説明

Fターム[5H740BC02]の内容

電力変換一般 (12,896) | 主回路スイッチング素子の制御態様 (2,095) | ターンオフ (1,003)

Fターム[5H740BC02]に分類される特許

101 - 120 / 1,003


【課題】半導体素子、特にIGBTの特性の違いや温度変化があっても、最適なパラメータを自動的に設定することのできる半導体装置の短絡保護装置を提供する。
【解決手段】IGBTのゲート電荷QGに対応する電圧VQGを検出する電荷検出手段22と、IGBTの定格動作時の入力部の電荷から負荷短絡が発生したかどうかを判断するための基準電圧VREFを発生する基準電圧発生手段25と、電荷検出手段22で検出された電圧VQGがIGBTの定格動作時の電荷に対応する電圧か、あるいは負荷短絡時の電荷に対応する電圧かを判断する判断手段27と、判断手段27が短絡状態を検出したときにIGBTを動作停止する信号を出力するゲート駆動手段21とを持つ半導体装置の短絡保護装置において、基準電圧発生手段25に、IGBTの定格動作時の入力部の電荷に対応するゲート電荷電圧VQGのハイレベルで安定した電圧VPEAKを検出して記憶する記憶手段26を設ける。 (もっと読む)


【課題】オフ保持用スイッチング素子46をオフ状態とすべき期間において、この素子が誤ってオフ状態とされることに起因するスイッチング素子S*#の信頼性の低下を抑制することのできるスイッチング素子の駆動回路を提供する。
【解決手段】オフ保持回路48は、信号生成部26の操作信号INを入力としてゲートの充電処理の実行中であると判断された場合、オフ保持用スイッチング素子46をオフし、操作信号INを入力としてゲートの放電処理の実行中であると判断されて且つゲート電圧検出部50の出力信号GPRを入力としてゲート電圧Vgeが低いと判断された場合、オフ保持用スイッチング素子46をオンする。ここで、上記駆動回路は、ゲート電圧Vgeが閾値電圧を跨いでから出力信号GPRの論理が反転するまでの時間を、操作信号INを入力としてオフ保持回路48によって把握される充電処理指示時間の最小値以下とするように構成される。 (もっと読む)


【課題】絶縁ゲート型半導体素子を駆動する半導体集積回路内において、貫通電流の発生を抑制することが可能な技術を提供することを目的とする。
【解決手段】半導体集積回路は、制御信号Vinを遅延させて得られる遅延信号を、PMOS1及びNMOS2のゲート端子に出力する遅延回路19を備える。NMOS4が、第2出力信号の変化に応じてオンからオフに切り替えられるタイミング(t2)は、PMOS1が、遅延信号の変化に応じてオフからオンに切り替えられるタイミング(t2)よりも遅くなく、かつ、PMOS3が、第1出力信号の変化に応じてオンからオフに切り替えられるタイミング(t7)は、NMOS2が、遅延信号の変化に応じてオフからオンに切り替えられるタイミング(t7)よりも遅くない。 (もっと読む)


【課題】スイッチング損失を低減した、DC入力電圧をDC出力電圧またはAC出力電圧に変換するコンバータを提供する。
【解決手段】コンバータは、入力端子101と出力端子103に電圧を供給するスイッチング素子104を備え、スイッチング素子104をオフしたとき、寄生インダクタンスLparasiticによって誘導されるエネルギをキャパシタC110に一時的に蓄えるために、ダイオードD110およびキャパシタC110の第1の直列回路110が設けられている。ダイオードD110は一方の入力端子101に結合され、並列に結合されている能動回路120によって、第1の直列回路110のキャパシタC110に一時的に蓄えられているエネルギを解放制御する。 (もっと読む)


