説明

Fターム[5F140BK33]の内容

Fターム[5F140BK33]の下位に属するFターム

Fターム[5F140BK33]に分類される特許

21 - 40 / 59


【課題】電界集中を緩和し、高い耐圧を得ることが可能な半導体装置を提供する。
【解決手段】
半導体層上において、第1フィールドプレートFAは、第1絶縁膜上に、第1電極102と第2電極103との間に相互に間隔を置いて配置され、第2フィールドプレートFBは、第2絶縁膜上に、第1電極102上方から第2電極103上方までの間に相互に間隔を置いて配置され、
第1電極および第2電極側末端のFBは、第1電極または第2電極およびそれに隣り合うFAに重なり、
前記第1電極および第2電極側末端FB以外の一方のFAまたはFBは、第1電極から第2電極への方向と垂直方向に隣り合う複数の他方のFAまたはFBに重なり合い、前記第1電極および第2電極側末端FB以外の他方のFAまたはFBは、第1電極から第2電極への方向に隣り合う2つの前記一方のFAまたはFBに重なり合う半導体装置。 (もっと読む)


【課題】可動ゲート電極の変位を制御可能な可動ゲート型電界効果トランジスタを提供する。
【解決手段】ソース電極17とドレイン電極18との上に導電シールド電極20が配置される可動ゲート型電界効果トランジスタ1とした。そして導電シールド電極20の電位を固定することとした。導電シールド電極20が配置されることにより、可動ゲート15とドレイン電極18またはソース電極17との間に発生する静電力を抑制することができる。 (もっと読む)


【課題】トンネルFETの閾値ばらつきの抑制をはかる。
【解決手段】Si1-x Gex (0<x≦1)の第1の半導体層13上にゲート絶縁膜21を介して形成されたゲート電極22と、Geを主成分とする第2の半導体と金属との化合物で形成されたソース電極24と、第1の半導体と金属との化合物で形成されたドレイン電極25と、ソース電極24と第1の半導体層13との間に形成されたSi薄膜26とを具備した半導体装置であって、ゲート電極22に対しソース電極24のゲート側端部とドレイン電極25のゲート側端部とは非対称の位置関係にあり、ドレイン電極25のゲート側の端部の方がソース電極24のゲート側の端部よりも、ゲート電極22の端部からゲート外側方向に遠く離れている。 (もっと読む)


【課題】プロセスの自由度を高めつつ、活性層とオーミックコンタクトをとるオーミック電極を形成できる半導体トランジスタの製造方法を提供する。
【解決手段】GaN系の半導体からなる活性層上に、オーミック電極を形成する半導体トランジスタの製造方法であって、活性層3上に、タンタル窒化物からなる第1の層11と、第1の層11上に積層されたAlからなる第2の層12とを形成する工程と、第1及び第2の層11,12を、520℃以上、600℃以下の温度で熱処理することにより、活性層3とオーミックコンタクトをとるオーミック電極9s,9dを形成する工程とを備える。 (もっと読む)


【課題】ゲート閾値電圧を低下させることなく、チャネル移動度を向上できる炭化珪素MOSFETを提供する。
【解決手段】炭化珪素半導体装置200は、炭化珪素基板10と、炭化珪素基板10上に形成された炭化珪素層20と、炭化珪素層20上に形成されたゲート絶縁膜30と、ゲート絶縁膜30を介して炭化珪素層20上の所定位置に形成され、III族軽元素であるB、AlまたはGaをp型ドーパントとして含む多結晶シリコンからなるゲート電極40とを有する。そして、ゲート電極40中の上記p型ドーパントを、ゲート電極40直下の炭化珪素層20とゲート絶縁膜30との界面近傍に拡散させ、上記p型ドーパントによって界面近傍の不純物準位をパッシベーションする。 (もっと読む)


低寄生抵抗であるチャネル歪みされたマルチゲートトランジスタとその製造方法に係る。ゲートを連結したチャネル側壁の高さがHsiである半導体フィンのチャネル領域の上にゲートスタックを形成されてよく、ゲートスタックに隣接する半導体フィンのソース/ドレイン領域内に、エッチングレートを制御するドーパントを注入してよい。ドーピングされたフィン領域をエッチングして、半導体フィンの、略Hsiに等しい厚みを除去して、ゲートスタックの一部の下にある半導体基板の部分を露呈させるソース/ドレイン延長キャビティを形成してよい。露呈した半導体基板の上に材料を成長させて、再成長したソース/ドレイン・フィン領域を形成して、ソース/ドレイン延長キャビティを充填して、ゲートスタックからの長さを、チャネルの長さに実質的に平行な方向に離れる方向に延ばしてよい。 (もっと読む)


