説明

Fターム[5G323BA02]の内容

電線ケーブルの製造 (4,138) | 導電層の出発材料 (1,212) | 酸化物 (540)

Fターム[5G323BA02]に分類される特許

61 - 80 / 540


【課題】高い透過率が達成できる機能性フィルムを提供する。
【解決手段】樹脂フィルムと、該樹脂フィルムの表面に設けられた、1層または2層以上の導電層と、該導電層の表面に設けられた機能性層とを有し、
導電層のうち、樹脂フィルムに隣接する導電層の表面抵抗値が107〜1013Ω/cm2であり、
導電層のうち、樹脂フィルムに隣接する導電層がバインダと導電性針状金属酸化物微粒子を含み、かつ、下記式(I)の数値が0.05以下を満たすことを特徴とする機能性フィルム。
式(I)


(Ndaは樹脂フィルムに隣接する導電層の屈折率を、Ndfは樹脂フィルムの屈折率を、Ndcは機能性層の屈折率をそれぞれ示す。) (もっと読む)


【課題】p型の導電膜及びp型の透明導電膜としての高性能な酸化物膜の、量産性に優れた製造方法を提供する。
【解決手段】
本発明の1つの酸化物膜の製造方法は、酸素を含むガスの雰囲気下で、反応性スパッタリング法により、銅(Cu)からなる第1ターゲット30a,30aとニオブ(Nb)およびタンタル(Ta)からなる群から選択される1種類の遷移元素からなる第2ターゲット30b,30bとを用いて交互にスパッタを行うことにより、基板10上に第1酸化物膜(不可避不純物を含み得る)を形成する工程、及びその第1酸化物膜を不活性ガス雰囲気中で加熱焼成することにより第2酸化物膜(不可避不純物を含み得る)を形成する工程を含む。従って、この製造方法によって形成された酸化物膜は、大型基板上への膜の形成が容易になることから、量産性に優れている。 (もっと読む)


【課題】キャリア電子の移動度が高く、光電変換素子の入射光側電極として好適に用いられるフッ素ドープ酸化スズ膜の形成方法の提供。
【解決手段】CVD法を用いて、10kPa以下の圧力下で、基体温度が500℃以下、かつ、形成される膜におけるキャリア電子の移動度が極大値となる成膜温度にて、フッ素ドープ酸化スズ膜を基体上に形成した後、圧力10kPa以下の非酸化性雰囲気下にて、該成膜温度よりも20〜30℃高い温度で1分以上保持し、その後、圧力10kPa以下の非酸化性雰囲気下にて、少なくとも基体温度が300℃以下となるまで、平均冷却速度10℃/min以下で徐冷することを特徴とするフッ素ドープ酸化スズ膜の形成方法。 (もっと読む)


【課題】光散乱効果を持つZnO系膜を高い成膜速度で成膜できる生産性のよい成膜方法を提供する。
【解決手段】本発明では、成膜室1内に処理すべき基板WとZnOを主成分とするターゲット31とを配置し、真空雰囲気の成膜室1内に希ガス等のスパッタガスを導入し、ターゲット31に所定電力を投入し、プラズマ雰囲気を形成してターゲットをスパッタリングすることで、基板W表面にZnOを主成分とする薄膜を成膜する。スパッタリングによる成膜中、前記プラズマに基板Wが曝されるようにし、成膜室1内の圧力を2Pa未満に保持する。 (もっと読む)


【課題】優れた導電性と化学的耐久性及び近赤外領域の高透過性を有する透明導電膜の成膜を可能にする酸化亜鉛系透明導電膜形成材料、その製造方法、それを用いたターゲット、および酸化亜鉛系透明導電膜の形成方法を提供する。
【解決手段】本発明の酸化亜鉛系透明導電膜形成材料は、実質的に亜鉛、チタン、酸素および窒素からなる酸化物焼結体であって、原子数比でTi/(Zn+Ti)=0.02超0.1以下となるよう含有されている。 (もっと読む)


【課題】透明性及び電気的特性に優れ、印刷法でも製造可能な透明導電膜を提供する。更に、本発明は、該透明導電膜の製造方法を提供する。
【解決手段】金属酸化物を含有する透明導電膜であって、前記金属酸化物は、下記式(1)に規定する関係を満たす透明導電膜。
[数1]
(もっと読む)


【課題】 薄膜太陽電池向けの湿式塗工法で用いられる透明導電膜用組成物、およびこの組成物により作製される透明導電膜に関する。透明導電膜の屈折率と、光電変換層の屈折率の差を大きくすることにより、透明導電膜−光電変換層界面での反射光が増加し、この増加した光電変換層への戻り光により、薄膜太陽電池の発電効率を向上させる透明導電膜、およびこの透明導電膜を形成可能な透明導電膜組成物を提供する。
【解決手段】 導電性酸化物粒子と、平均粒径:1〜50nmの球状フッ化マグネシウム粒子と、バインダーと、を含み、導電性酸化物粒子と球状フッ化マグネシウム粒子の合計100質量部に対して、球状フッ化マグネシウム粒子を2〜35質量部含むことを特徴とする、薄膜太陽電池向け透明導電膜用組成物である。 (もっと読む)