【課題】絶縁ゲート型半導体スイッチ素子のターンオフ時の遅延時間短縮、遮断電流のdi/dtによるサージ電圧を抑制することができるゲート駆動回路を提供する。
【解決手段】半導体スイッチ素子のゲート端子とゲート補助端子間にオン用ゲート電源とオン用スイッチとオン用ゲート抵抗の直列体よりなるオン回路を接続し、半導体スイッチ素子のゲートとゲート補助端子間に第1のオフ用ゲート抵抗とオフ用スイッチとターンオフ用電源を直列に接続し第1のオフゲート抵抗と並列にコンデンサと第2のオフ用ゲート抵抗の直列体を接続したオフ回路を備えてなる。第1のオフ用ゲート抵抗より第2のオフ用ゲート抵抗の抵抗値が小さく、コンデンサと第2オフ用ゲート抵抗で構成するCR回路の時定数が絶縁ゲート型半導体スイッチ素子のターンオフ遅れ時間と同等である。 (もっと読む)


【課題】スイッチング素子の動作に起因するノイズの大きさが低減された、小型で製造コストの低いスイッチング回路を提供する。
【解決手段】スイッチング素子と、一定周期でパルス波のドライバ信号を出力するドライバ信号出力回路と、ドライバ信号のパルス波の周期を複数含む一定期間内において駆動力を変化させながら、ドライバ信号の周期に同期してスイッチング素子を駆動する駆動回路とを備える。 (もっと読む)


【課題】スナバの付加による直流部の電位変動を防止しつつ、半導体スイッチング素子の過電圧保護を図る。
【解決手段】ダイオード5,6,7,8で構成される整流器の交流入力端子間に双方向スイッチを構成するMOSFET3,4を備え、交流電源1の電圧と同期してスイッチングを行うことで端子Pと端子N間の直流電圧を調整している。MOSFET3,4にはスナバ回路201〜205を付とともに、ダイオード206を付加することで、コンデンサ204両端間の電位が変動しないようにしつつ、スナバ回路201〜205のスイッチング素子の過電圧保護が図る。 (もっと読む)


【課題】スイッチング制御する制御回路の負担を軽減するスイッチング回路を提供する。
【解決手段】第1のスイッチング素子の制御電極と第1のスイッチング素子をスイッチング制御する制御回路との間に接続される抵抗と、第1のスイッチング素子の制御電極と第1のスイッチング素子の低電位側電極との間に接続される第1のコンデンサと、第1のコンデンサと直列に接続される第2のスイッチング素子とを備え、第2のスイッチング素子の高電位側電極は、第1のスイッチング素子の制御電極に電気的に接続され、第2のスイッチング素子の低電位側電極は第1のスイッチング素子の低電位側電力端子に電気的に接続され、第2のスイッチング素子の制御電極は、抵抗と制御回路の間に接続されている。 (もっと読む)


【課題】直流電源17からスイッチ用のFET18を経て負荷16へ電力を供給する電源装置においては、2種類の保護回路が設けられていた。第1は、該FETの温度を検出し、所定温度に達したら該FETをオフする回路である。第2は、デッドショート時のような大過電流が流れた場合には、電流を所定電流に制限する電流制限回路である。保護回路を2種類設けると、部品コストが大になっていた。
【解決手段】比較基準電圧生成回路40を電流供給部41と比較基準電圧発生抵抗部46とで構成し、比較基準電圧VX を生成する。過電流検出電圧生成回路50を電流供給部51と過電流検出抵抗部54とで構成し、FET18の電圧VDSが増大すると減少する電流検出電圧VY を生成する。電圧VDSの増大を検出してFET18をオフすれば、過電流保護も過熱保護も可能となる。 (もっと読む)


【課題】良好な逆回復特性と良好なEMCとを同時に実現することが出来て、かつ、従来の半導体装置よりも安価である半導体装置及び電子機器を提供する。
【解決手段】半導体装置1は、FET3のソースとMOSFET4のドレインとが接続されるとともに、一端が、FET3のゲートに接続され、他端が、MOSFET4のソースに接続される抵抗Rgsと、アノードが、FET3のゲートに接続され、カソードが、MOSFET4ソースに接続されるダイオードD1とを備える。 (もっと読む)


