説明

Fターム[5H307CC01]の内容

流量の制御 (3,234) | 被制御流体系の構成 (124) | 独立した複数の流路を有するもの (19)

Fターム[5H307CC01]に分類される特許

1 - 19 / 19


【課題】流量調整弁において、高精度に流量を調整することである。
【解決手段】流量調整弁10は、設定装置20と弁本体部30とで構成される。設定装置20は、流量の設定を行う設定操作盤22と、設定された流量に対応して、弁本体部30の調整部34を移動させるアクチュエータ部24を含んで構成される。弁本体部30は、筐体部32と、筐体部32の内部の流量調整室40に配置される複数の平板可動子50と、流量調整室40の体積を縮小拡大するための調整部34とを含んで構成される。平板可動子50は、中央部に支持穴52を有し、支持穴52の外側に第1くぼみ56と、第1くぼみ56の外側に第2くぼみ58と、第2くぼみ58から外周側に向かって放射状に延びる浅溝部としての複数の細溝60を含んで構成される。 (もっと読む)


【課題】圧力調整弁の二次側圧力の変動を低減して、流量制御機器から排出するガス流量を高精度に検定でき、測定用タンク内の圧力降下率を一定に維持する。
【解決手段】プロセスガス供給源からのガスを第1ライン遮断弁22と第2ライン遮断弁23と流量制御機器24とを経由しプロセスチャンバに供給する複数のプロセスガスライン2と、共用ガス供給源からのガスを第2ライン遮断弁23と流量制御機器24とを経由し排出すべく、分岐接続された共用ガスライン1とを有し、共用ガスライン1には、共用遮断弁12と測定用タンク13と第1圧力センサ141と圧力調整弁15とを備え、第1ライン遮断弁22及び共用遮断弁12を弁閉したとき、測定用タンク13内におけるガスの圧力降下を第1圧力センサ141により測定し流量制御機器24の流量検定を行うガス流量検定システムにおいて、圧力調整弁15は、該圧力調整弁15の二次側圧力を制御する。 (もっと読む)


【課題】異なる液温の液体が収容された2つのタンクにおける急激かつ大幅な液位変化をなくして液体の温度調整を容易にすると共に、該装置をコンパクトかつ安価に設置できるようにする。
【解決手段】第1の液体F1が収容された外部タンク1の内部に、第2の液体F2が収容された内部タンク2を設置し、外部タンク1の内部又は内部タンク2の内部に下限液位センサ28又は25を配設し、該液位センサ28,25が液体の液位の低下を検出したとき第1の開閉弁24又は第2の開閉弁27を開放することにより、液位が上昇したタンク内の液体の一部を、外部タンク用液体循環路5及び内部タンク用液体循環路6を通じて液位が低下したタンク内に補給し、それによって両タンク1,2内の液位の変動を吸収する。 (もっと読む)


流量制御デバイスが開示される。流量制御デバイスは、アーマチュアを含むソレノイドを含む。同様に、アーマチュアにはピストンが接続される。ピストンは一次オリフィスを含む。ピストンは開放位置および閉鎖位置を有する。ピストンに接続されるピストンばねが同様におよび少なくとも1つの二次オリフィスを含む。ピストンの、開放位置への運動は少なくとも1つの二次オリフィスを少なくとも部分的に開放し、ピストンの、閉鎖位置への運動は少なくとも1つの二次オリフィスを少なくとも部分的に閉鎖する。アーマチュアの運動はピストンの運動を作動させ、一次オリフィスから少なくとも1つの二次オリフィスを通じた流体の流れを制御する。 (もっと読む)


【課題】小型でありながら大流量の流量制御弁を提供する。
【解決手段】弁座面401を有する弁座部材4と、弁座面401に着座する着座面601を有する弁体部材6と、を具備し、弁座面401又は着座面601の一方又は他方に複数の流入口が形成され、弁座面401又は着座面601の一方又は他方に複数の流出口が形成されており、それら流入口及び流出口が、着座状態において重ならないように形成され、入口が形成された部材の内部に、流入路及び流入口に連通する内部流入路41が形成され、流出口が形成された部材の内部に、流出路及び流出口に連通する内部流出路が形成されている。 (もっと読む)


【課題】電磁駆動部により吐出される流量を目標流量通りに確保することが可能な流量制御装置を提供すること。
【解決手段】制御部14は、温度計9にて測定されたプロセスポンプ8に吸引される液体燃料の温度及び温度計10にて測定されたプロセスポンプ8の周囲温度に基づいてプロセスポンプ8の温度変化を算出し、当該温度変化に基づいて、液体燃料供給ラインL2における液体燃料の流量が実際の目標流量となるようにプロセスポンプ8の吐出流量を補正している。また、制御部14は、温度計12にて測定されたバーナポンプ11に吸引される液体燃料の温度及び温度計13にて測定されたバーナポンプ11の周囲温度に基づいてバーナポンプ11の温度変化を算出し、当該温度変化に基づいて、バーナ用燃料供給ラインL3における液体燃料の流量が実際の目標流量となるようにバーナポンプ11の吐出流量を補正している。 (もっと読む)


