説明

Fターム[5H115QE10]の内容

車両の電気的な推進・制動 (204,712) | 制御時の状態 (7,652) | 減速、制動時 (1,407)

Fターム[5H115QE10]に分類される特許

61 - 80 / 1,407


【課題】前輪と後輪とを別々のモータで駆動する構成においてモータの発熱を的確に抑制しつつて走行安定性を確保する上で有利なハイブリッド電気自動車の制御装置を提供する。
【解決手段】フロントモータ18、リアモータ20のうち、一方のモータに分配される駆動トルクTrq1が一方のモータの基準トルクを超過したと判定された場合、他方のモータで駆動される車輪にスリップの発生が否と判定されたときに、一方のモータに分配される駆動トルクTrq1を基準トルクより低減させると共に他方のモータに分配される駆動トルクTrq2を増大させて要求トルクを満足させる。他方のモータで駆動される車輪でのスリップの発生が有と判定され、かつ、エンジンにより駆動される車輪と一方のモータにより駆動される車輪とが同じ車輪である際に、駆動トルクTrq2の増大を禁止して、エンジンに分配される駆動トルクを増大させて要求トルクを満足させる。 (もっと読む)


【課題】 車両の要求電気負荷やバッテリの充電状態に拘わらず回生電力を有効に回収する。
【解決手段】 車両減速検出装置13により車両1の減速が検出された際に、車両1の受入れ可能電力に応じてエンジン2に対するクラッチ16の接続を制御し、受入れ可能電力に応じて慣性発電機15の駆動を選択し、無駄なく慣性発電機15を運用して慣性発電機15による回生可能な電力を車両1の受入れ可能電力に応じて有効に回収する。 (もっと読む)


【課題】台車ユニットの走行時に、外部からの操作により台車ユニットを停止させることができる物品搬送装置を提供すること。
【解決手段】搬送経路に沿って配設された走行レール3と、走行レール3を走行可能な台車ユニット4と、を備え、物品2を台車ユニット4に積載して搬送経路に沿って搬送する物品搬送装置1において、台車ユニット4は、台車ユニット4を走行させる駆動手段17と、駆動手段17に電力を供給する蓄電手段5と、蓄電手段5から駆動手段17に供給される電力の制御を行う制御回路29と、制御回路29に接続される台車用無線モジュール41と、を有し、台車用無線モジュール41は、受信される操作信号に基づいて、制御回路29の操作を行う。 (もっと読む)


【課題】 クラッチの劣化を抑制しつつ、運転性を向上可能な車両の制御装置を提供すること。
【解決手段】 車両の駆動力を出力するモータと、前記モータと駆動輪との間に介装され指令油圧に基づいて伝達トルク容量を発生するクラッチと、前記クラッチをスリップ制御すると共に、前記クラッチのモータ側の回転数が前記クラッチの駆動輪側の回転数よりも所定量高い回転数となるように前記モータを回転数制御する走行モードと、車両停止状態を判定する車両停止状態判定手段と、前記モータの実トルクを検出するトルク検出手段と、車両停止状態と判定されたときは、前記指令油圧を初期指令油圧から前記モータの実トルクが変化しなくなる油圧である終了指令油圧まで低下させた後、前記初期指令油圧以下であって、かつ、前記終了指令油圧より高い補正後指令油圧に設定する車両停止時伝達トルク容量補正手段と、を備えた。 (もっと読む)


【課題】 減速不作動状態が発生した際にその状態を的確に検出して、電気駆動車両の走行安定性を維持しつつ、走行安全性をさらに向上させる。
【解決手段】 本発明の電気駆動車両制御システム内の速度制御装置18は、所定期間毎に電気駆動車両の平均速度に関する情報を算出する平均化処理部31と、電気駆動車両が減速不作動状態にあるか否かを判別する判別部34とを備える。そして、判別部34は、電気駆動車両に対して回生動作による減速操作が行われた際に、所定期間毎に算出された電気駆動車両の平均速度に関する情報に基づいて、電気駆動車両が減速不作動状態にあるか否かを判別する。 (もっと読む)


【課題】制動時にバッテリにより多くのエネルギを充電できるようにする。
【解決手段】車速Vが高いほど長くなる傾向でブレーキペダルポジションBPが大きいほど短くなる傾向でアクセル開度Accが大きいほど長くなる傾向に、バッテリが充電される際の充電継続時間Tchの予測値としての予測充電継続時間Tchprを設定し(S310)、設定した予測充電継続時間Tchprが短いほど制限が緩くなる傾向にバッテリの入力制限Winを設定する(S320)。そして、設定したバッテリの入力制限Winと出力制限Woutとの範囲内で要求トルクに基づくトルクが駆動軸に出力されるようエンジンと二つのモータとを制御する。 (もっと読む)