【課題】新たな部品を追加することなく、スイッチングサージを抑えることができる電力変換装置を提供する。
【解決手段】モータ制御装置1は、電源配線10と、平滑コンデンサ11と、インバータ回路12と、制御回路13とを備えている。平滑コンデンサ11は、コンデンサ110、111を並列接続用配線112、113によって並列接続して構成されている。並列接続用配線113のインダクタンスLs1及びコンデンサ110、111がループ状に接続され、LC共振回路が構成される。LC共振回路の共振周波数が、サージ電圧に含まれる周波数成分のうち、抑制しようとする所定周波数になるようにインダクタンスLs1、コンデンサ110、111の容量の少なくともいずれかが調整されている。これにより、新たな部品を追加することなく、スイッチングサージを抑えることができる電力変換装置を提供する。 (もっと読む)


【課題】複数の駆動回路とスイッチング素子との接続点を通じて、内部回路や基準点に電流が回り込むことを防止する。
【解決手段】電流の回り込みが発生し得る回り込み防止対象となる内部回路16、26とスイッチング素子であるIGBT1との間に回り込み防止回路15、25を配置する。そして、駆動回路10、20のうち作動させられない側の回り込み防止回路15、25をオフすることで、回り込み防止対象となる内部回路16、26にスイッチング素子となるIGBT1のゲート電圧が印加されないようにする。これにより、各内部回路16、26内で電流の回り込みが発生することを防止することが可能となる。 (もっと読む)


【課題】電源側に回り込むノイズを低減することができる電動機駆動システムを提供すること。
【解決手段】電動機駆動システムは、電源ラインに接続された複数のスイッチング素子を有するインバータ装置100と、インバータ装置100から出力される交流電圧によって駆動される電動機200と、インバータ装置100と電動機200との間に挿入されるLCフィルタ回路300と、電導部材によって形成されて複数のスイッチング素子が固定される冷却体400と、複数のスイッチング素子の電源ライン側端子と冷却体400との間に挿入されるコンデンサと抵抗からなる直列回路とを備える。LCフィルタ回路300は、インバータ装置100から電動機200に動作電力を供給する電力供給線202等に挿入されるインダクタ310等と、一方端がインダクタ310等の一方端に接続されるとともに他方端が冷却体400に接続されるコンデンサ320等とを有する。 (もっと読む)


【課題】従来の電力変換装置では、ゲート抵抗切り替え回路部に速い応答性が要求されるため、ノイズにより誤動作し易く、場合によっては、誤動作により装置の保護機能が働き、動作停止してしまうことがあった。
【解決手段】太陽電池1の直流電圧を交流電圧に変換し、交流の系統電源に電力を供給する電力変換装置2であって、電力変換装置2は、複数のパワー半導体スイッチSH、SLと、これらのパワー半導体スイッチSH、SLをオン/オフ動作させるゲート駆動回路GH、GLと、これらのゲート駆動回路に挿入されたゲート抵抗RG1、RG2と、ゲート駆動回路GH、GLにオン/オフ信号を供給すると共に、ゲート抵抗値を変更する制御信号を出力する制御回路22とを備え、制御回路22は、予め設定された時刻にゲート抵抗値変更信号を出力するようにした。 (もっと読む)


【課題】半導体スイッチング素子の温度変化によるサージ電圧の発生および変動を抑制すると共にスイッチング損失を低下させることができる半導体スイッチング素子駆動装置を提供する。
【解決手段】各切替スイッチ42a、42bが駆動信号に従ってオン/オフすることにより、駆動手段40が半導体スイッチング素子10の制御端子11に駆動電流を供給する。一方、温度検出手段20によって半導体スイッチング素子10の素子温度または半導体スイッチング素子10の動作環境温度を検出する。そして、駆動手段40は、温度検出手段20によって検出された素子温度または動作環境温度に従って制御端子11に印加する駆動電流の大きさを変更する。これにより、半導体スイッチング素子10の温度変化によるサージ電圧の発生および変動が抑制され、スイッチング損失が低下する。 (もっと読む)