【課題】 薄膜太陽電池向けの湿式塗工法で用いられる透明導電膜用組成物、およびこの組成物により作製される透明導電膜に関する。透明導電膜の屈折率と、光電変換層の屈折率の差を大きくすることにより、透明導電膜−光電変換層界面での反射光が増加し、この増加した光電変換層への戻り光により、薄膜太陽電池の発電効率を向上させる透明導電膜、およびこの透明導電膜を形成可能な透明導電膜組成物を提供する。
【解決手段】 導電性酸化物粒子と、平均粒径:1〜50nmの異方性フッ化マグネシウム粒子と、バインダーと、を含み、導電性酸化物粒子と異方性フッ化マグネシウム粒子の合計100質量部に対して、異方性フッ化マグネシウム粒子を2〜35質量部含むことを特徴とする、薄膜太陽電池向け透明導電膜用組成物である。 (もっと読む)


【課題】重荷重で打点特性および耐屈曲性に優れる透明導電性フィルムを提供する。
【解決手段】可撓性透明基材1上に、結晶性のインジウム・スズ複合酸化物からなる透明導電層3が形成されており、透明導電層の圧縮残留応力が0.4〜2GPaである透明導電性フィルム。透明導電層3は、非晶質のインジウム・スズ複合酸化物からなる非晶質透明導電層を加熱することにより得られうる。加熱の際には透明導電層に圧縮応力が付与されることが好ましい。また、加熱による透明導電層の寸法変化は、少なくとも面内の一方向において−0.3%〜−1.5%であることが好ましい。 (もっと読む)


【課題】混合ナノ粒子を利用した透明導電構造及びその製造方法を提供する。
【解決手段】透明導電構造は基板部及び導電部を備える。前記基板部は少なくとも1つのプラスチック基板を備える。前記導電部は少なくとも1つの透明導電フィルム及び少なくとも1つの導電ナノ粒子群が同時に形成されたものであり、前記透明導電フィルムは前記プラスチック基板上に形成される。前記導電ナノ粒子群は前記透明導電フィルム内に複数混入或いは組み込まれる導電ナノファイバーである。 (もっと読む)


【課題】従来の透明導電体は、より高い導電性を得るために、ガラス中のカーボンナノチューブの含有量を増やす必要があるが、透明導電体の光の透過率が落ちてしまい、高導電性と透明性を両立できないという課題があった。
【解決手段】金属を添加したチタニアナノチューブを透明基材に分散させたことを特徴とする透明導電体。 (もっと読む)


【課題】拡散ブロッキング構造、透明導電構造及びその製造方法を提供する。
【解決手段】透明導電構造は、基板ユニット、第1のコーティングユニット、拡散ブロッキング構造、第2のコーティングユニット、第3のコーティングユニット及び導電ユニットを備える。基板ユニットは、プラスチック基板を有する。第1のコーティングユニットは、プラスチック基板上に形成された第1のコーティングを有する。拡散ブロッキング構造は、第1のコーティングに形成され、複数の第1の酸化層を有する第1の酸化ユニットと、複数の第2の酸化層を有する第2の酸化ユニットを備え、前記複数の第2の酸化層と前記複数の第1の酸化層とは交互に積層されている。第2のコーティングユニットは、拡散ブロッキング構造に形成された第2のコーティングを有する。第3のコーティングは、第2のコーティングに形成された第3のコーティングを有する。導電ユニットは、第3のコーティング上に形成された透明導電構造を有する。 (もっと読む)


【課題】光線透過率が高く維持されるとともに、表面抵抗率が低く、導電性に優れた透明電極基板、その製造方法、該透明電極基板を有する電子デバイス及び太陽電池を提供すること。
【解決手段】透明基材の一方の面に、導電性金属メッシュ層を埋設した透明導電層が積層されてなる透明電極基板、透明基材の一方の面に第1の透明導電層を形成させ、同透明導電層上に導電性金属層を形成させ、同導電性金属層をフォットレジストパターニング処理することにより導電性金属メッシュ層を形成させ、同金属メッシュ層の面に第2の透明導電層を形成させて同導電性金属メッシュ層を同透明導電層により被覆することを特徴とする透明電極基板の製造方法、同透明電極基板を有する電子デバイスならびに太陽電池である。 (もっと読む)


【課題】実用に耐えうる導電性を保ちながら、かつ耐候性を備え、パターニングの際に適当なエッチングレートを有する透明導電膜を成膜するためのターゲットに用いることができる酸化亜鉛系透明導電膜形成材料、その製造方法、それを用いたターゲット、および酸化亜鉛系透明導電膜の形成方法を提供する。
【解決手段】亜鉛とチタンとの合計に対するチタンの原子数比Ti/(Zn+Ti)が0.02を越え0.1以下であり、酸化亜鉛を主成分とし、ガリウムおよびアルミニウムのうち少なくとも一方の酸化物と、酸化チタンとを含み、ガリウムまたはアルミニウムの原子数の割合が全金属原子数に対して0.5%以上6%以下であり、かつ前記酸化チタンが、式TiO2-X(X=0.1〜1)で表される低原子価酸化チタンである酸化物混合体または酸化物焼結体からなることを特徴とする酸化亜鉛系透明導電膜形成材料。 (もっと読む)