【課題】電源異常時において制御機器への必要な電力の供給を可能としつつも、車両全体での消費電力量を抑えつつ、コスト、体積及び重量の増加を抑制することが可能なバックアップ電源システムを提供する。
【解決手段】バックアップ電源システム1は、車両に搭載されたDC/DCコンバータ20からの電力供給を受けて車両のブレーキを作動させる電子制御ブレーキ50と、電子制御ブレーキ50に供給する電圧の値が所定値を下回る電源異常時に、電子制御ブレーキ50に電力を供給するバックアップ電源60とを備えている。また、バックアップ電源60はキャパシタ61を有している。特に、キャパシタ61の充電電圧は、バックアップ電源60の温度が低いほど高い電圧に設定されると共に、車両の速度が高いほど高い電圧に設定される。 (もっと読む)


【課題】急減速時にエンストを防止するハイブリッド車両の制御装置を提供する。
【解決手段】エンジン又はモータジェネレータが出力する回転を自動変速機によって変速して出力することにより走行し、モータジェネレータを発電機として動作させてバッテリに蓄電可能なハイブリッド車両において、エンジン及びモータジェネレータの動作を制御する制御装置であって、自動変速機は、第1及び第2の摩擦要素の少なくとも一つの締結状態を変更することによって変速を実現し、ハイブリッド車両が急減速状態となったときに、急減速に伴って変速が行われるときに締結状態が変化する第1の摩擦要素とは異なる第2の摩擦要素を解放状態に制御する。 (もっと読む)


【課題】自動変速機により、アップシフトが行われている際に、ドライバからの制動要求があった場合に、制動要求に応じた制動力を適切に発生させることのできる車両用制御装置を提供すること。
【解決手段】モータジェネレータ20と、前記モータジェネレータと駆動輪54との間に介装され、締結要素の締結解放により複数の変速段を達成する自動変速機40と、摩擦力により制動力を発生する摩擦ブレーキと、を備える車両に対して制御信号を出力する車両用制御装置であって、ドライバからの制動要求に応じて、前記モータジェネレータによる回生制動および前記摩擦ブレーキによる摩擦制動を制御することで、回生協調制御を行う回生協調制御手段と、前記自動変速機により、アップシフトが行われている場合に、前記モータジェネレータによる回生制動を禁止する禁止手段と、を備えることを特徴とする車両用制御装置を提供する。 (もっと読む)


【課題】モータジェネレータと駆動輪との間に設けられた締結要素のスリップ締結とロックアップとのハンチングの発生を抑制できる電動車両の制御装置を提供することこと。
【解決手段】車体速に対応したロックアップ判定閾値に基づいて、車体速がロックアップ判定閾値を越えると、第2クラッチをロックアップ状態とし、車体速がロックアップ判定閾値以下で、第2クラッチをスリップ締結状態とする締結要素制御部を備え、ロックアップ判定閾値としてのTCS時第1切替線L1tcsは、車体速がVset1以下の低速の領域では、車体速がVset2以上の高速の領域に比べて高く設定されていることを特徴とする電動車両の制御装置とした。 (もっと読む)


【課題】モータ、減速部、及び差動部を有する構成において車両搭載性を向上させることができる車両駆動装置を提供すること。
【解決手段】回転動力を出力するモータ21と、モータ21からの回転動力を減速して出力する減速部22と、減速部22からの回転動力を一対の車輪14、15に向けて分配して出力する差動部24と、モータ21と車輪14、15との間の動力伝達経路を断接する動力伝達機構23と、を備え、モータ21、減速部22、差動部24、及び動力伝達機構23は、車輪14、15の車軸方向の一軸上に並べて配置される。 (もっと読む)


【課題】 運転性を向上可能な車両の制御装置を提供すること。
【解決手段】 アクセルヒルホールド状態と判定されたときは、車輪に機械的制動トルクを付与すると共に、駆動源と駆動輪の間のクラッチの締結トルクの出力を減少させる締結要素保護制御を実行する。このとき、機械的制動トルクの増加勾配を、路面勾配が大きい程大きな増加勾配に設定することとした。 (もっと読む)


【課題】適切なトルク低減により、好適な変速を達成する。
【解決手段】エンジン(1)と、モータ/ジェネレータ(5)と、前記エンジンのトルクと前記モータ/ジェネレータのトルクが入力する変速機(3)とを有する車両のアップシフト時のイナーシャフェーズにおいて、前記両方のトルクを制御可能なトルク制御装置であって、前記変速機の入力軸の目標角加速度を設定する角加速度設定手段(20;S3)と、前記エンジンのトルクの低減だけで前記目標角加速度が達成できる場合、前記エンジンのトルクを低減させる第一のトルク低減手段(20;S6)と、前記エンジンのトルクの低減だけで前記目標角加速度が達成できない場合、前記エンジンのトルクとモータ/ジェネレータのトルクを低減させる第二のトルク低減手段(20;S7)と、を備える。 (もっと読む)


【課題】回生協調制動を行うと共に、回生制動の過剰使用に起因してABSが頻繁に作動してしまうことを抑制する。
【解決手段】前後輪の車輪速の最大値と前輪の車輪速の最小値との差および車体速度から相対スリップ率を求め、相対スリップ率が大きくなるほど減少する回生制動の係数を求めて、回生制動を行う。相対スリップ率の大きさが大きいほど回生制動の大きさを抑制する制御を行うことから、車両の前後方向や左右方向への荷重移動量を監視しなくても、回生制動が大きく効き過ぎることを防止でき、回生制動に起因する回生制動から油圧制動への不要な切換を防止でき、回生制動を有効に働かせることができる。 (もっと読む)


