の側面は第二の側面と向かい合っており、上面は底面と向かい合っている。ソース領域、ドレイン領域、またはその組み合わせは、実質的に全ての第一の側面の上に、実質的に全ての第二の側面の上に、そして上面の上に、形成されたメタル層を有している。
(もっと読む)


本開示の実施形態により、例えば横型電界効果トランジスタなどの集積回路デバイスに歪みを与える技術及び構成が提供される。集積回路デバイスは、半導体基板と、該半導体基板と結合された第1のバリア層と、第1のバリア層に結合された、第1の格子定数を持つ第1の材料を有する量子井戸チャネルと、量子井戸チャネルに結合されたソース構造とを含む。ソース構造は、第1の格子定数とは異なる第2の格子定数を持つ第2の材料を有し、量子井戸チャネルに歪みを与える。その他の実施形態も開示される。
(もっと読む)


低寄生抵抗であるチャネル歪みされたマルチゲートトランジスタとその製造方法に係る。ゲートを連結したチャネル側壁の高さがHsiである半導体フィンのチャネル領域の上にゲートスタックを形成されてよく、ゲートスタックに隣接する半導体フィンのソース/ドレイン領域内に、エッチングレートを制御するドーパントを注入してよい。ドーピングされたフィン領域をエッチングして、半導体フィンの、略Hsiに等しい厚みを除去して、ゲートスタックの一部の下にある半導体基板の部分を露呈させるソース/ドレイン延長キャビティを形成してよい。露呈した半導体基板の上に材料を成長させて、再成長したソース/ドレイン・フィン領域を形成して、ソース/ドレイン延長キャビティを充填して、ゲートスタックからの長さを、チャネルの長さに実質的に平行な方向に離れる方向に延ばしてよい。 (もっと読む)


本発明の実施例として、半導体装置上のエピタキシャル領域を示した。ある実施例では、エピタキシャル領域は、成膜−エッチングプロセスを経て基板に成膜される。周期的な成膜−エッチングプロセスの間に、スペーサの下側に形成されるキャビティは、エピタキシャルキャップ層によって埋め戻される。エピタキシャル領域およびエピタキシャルキャップ層は、チャネル領域での電子移動度を改善し、短チャネル効果が抑制され、寄生抵抗が低下する。
(もっと読む)


制御されたチャネル歪みおよび接合抵抗を有するNMOSトランジスタ、およびその製造方法が、本明細書で提供される。いくつかの実施形態において、NMOSトランジスタを形成するための方法は、(a)p型シリコン区域を有する基板を準備すること、(b)p型シリコン区域の上にシリコンシード層を堆積すること、(c)シリコン、シリコンおよび格子調整元素またはシリコンおよびn型ドーパントを備えるシリコン含有バルク層をシリコンシード層の上に堆積すること、(d)(c)で堆積されたシリコン含有バルク層に欠けている格子調整元素またはn型ドーパントのうちの少なくとも1つをシリコン含有バルク層の中に注入すること、(e)(d)の注入の後、シリコン含有バルク層をエネルギービームを用いてアニールすることを含むことができる。いくつかの実施形態において、基板は、その中に画定されたソース/ドレイン区域を有する、部分的に製造されたNMOSトランジスタデバイスを備えることができる。
(もっと読む)


【課題】耐放射線性を有する絶縁ゲート型半導体素子、絶縁ゲート型半導体集積回路を提供する。
【解決手段】一部がチャネル領域をなすp型の半導体層11と、半導体層11の上部に活性領域21Bを定義する素子分離絶縁膜21と、チャネル領域にキャリア注入口を介してキャリアを注入するn型の第1主電極領域12と、チャネル領域から、キャリアを排出するキャリア排出口を有するn型の第2主電極領域13と、活性領域21Bの上に設けられたゲート絶縁膜22と、ゲート絶縁膜22の上に設けられ、第1主電極領域12と第2主電極領域13との間を流れるキャリアの流路に直交する主制御部、主制御部に交わる2本のガード部241,242を有してπ字型をなすゲート電極24と、第2主電極領域13のゲート幅方向の両端側に設けられたp型のリーク阻止領域61,62とを備える。 (もっと読む)


【課題】Geを含む半導体で構成されるチャネル領域を有するP型FETにおいて、逆短チャネル特性の発生を抑制しつつ、短チャネル特性を改善する。
【解決手段】半導体装置は、半導体基板100上に形成されたP型FETを備えている。P型FETは、半導体基板100上に形成され、Geを含有する第1の半導体層103と、第1の半導体層103上に形成され、第1の半導体層103よりも低濃度のGeを含有する第2の半導体層104と、第2の半導体層104上にゲート絶縁膜107aを間に挟んで形成されたゲート電極110aと、第2の半導体層104のうちゲート電極110aの両側方に位置する部分に形成されたp型エクステンション領域111aと、第1の半導体層103内に設けられ、且つp型エクステンション領域111aの下に形成されたn型不純物領域152とを有している。 (もっと読む)