LDMOS(横方向拡散金属酸化物半導体)構造は、ソースを基板及びゲートシールドへと接続させ、この際、このような接点のためにより小さな面積が用いられる。前記構造は、導電性基板層と、ソースと、ドレイン接点とを含む。少なくとも1つの介在層により、前記ドレイン接点が前記基板層から分離される。導電性のトレンチ状のフィードスルー要素が前記介在層を通過し、前記基板及び前記ソースと接触することで、前記ドレイン接点及び前記基板層を電気的に接続する。 (もっと読む)


金属−絶縁体−半導体電界効果トランジスタ(MISFET)は、第1の導電型の離間配置されたソース領域とドレイン領域とを内部に有する半導体層を含む。第1の導電型のチャネル領域が、ソース領域とドレイン領域との間に延びる。ゲートコンタクトが、チャネル領域上にある。誘電体チャネル空乏層が、ゲートコンタクトとチャネル領域との間にある。誘電体チャネル空乏層は、第1の導電型の電荷キャリアと同じ極性を有する正味電荷をもたらし、この正味電荷は、電圧がゲートコンタクトに印加されないとき、チャネル領域の隣接部分から第1の導電型の電荷キャリアを空乏化させることができる。 (もっと読む)


金属−絶縁体−半導体電界効果トランジスタ(MISFET)は、第1の導電型の離間されたソース領域とドレイン領域とをその中に有するSiC層を含む。第1のゲート絶縁層は、SiC層上にあり、SiC層との界面に沿って、ソース領域の多数キャリアと同じ極性の正味の電荷を有する。ゲートコンタクトは、ソース領域とドレイン領域との間のSiC層のチャネル領域の上方の、第1のゲート絶縁層上にある。第1のゲート絶縁層とSiC層との間の界面に沿った正味の電荷は、SiC層内のソース領域とドレイン領域との間のチャネル領域の隣接部分の多数キャリアを空乏化することができ、そのことにより、MISFETの閾値電圧を上昇させ、及び/又は内部の電子移動度を高めることができる。 (もっと読む)


III族窒化物トランジスタ・デバイスを形成する方法は、III族窒化物半導体層上に保護層を形成するステップと、III族窒化物半導体の一部を露出するように保護層を貫通するビアホールを形成するステップと、保護層上にマスキングゲートを形成するステップとを含む。マスキングゲートは、ビアホールの幅より大きい幅を有する上部を含み、ビアホールの中に延びる下部を有する。この方法はさらに、マスキングゲートを注入マスクとして用いて、III族窒化物層内にソース/ドレイン領域を注入するステップを含む。 (もっと読む)


【課題】導電層を自己整合的に形成する場合において、第1の拡散層コンタクトプラグのコンタクトマージンを比較的大きく取る。
【解決手段】半導体装置10は、第1のシリコンピラー14Aと、第1のシリコンピラー14Aの上面に設けられ、導電性材料が充填されたスルーホール30aを有する層間絶縁膜30と、スルーホール30aの上側開口部に設けられた第1の拡散層コンタクトプラグDC1とを備え、スルーホール30aの下側開口部の面積は前記第1のシリコンピラー14Aの上面の面積に等しくなっているとともに、スルーホール30aの上側開口部の面積はスルーホール30aの下側開口部の面積より大きくなっており、それによって、スルーホール30a内の導電性材料の第1の拡散層コンタクトプラグDC1との接続面の面積が第1のシリコンピラー14Aの上面の面積より大きくなっている。 (もっと読む)


【課題】柱状半導体層が微細化されて高集積化されても、コンタクト抵抗の増加を抑制する構造の半導体装置を提供する。
【解決手段】半導体装置は、基板(半導体基板1)と、半導体基板1上に設けられた、半導体柱状部(柱状半導体層3)と、の天面に接するように設けられた、柱状半導体層3と同径以下のコンタクト柱状部(コンタクト層7)と、この天面に設けられた凹部をと備えるものである。 (もっと読む)


【課題】III族窒化物系化合物半導体の表面上に酸化物を備えた半導体装置であって、上記III族窒化物系化合物半導体と上記酸化物との間の界面の界面準位密度を小さくでき、移動度を高くできるものを提供すること。
【解決手段】本発明の半導体装置では、III族窒化物系化合物半導体3の表面上に、Alを組成に含みスピネル構造をもつ酸化物4が形成されている。III族窒化物系化合物半導体3は、例えばGaNからなる。酸化物4は、例えばMgAl、MnAl、CoAl、NiAlからなる。 (もっと読む)


【課題】ソース/ドレイン拡散層に形成されるシリサイド層のスパイクやコンタクトの突き抜けを抑制して、接合リークの発生を低減するとともに、シリサイド層を低抵抗化した半導体装置およびその製造方法を提供する。
【解決手段】半導体装置1は、半導体基板10の上に形成されたトランジスタを有する。トランジスタのゲート電極は、ポリシリコン電極14とその上に形成されたシリサイド層32から構成される。さらに、低濃度ドーピング領域16、高濃度ドーピング領域からなるソース/ドレイン拡散層20、ソース/ドレイン拡散層20上のシリサイド層30を備える。シリサイド層30の表面は、半導体基板10の表面よりも上方に位置している。また、シリサイド層30はシリサイド化反応抑制金属を含み、シリサイド層30の表面から所定の深さに至る領域において、シリサイド層30の表面から基板側へ向かってシリサイド化反応抑制金属の濃度が高くなる濃度プロファイルを有する。 (もっと読む)