【課題】演算に必要な構成の簡略化が可能なハイブリッド車両の制御装置を提供すること。
【解決手段】アクセル開度と自動変速機3の入力回転毎に設定されたエンジン用の目標定常トルクマップとモータジェネレータ用のアシストトルクマップとを備え、これら2つのトルクマップの合計を車両の目標駆動トルクとする演算を行う統合コントローラ20を備えたハイブリッド車両の制御装置であって、統合コントローラ20は、エンジン効率とモータ効率を合わせたシステム効率が最適となるトルクを基準として設定した最適発電トルクマップとアシストトルクマップとを1つのマップとしたアシスト・発電統合トルクマップを備え、このアシスト・発電統合トルクマップを用いてアシストトルクおよび発電トルクを演算するとともに、アシストトルクを演算する場合は0トルクで下限制限し、前記発電トルクを演算するときは0トルクを上限制限するようにした。 (もっと読む)


【課題】車両後進時における車両エネルギ効率の悪化を抑制可能な前後輪駆動車両を提供する。
【解決手段】後輪駆動装置1と前輪駆動装置6とを備えた車両3であって、後輪駆動装置1は、車両3の駆動力を発生する電動機2A、2Bと、電動機2A、2Bと後輪Wrとの動力伝達経路上に設けられ、解放又は締結することにより電動機2A、2B側と後輪Wr側とを遮断状態又は接続状態にする油圧ブレーキ60A、60Bと、電動機2A、2Bを制御するとともに油圧ブレーキ60A、60Bを制御するECU45と、電動機2A、2Bと後輪Wrとの動力伝達経路上に油圧ブレーキ60A、60Bと並列に設けられる一方向クラッチ50と、を備える。車両後進時には、少なくとも後輪駆動装置1に後進駆動力を発生させて後進させ、後輪駆動装置1に後進駆動力を発生させるときに、ECU45は油圧ブレーキ60A、60Bを締結して電動機2A、2B側と後輪Wr側とを接続状態にし、電動機2A、2Bを逆方向の回転動力が発生するよう駆動する。 (もっと読む)


【課題】 回生協調制御中にニュートラルレンジが選択された際のショックを抑制できる車両の制動制御装置を提供する。
【解決手段】 モータジェネレータMGおよび左右後輪RL,RR間に自動変速機ATを介在させ、車輪に摩擦制動トルクを付与するブレーキユニットBUと、モータジェネレータMGによる回生制動トルクと摩擦制動トルクとの和が車両の要求制動トルクとなるように回生制動トルクおよび摩擦制動トルクを制御する統合コントローラ10を備えた車両の制動制御装置において、統合コントローラ10は、自動変速機ATのマニュアルバルブからの油圧抜けが検出された場合、当該油圧抜けの速度に応じて回生制動トルクを低下させる。 (もっと読む)


【課題】車両の駆動力制御装置において、運転者によるアクセル操作の負担を軽減してドライバビリティの向上を可能とすると共に燃費の悪化を抑制可能とする。
【解決手段】エンジン11とモータジェネレータ14との駆動力を駆動輪16に伝達可能なハイブリッド車両にて、エンジン11の駆動力により車両を走行可能なエンジン走行モードとモータジェネレータ14の駆動力により車両を走行可能なEV走行モードとを切替可能であり、また、アクセル開度に基づいてモータジェネレータ14が駆動力を出力する力行区間と回生制動させる回生区間と駆動力及び回生制動のない惰性走行区間とに切替可能であり、運転者による惰性走行区間への切替意図を検出してから惰性走行区間を通過して力行区間または回生区間へ移行した頻度に基づいて惰性走行区間の領域を変更する。 (もっと読む)


【課題】強制発電モードでありかつ減速コースト運転中である場合において特定の条件ではエンジンをフュエルカットすることとして燃費を向上させる。
【解決手段】強制発電モードでありかつ減速コースト運転中であると判定された場合に、エンジンをフュエルカットしたときバッテリから放電されるフュエルカット時バッテリ放電条件であるのか、それともエンジンをフュエルカットしたときバッテリに充電されるフュエルカット時バッテリ充電条件であるのかを判定し(S3)と、この判定結果よりフュエルカット時バッテリ放電条件であると判定された場合に作動状態のエンジンでモータジェネレータを連れ回しての発電を行わせ(S7、S8)、フュエルカット時バッテリ充電条件であると判定された場合にエンジンをフュエルカットする(S5、S6)。 (もっと読む)


【課題】ハイブリッド車両において、実際のエンジントルクの変動に伴うエンジン停止・始動のハンチングを抑える。
【解決手段】目標とする走行状態が予め設定したエンジン停止判定値以下の場合には、エンジン1による駆動輪の駆動を停止する。このとき、目標エンジントルクと実際のエンジントルクとの間の推定される偏差に基づき、上記エンジン停止判定値を補正する。 (もっと読む)


61 - 80 / 1,407