【課題】チャネル領域に強い歪みを印加することによりデバイス特性を改善した半導体装置を提供すること。
【解決手段】半導体基板1と、半導体基板1の第1の面に形成されたゲート絶縁膜2と、ゲート絶縁膜2の上に形成されたゲート電極3と、ゲート電極3の側壁に形成されたゲート側壁絶縁膜4と、ゲート電極3の下の半導体基板1中に形成されるチャネル領域に隣接し、不純物が注入されたソース/ドレイン拡散層領域5、6と、ゲート電極3の上方を除き、ソース/ドレイン拡散層領域5、6の上に形成された応力印加膜8と、を有し、半導体基板1の第1の面におけるソース/ドレイン拡散層領域5、6が形成された領域には、凹部または凸部50、51、60、61が設けられている半導体装置を提供する。 (もっと読む)


【課題】蛇行した形状に形成されたリセス部を備えることにより、オン抵抗を低減することができる電界効果トランジスタを提供することを目的とする。
【解決手段】電界効果トランジスタ1は、チャネル層11と、チャネル層11とヘテロ接合を構成するキャリア供給層12と、キャリア供給層12の表面から掘り下げて形成されたリセス部13と、リセス部13に沿って形成された第1絶縁層31と、第1絶縁層31の上に形成された第1ゲート電極23と、リセス部13に対してチャネル長方向の一方側に形成されたソース電極21と、リセス部13に対してチャネル長方向の他方側に形成されたドレイン電極22とを備える。リセス部13は、ソース電極21とドレイン電極22とが平面視で平行に対向するチャネル長の範囲内において、蛇行しながらチャネル長方向と交差する方向に延長されている。 (もっと読む)


量子井戸型半導体装置、および量子井戸型半導体装置を形成する方法について示した。本方法は、基板の上部に配置され、量子井戸チャネル領域を有するヘテロ構造を提供するステップを有する。また、この方法は、ソースおよびドレイン材料領域を形成するステップを有する。また、この方法は、ソースおよびドレイン材料領域に溝を形成するステップを有し、ドレイン領域から分離されたソース領域が提供される。また、この方法は、溝内のソース領域とドレイン領域の間に、ゲート誘電体層を形成するステップと、溝内のゲート誘電体層の上部に、ゲート電極を形成するステップとを有する。
(もっと読む)


【課題】シリサイド層とSi層との界面における抵抗が低いMOSFETを備える半導体装置およびその製造方法を提供する。
【解決手段】本発明の一態様に係る半導体装置100は、半導体基板2上にゲート絶縁膜11を介して形成されたゲート電極12と、半導体基板2上のゲート電極12の両側に形成された、チャネル移動度に実質的な影響を与えないSiGe層15と、SiGe層15上に形成されたSi層16と、半導体基板2、SiGe層15、およびSi層16内のゲート電極12の両側に形成されたn型ソース・ドレイン領域19と、Si層16上に形成されたシリサイド層17と、を有する。 (もっと読む)


【課題】III−V族チャネルとIV族ソース−ドレインとを有する半導体デバイス及びその製造方法を提供する。
【解決手段】III−V族材料のエネルギーレベルの密度とドーピング濃度をIII−V族材料とIV族材料のヘテロエピタキシと素子の構造設計によって高める。本発明の方法は、基板100上にダミーゲート材料層を堆積し、フォトリソグラフィでダミーゲート材料層にダミーゲートを区画することと、ダミーゲートをマスクとして使用し、セルフアライン型イオン注入によってドーピングを行い、高温で活性化を行い、ソース−ドレイン108を形成することと、ダミーゲートを除去することと、ソース−ドレインのペアの間の基板にエッチングで凹陥部を形成することと、凹陥部にエピタキシャル法によりチャネル含有スタック素子112を形成することと、チャネル含有スタック素子上にゲート120を形成することと、を含む。 (もっと読む)


【課題】フィン電界効果トランジスタのソース/ドレイン構造を提供する。
【解決手段】基板上のフィンチャネル本体110a、110b、フィンチャネル本体110a、110b、上に配置されたゲート電極115、およびフィンチャネル本体110a、110b、に隣接して配置され、どのフィン構造も実質的に含まない、少なくとも1つのソース/ドレイン(S/D)領域120a,120b及び125a,125bを含むフィン電界効果トランジスタ(FinFET)。 (もっと読む)