【課題】実用に耐えうる導電性を保ちながら、かつ耐候性、耐熱性等の化学的耐久性を備え、パターニングの際に適当なエッチングレートを有する透明導電膜を成膜するためのターゲットに用いることができる酸化亜鉛系透明導電膜形成材料、その製造方法、それを用いたターゲット、および酸化亜鉛系透明導電膜の形成方法を提供する。
【解決手段】本発明の透明導電膜形成材料は、酸化亜鉛を主成分とし、フッ化ガリウムおよびフッ化アルミニウムのうち少なくとも一方を含み、さらにチタンを含む酸化亜鉛系透明導電膜形成材料であり、全金属原子数に対するチタンの原子数の割合が2%超10%以下であり、全金属原子数に対するフッ化ガリウムおよびフッ化アルミニウムの一方または両方の金属原子数の割合が0.1%以上5%以下であり、かつチタン源として、一般式:TiO2-X(X=0.1〜1)で表される低原子価酸化チタンを用いた酸化物焼結体である。 (もっと読む)


【課題】酸化亜鉛系薄膜をパターニングする際のエッチングレートが充分に低く、エッチングレートを容易かつ確実に制御することが可能であり、良好なパターン形状を有するとともに導電性も高い酸化亜鉛系薄膜を得ることができるパターニング方法を提供する。
【解決手段】本発明のパターニング方法は、酸化亜鉛系薄膜を酸によりエッチングしてパターニングする方法であって、前記酸化亜鉛系薄膜が、酸化亜鉛を主成分とし、亜鉛とチタンとの合計に対するチタンの原子数比Ti/(Zn+Ti)が0.02を超え0.1以下の薄膜である。前記酸化亜鉛系薄膜は、実質的に亜鉛、チタンおよび酸素からなる酸化物焼結体または酸化物混合体を加工して得られるターゲットを膜形成材料として成膜されたものであることが好ましい。 (もっと読む)


【課題】接触抵抗値を低減させて、下地膜とのオーミック接触を可能とする。
【解決手段】低抵抗の透明配線材料や透明電極材料として活用されるITO膜およびその製造方法において、ITO膜を低温度でスパッタリングして形成し、まず、非結晶体のアモルファス状態にする。次に、酸素雰囲気で熱処理(アニール処理)を行うことにより、ITO膜を結晶化すると共に、ITO膜の面指数(222)の結晶強度が面指数(400)の結晶強度よりも強くなるように結晶配向性がコントロールされる。 (もっと読む)


【課題】 優れた導電性と化学的耐久性とを兼ね備えた酸化亜鉛系透明導電膜の形成方
法を提供する。
【解決手段】 本発明の酸化亜鉛系透明導電膜の形成方法は、スパッタリング法により酸化亜鉛系透明導電膜を形成する方法であって、実質的に亜鉛、チタンおよび酸素からなり、亜鉛とチタンとの合計に対するチタンの原子数比Ti/(Zn+Ti)が0.02を超え0.1以下である酸化物焼結体または酸化物混合体を加工して得られるターゲットを用いる方法である。この形成方法により成膜された透明導電膜は、該透明導電膜中に含まれる亜鉛とチタンとの合計に対するチタンの原子数比Ti/(Zn+Ti)が0.02を超え0.1以下である。 (もっと読む)


【課題】 イオンプレーティング法による、優れた導電性と化学的耐久性とを兼ね備えた酸化亜鉛系透明導電膜の形成方法を提供する。
【解決手段】 イオンプレーティング法により酸化亜鉛系透明導電膜を形成する方法であって、実質的に亜鉛、チタンおよび酸素からなり、亜鉛とチタンとの合計に対するチタンの原子数比Ti/(Zn+Ti)が0.02を超え0.1以下である酸化物焼結体または酸化物混合体を加工して得られるターゲットを用いる方法 (もっと読む)


【課題】透明基材上に低抵抗のIn・Sn複合酸化物(ITO)からなる透明導電層が形成された透明導電性フィルムおよびその製造方法を提供する。
【解決手段】透明基材上にIn・Sn複合酸化物からなる透明導電層を有し、透明基材の透明導電層が形成されている側の表面の算術平均粗さRaが1.0nm以下であり、透明導電層中のSn原子の量が、In原子とSn原子とを加えた重さに対し、6重量%を超え15重量%以下であり、前記透明導電層のホール移動度が10〜35cm/V・sであり、キャリア密度が6×1020〜15×1020/cmである、透明導電性フィルム。当該透明導電性フィルムは、水の分圧が小さい雰囲気下において100℃を超え200℃以下の基材温度でアモルファス透明導電層をスパッタ製膜し、アモルファス透明導電層を加熱して結晶性透明導電層に転化することによって得られうる。 (もっと読む)


61 - 80 / 540