ゲート電極(14、28)によって制御されるチャネル(20、34)によって接続される金属ショットキーのソース電極(10、24)、及びドレイン電極(12、26)を有する相補型p、及びnMOSFETトランジスタ(3、4)を製造する方法であって、p、及びnトランジスタの双方のための単一のシリサイドからソース電極、及びドレイン電極を製造することと、相補型nトランジスタ(4)をマスクして、シリサイドと、pトランジスタのチャネル(20)との間の界面(22)における周期表のII族、及びIII族からの第1の不純物(21)を偏析することと、相補型pトランジスタ(3)をマスクして、シリサイドと、nトランジスタのチャネル(34)との間の界面(36)における周期表のV族、及びVI族からの第2の不純物(35)を偏析することと、を有する。 (もっと読む)


【課題】シリコンリッチ窒化シリコン膜に起因した不安定な現象を抑制すること。
【解決手段】本発明はGaN系またはInP系化合物半導体からなる半導体層11の上に屈折率が2.2以上の第1窒化シリコン膜12を形成する工程と、第1窒化シリコン膜12より屈折率の低い第2窒化シリコン膜14を第1窒化シリコン膜12上に形成する工程と、半導体層11を露出させた領域にソース電極16およびドレイン電極18を形成する工程と、第1窒化シリコン膜12および第2窒化シリコン膜14が形成された状態でソース電極16およびドレイン電極18を熱処理する工程と、ソース電極16とドレイン電極18との間の半導体層11上にゲート電極を形成する工程と、を有する半導体装置の製造方法である。 (もっと読む)


【課題】ゲート絶縁膜の信頼性が向上した炭化珪素半導体装置を提供する。
【解決手段】第1と第2の主面を有する炭化珪素基板(101)と、炭化珪素基板の第1の主面に設けられた第1導電型の炭化珪素層(102)と、炭化珪素層の表面に設けられた第2導電型の第1の炭化珪素領域(103)と、第1の炭化珪素領域内の表面に設けられた第1導電型の第2の炭化珪素領域(104)と、炭化珪素層、第1の炭化珪素領域、及び第2の炭化珪素領域が連続して連なる部分に跨るように選択的に設けられたゲート絶縁膜(105)と、ゲート絶縁膜上に形成されたゲート電極(106)と、第2及び第1の炭化珪素領域の隣接する部分に選択的に設けられたトレンチに埋め込まれた第1の電極(108)と、炭化珪素基板の前記第2の主面に形成された第2の電極(107)とを具備する。 (もっと読む)


【課題】簡易な製造工程によって形成可能なノーマリーオフ型のGaN系FETを提供すること。
【解決手段】本発明においては、ソース電極S直下およびドレイン電極D直下にそれぞれn−AlGaN層16を形成し、さらにn−AlGaN層16の間に位置するチャネル層であるp−GaN層14上に形成される絶縁膜17の上にゲート電極Gを形成することによって、ソース電極Sおよびドレイン電極Dとn−AlGaN層16との接触抵抗を低下させたノーマリーオフ型のGaN系のFET1を実現することができる。 (もっと読む)


【課題】低抵抗かつ熱的安定性に優れた、ジャーマナイド薄膜を提供する。
【解決手段】ゲルマニウム(Ge)基板11上に、Pt薄膜12が形成され、さらにPt薄膜12の上方にNi薄膜13が形成されている。その後、熱処理を加えることによって、Ge基板上にNi、Pt、Geの三元素からなる(Ni1-xPtx)Ge薄膜が形成された。ジャーマナイド薄膜を構成する結晶粒の結晶面方位が、前記ゲルマニウム基板の[110]結晶面に対して、[102]面あるいは[001]面を平行とする配向関係になっている。 (もっと読む)


【課題】チャネルに対して設計されたひずみを与えるストレッサー及びその形成方法を提供すること。
【解決手段】半導体基板が、異なる不純物濃度を有する異なる部分を有するヘテロエピタキシャル・シリコン含有物質で埋め込まれたリセスを備える。歪まされた膜が、リセスされたソース/ドレイン領域を、傾斜してボトム−アップで埋め込むことができる。膜は、所定の濃度のひずみを引き起こす不純物でリセス側壁をラインし、より低い濃度の不純物でリセスの残りの部分を埋め込む。後者の場合では、側壁ライナーは先細りになりえる。 (もっと読む)


21 - 40 / 59