【課題】微細化が進んだトランジスタにおいて、他の問題を生じさせずに抵抗を低減する。
【解決手段】シリサイド層9は、ソース・ドレイン領域8の表層及びソース・ドレイン拡張領域6に形成されている。シリサイド層9は、半導体基板1に垂直かつゲート幅方向に対して平行な断面でみたときに、ソース・ドレイン領域8の中央部からチャネル領域に近づくにつれて半導体基板1の内側(図中下側)に近づいており、かつチャネル領域側の端部がソース・ドレイン拡張領域6に延在している。 (もっと読む)


【課題】高移動度チャネルを有する装置のソース/ドレイン工学を提供する。
【解決手段】集積回路構造は、基板及び基板の上方のチャネルを備える。チャネルは、III族元素とV族元素から構成される第一III-V族化合物半導体材料からなる。ゲート構造はチャネルの上方に設置される。ソース/ドレイン領域はチャネルに隣接し、本質的に、シリコン、ゲルマニウム、及び、それらの組み合わせからなる群から選択されるドープされたIV族半導体材料から形成されるIV族領域を含む。 (もっと読む)


幅広い電子デバイスのアレイ及びシステムにおける電力消費を低減する一式の新たな構造及び方法が提供される。これらの構造及び方法のうちの一部は、大部分が既存のバルクCMOSのプロセスフロー及び製造技術を再利用することで実現され、半導体産業及びより広いエレクトロニクス産業がコスト及びリスクを伴って代替技術へ切り替わることを回避可能にする。これらの構造及び方法のうちの一部は、深空乏化チャネル(DDC)設計に関係し、CMOSベースのデバイスが従来のバルクCMOSと比較して低減されたσVTを有することと、チャネル領域にドーパントを有するFETの閾値電圧VTがより一層正確に設定されることとを可能にする。DDC設計はまた、従来のバルクCMOSトランジスタと比較して強いボディ効果を有することができ、それにより、DDCトランジスタにおける電力消費の有意義な動的制御が可能になる。
(もっと読む)


基板上に設けられるシリコン層をエッチングする方法は、シリコン層に第1のトレンチを異方性エッチングすること;第1のトレンチ内のシリコン表面を選択的に異方性ウェットエッチングすることであって、該ウェットエッチングが、シリコン表面を、芳香族トリ(低級)アルキル第四級オニウム水酸化物と、非対称テトラアルキル第四級ホスホニウム塩とを含む水性組成物に曝すことを含み、該ウェットエッチングが、シリコン層の(110)面及び(100)面をおよそ等しい速度で(111)面よりも優先的にエッチングして、(111)面に側壁を有する拡大されたトレンチを形成する、選択的に異方性ウェットエッチングすることを含む。応力をシリコン層の少なくとも一部分に導入するプロセスの一環として、このようにして作製したトレンチ内にシリコン合金をエピタキシャル堆積させてもよい。 (もっと読む)


【課題】オン抵抗を大幅に低減し、十分な高電圧動作且つ高出力を得ることができる信頼性の高い化合物半導体装置を実現する。
【解決手段】ソース電極12及びドレイン電極13の下方の凹部7,8を充填し、電子供給層4の上方を覆う、Siを含むn−GaN層9が形成されており、n−GaN層9は、ソース電極12の下方及びドレイン電極13下方に含まれるSiの方が、ゲート電極15の近傍に含まれるSiよりも濃度が大きくなるように、Si添加量を漸減させながら成長形成される。 (もっと読む)


【課題】より高い耐熱性を有するシリサイド層を備えた半導体装置およびその製造方法を提供する。
【解決手段】本発明の一態様に係る半導体装置100の製造方法は、半導体基板2上にゲート絶縁膜4を介してゲート電極5を形成する工程と、半導体基板2上のゲート電極5の両側に、Ge含有領域8を形成する工程と、半導体基板2およびGe含有領域8のゲート電極5の両側の領域中に、ソース・ドレイン領域9を形成する工程と、Ge含有領域8上に、濃度5原子%以上のPdを含む金属シリサイドからなるシリサイド層11を形成する工程と、シリサイド層11を形成した後、半導体基板2に650〜750℃の熱処理を施す工程と、を含む。 (もっと読む)


【課題】金属ゲートとストレッサーを有するゲルマニウムフィンFETを提供する。
【解決手段】集積回路構造は、n型フィン電界効果トランジスタ(fin field effect transistor、FinFET)とp型FinFETからなる。n型FinFETは、基板上の第一ゲルマニウムフィン、第一ゲルマニウムフィンの上面と側壁上の第一ゲート誘電体、及び、第一ゲート誘電体上の第一ゲート電極からなる。p型FinFETは、基板上の第二ゲルマニウムフィン、第二ゲルマニウムフィンの上面と側壁上の第二ゲート誘電体、及び、第二ゲート誘電体上の第二ゲート電極からなる。第一ゲート電極と第二ゲート電極は、ゲルマニウムの固有エネルギーレベルに近い仕事関数を有する同一材料で形成される。 (もっと読む)


81 - 100 / 559