【課題】実流量に合わせて適切な測定範囲を選択可能な流量計を提供する。
【解決手段】主流路11、主流路11に通じる少なくとも三以上の複数の孔4a, 4b, 6a, 6b、及び前記複数の孔4a, 4b, 6a, 6bを介して前記主流路11と連通する分流路25が設けられた流路保持体10と、複数の孔4a, 4b, 6a, 6bから選択された二つの被選択孔6a, 6b以外の複数の孔4a, 4bを閉塞する閉塞部材21Aと、分流路25を流れる流体の流量を検出する流れセンサ8と、被選択孔を検出する被選択孔検出機構9A, 9Bと、被選択孔に応じた、分流路25と主流路11の分流比に関する情報を保存する分流比記憶装置400と、分流路25を流れる流体の流量、及び検出された被選択孔に応じた分流比に関する情報に基づいて、主流路11を流れる流体の流量を算出する算出モジュール300と、を備える。 (もっと読む)


【課題】応答性に優れ、かつ高精度・広範囲に流量を制御することができる流量制御装置を提供する。
【解決手段】流量制御装置10は、圧力調整手段としてのパイロットレギュレータ20とその下流側に配置されたエアオペレートバルブ40とを備えている。エアオペレートバルブ40は、カバー41、シリンダ42、ボディ43からなる。ボディ43には吸入通路58と、排出通路59と、各通路58,59を連通する円形溝67と、吸入通路58と円形溝67とを連通する固定オリフィス64とが形成されている。吸入通路58の円形溝67側端部は弁座オリフィス58aとなっており、その開口部周囲は弁座63となっている。ダイアフラム弁体55は圧縮コイルバネ48の付勢力により常時弁座63に着座されており、圧力制御室51が操作エアにより加圧されると弁座63から離れる。 (もっと読む)


低い流入圧力において広い流量検証範囲にわたって高い測定精度をもたらす高精度質量流量検証器(HAMFV)が、流体送達デバイスによる流量測定値を検証するために開示される。HAMFVは、上流バルブを有する複数Nの流入口を画定するチャンバ、1つの下流バルブを有する1つの流出口、チャンバ内の流体圧力を測定するように構成される圧力センサ、およびチャンバ内の流体温度を測定するように構成される温度センサを備える。複数Nの臨界流ノズルが、対応する上流バルブに隣接して配設される。HAMFVは、所望の流量検証範囲および流体の種類に基づいて、対応する上流バルブを開き、他の全ての上流バルブを閉じることによって、複数Nの臨界流ノズルの1つを起動するように構成されるコントローラをさらに備える。複数Nの臨界流ノズルの少なくとも2つは、異なる断面積を有する。 (もっと読む)


【課題】複数の流体を択一的に選択切換して供給する際に、簡易な構成で連続して流体を供給することができる流体の切換制御方法及び切換制御装置を提供する。
【解決手段】複数の流体を切換手段によって択一的に選択切換して流体使用部12に所定の流量を供給する方法において、複数の流体のうち選択切換されて使用部12に流通している流体の流量を測定して圧力調整手段90による制御信号を当該流体の圧力制御弁部20(20x,20y,20z)に送り所定の流量の制御をなすとともに、複数の流体のうち選択切換されず使用部12に流通していない他の流体の圧力制御弁部に対しても圧力調整手段90による制御信号を送り、選択切換時に即時に所定の流量を確保できる待機状態となるようにしたことを特徴とする。 (もっと読む)


【課題】流量センサ部自体にサーマルサイフォン現象対策を行わなくてもこれを防止できる集積タイプのマスフローコントローラを用いた流体供給機構を提供する。
【解決手段】一対のセンサコイルからなる流量センサ10が水平姿勢状態で本体ブロック1に設けられているマスフローコントローラ3と流体供給ラインLの一部を構成するバルブ等とを繋ぐ繋ぎ流路t,t,t,tを有する複数の基板91〜94とを備えた集積タイプのマスフローコントローラにおいて、前記マスフローコントローラ3の前記基板91〜94への取付姿勢の変更に伴い前記流量センサ部10においてサーマルサイフォン現象が生ずるのを回避すべく、前記基板91〜94とは異なる繋ぎ流路N,Nを有する取替基板80を設ける。 (もっと読む)


【課題】プロセス流体の流れを受け取る流体入口および複数の流体出口を含む流体流れ制御システム。
【解決手段】複数の流体出口に、第1流体出口と少なくとも1つの第2流体出口が含まれる。第1流体出口は、プロセス流体の流れの第1の所定の部分を供給し、少なくとも1つの第2流体出口は、プロセス流体の流れの残りの部分を供給する。1実施形態では、制御システムに、圧力変換器、第1乗算器、第2乗算器、第1フローコントローラ、および第2フローコントローラが含まれる。第1乗算器は、圧力変換器から受け取る圧力信号に、第1セットポイントをかけて、プロセス流体の流れの第1の所定の部分を供給する第1フローコントローラを制御する。第2乗算器は、圧力信号に第2セットポイントをかけて、残りの部分を供給する第2フローコントローラを制御する。 (もっと読む)