【課題】 広範囲の応用が可能な交流電圧の位相角を調整する調整回路を提供する。
【解決手段】 交流限流回路装置Z10は、負荷L101及び双極性固体スイッチ素子1000を直列接続するとともに交流電源に並列に接続する。双極性固体スイッチ素子1000は、双極性の駆動電圧信号を出力する双方向サイリスタ素子、及び双極性の駆動電圧信号を出力する電界効果パワーデバイスによって構成される。調整回路PD100は、交流電源電圧を入力するとともに回路調整機能と交流限流回路装置Z10を流れる電流値と負荷L101の端電圧値とに基づいて双極性の駆動電圧信号を出力し、双極性固体スイッチ素子1000のオン位相角及びオフ位相角を制御する。これにより、抵抗、交流電気エネルギーが印加される抵抗を含む誘導性負荷、容量性負荷、または直列に接続されている抵抗を含む誘導性負荷及び容量性負荷を制御することができる。 (もっと読む)


【課題】負荷装置に電力を供給するための電源システムにおいて、蓄電装置と負荷装置との間に設けられた切換装置の異常を適切に検出する。
【解決手段】電源システムは、蓄電装置110と、蓄電装置110と負荷装置170とを結ぶ経路に設けられ、蓄電装置110から負荷装置170への電力の供給と遮断とを切換えるためのSMR115と、ECU300とを備える。SMR115は、負荷装置170と蓄電装置110とを結ぶ経路に設けられた、直列接続された制限抵抗R1およびリレーSMR−Pを含む。ECU300は、制限抵抗R1の温度を蓄電装置の電圧VBおよび電流IBに基づいて推定するとともに、その推定された温度に基づいてリレーSMR−Pの異常を判定する。 (もっと読む)


【課題】本発明は、サージ電圧の低減及び発生ノイズの低減を可能とするスイッチング装置、スイッチングモジュールを提供することを目的とする。
【解決手段】本発明にかかるスイッチング装置は、スイッチング素子1と、エミッタ電極100と、エミッタ電極100を外部の主配線に接続するための主配線用エミッタ端子4と、エミッタ電極100と主配線用エミッタ端子4との間の主電流経路に介在する、複数の制御用エミッタ端子5、制御用エミッタ端子6、制御用エミッタ端子7と、隣接する制御用エミッタ端子間の主電流経路に介挿されたインダクタンス8、インダクタンス9とを備えることを特徴とする。 (もっと読む)


【課題】クランプ回路が未使用状態なのか断線状態なのかを判別する。
【解決手段】温度センサ1hの出力が入力される温度検出端子14a〜14cを利用し、クランプ回路5a〜5cや温度検出回路7a〜7cの一部がパワーモジュール1に接続されないときには温度検出端子14a〜14cの電位に基づいて温度センサ1hが接続されていない断線無効状態を検出する。例えば、温度検出端子14a〜14cのうち温度センサ1hに接続されない端子に断線検出無効化閾値Vth3以上の電圧を印加することで、温度検出端子14a〜14cが温度センサ1hに接続されていないことを検出する。これにより、クランプ回路5a〜5cに接続されるクランプ端子11a〜11cの電位に基づいて断線検出を行う際に、断線状態なのか断線無効状態なのかを温度検出端子14a〜14cの電位に応じて判定できる。 (もっと読む)


【課題】サージの発生を抑制すると共に半導体スイッチング素子のスイッチング速度を向上しつつ、回路規模を小さくすることができる半導体スイッチング素子駆動装置を提供する。
【解決手段】時間設定手段40から短絡検出区間が終了したことを示す時間設定信号を入力すると、この時間設定信号の入力をトリガとして駆動手段60に対して半導体スイッチング素子10の制御端子11に印加する駆動電流を増加するための電流制御信号を出力する。これにより、サージの発生が予想されるミラー区間後に行われる短絡状態の検出が終了した後は制御端子11に印加される駆動電流iが増加するため、サージの発生を抑制しつつ、スイッチング速度が向上する。また、時間設定信号を利用して制御端子11に流す駆動電流iの電流量を制御しているため、制御端子11の電圧を検出するための構成が不要となり、回路規模が小さくなる。 (もっと読む)


101 - 120 / 1,003