【課題】 簡単,安定的かつ無駄なく燃料ガスの供給制御を行える方法を提供する。
【解決手段】 燃料ガスを供給源から消費者に供給する燃料ガス供給装置における燃料ガスの供給制御方法において、タンクから前記消費者に送出される燃料ガスの流量を検出する工程と、燃料ガスの供給源から前記タンクに供給される燃料ガスの流量を検出する工程と、前記消費者に供給される燃料ガスの流量に変化が生じたときに、前記燃料ガスの流量の変化から前記タンク内の燃料ガスの圧力変化を予測する工程と、予測された圧力の変化量から、供給側の各燃料ガスの流量の変化量を予測する工程と、予測された供給側の燃料ガスの変化量に基づき、供給側の前記各燃料ガスの流量を調整する工程とを有する。 (もっと読む)


本発明は、マイクロチャネルのアレイに対する流れを制御するために使用可能な機能を記述する。本発明はまた、プロセスストリームが複数のマイクロチャネルに分配される方法を記述する。
(もっと読む)


【課題】管路内を通過する光の量、流体の流量又は流体の圧力を長期間に亘って制御可能な調節孔の制御方法を提供すること。
【解決手段】光又は流体が通過する管路3内に、磁性粒子を含有する粘弾性固体で形成された隔壁5が横断状に配置されている。隔壁5に、光量、流体流量又は流体圧力を調節する調節孔6が軸方向に貫通して設けられている。管路3内に径方向に磁場勾配を生じさせることにより、調節孔6の開口度を変化させる。 (もっと読む)


【課題】少ない刺激によって高速かつ高精度に微粒子を分別できる微粒子分別マイクロシステムおよび微粒子分別方法を提供することを目的とする。
【解決手段】微粒子分別マイクロシステム1は、刺激感応物質としてのゾル-ゲル転移物質が添加された微粒子含溶液11が流れる微粒子含溶液流路3と、所定位置で当該微粒子含溶液流路3と合流するシース溶液12が流れるシース溶液流路4と、微粒子含溶液流路3とシース溶液流路4とが合流した合流流路9と、当該合流流路9に設けられた導入された微粒子10を計測するための微粒子計測部5と、合流流路9の下流に設けられ、分岐点6を介して分岐する微粒子10を分別するための微粒子回収流路7a及び微粒子廃棄流路7bとが、基板2上に設けられるとともに、当該微粒子廃棄流路7b上に刺激付与手段としての赤外線照射装置8が設けられた構成を有する。 (もっと読む)


【課題】流量制御装置の二次側流体の圧力変動が発生した場合であっても流体流量の安定化を高精度で実現することができる流量制御装置及びその方法を提供する。
【解決手段】流体供給部11から所定の流体使用部15に対して流通する流体の供給ラインLに配される流量制御装置10であって、流体供給部側に配置される第1圧力制御弁部20と、第1圧力制御弁部と圧力損失部40を介して流体使用部側に配置される第2圧力制御弁部60とを含み、第1圧力制御弁部は、一次側流体の圧力変動に対して第1弁室22内に配置された第1弁部30が第1弁座25に対して進退して二次側流体を所定の圧力に維持する第1圧力制御機構C1を備えており、第2圧力制御弁部は、二次側流体の圧力変動に対して第2弁室62内に配置された第2弁部70が第2弁座65に対して進退して一次側流体を所定の圧力に維持する第2圧力制御機構C2を備えている。 (もっと読む)


本発明は、サーモスタット混合栓の動作形態を安定化するために用いられる水流の動的制御をする装置に関する。この装置は、ピストン(8)と、ピストンを第1の位置へ強制連行する復帰ばね(17)とを備えるバルブを有しており、そのピストンは流れに依存して2つの位置へ動くことができる。流れが閾値を下回っているとき、ピストンは第1の位置にあり、流量制限手段(10)が流れを制限している。流れがこの閾値を上回っているとき、ピストンは第2の位置へ動き、流量制限手段が橋渡しされる。
(もっと読む)


【課題】 部品数の増加を抑えるとともに、より一層のコンパクト化が果たされた集積化流体制御装置を可能とする継手部材を提供する。
【解決手段】 センサ付き継手部材10は、隣り合う流体制御機器16,20の下端開口同士を接続するV字状通路41aが形成された通路ブロック41と、通路ブロック41の側面に設けられた圧力センサ42とを備えている。通路ブロック41には、V字状通路41aから分岐して圧力センサ42に通じる分岐通路41bが形成されている。 (もっと読む)


1 - 19 / 19