説明

Fターム[5H740BC02]の内容

電力変換一般 (12,896) | 主回路スイッチング素子の制御態様 (2,095) | ターンオフ (1,003)

Fターム[5H740BC02]に分類される特許

161 - 180 / 1,003


【課題】ゲート駆動装置で駆動される複数個のスイッチングデバイスにおけるVth、ミラー電圧のバラツキによるスイッチング速度のバラツキを抑え、かつ損失のバラツキを最小限とすることができるゲート駆動装置を得ることを目的とする。
【解決手段】スイッチングデバイス1へのゲート信号を定電流出力で作成する定電流パルスゲート駆動回路2、ゲート信号を定電圧出力で作成する定電圧パルスゲート駆動回路3、および定電流パルスゲート駆動回路2の動作と定電圧パルスゲート駆動回路3の動作との切替を行う判定/切替回路4を備えた。 (もっと読む)


【課題】ターンオン時のゲート電流を所望の電流値に高精度に設定でき、スイッチング損失の低減が可能な電圧駆動型スイッチングデバイスの駆動回路を得る。
【解決手段】IGBT1のゲート端子に接続され、駆動用パルス信号2のオン/オフゲート制御信号に基づき、IGBT1をターンオン/ターンオフさせるゲート信号を前記ゲート端子に出力するゲート駆動定電流回路が示されている。このゲート駆動定電流回路は、正電源3とGND電位4間に直列に接続された第1の抵抗5と第1のトランジスタ15と第2の抵抗6と制御信号伝達トランジスタ7、および正電源3とIGBT1のゲート端子間に直列に接続されたゲートオン抵抗8と定電流出力トランジスタ9を備え、第1のトランジスタ15のベース端子は第1のトランジスタ15のコレクタ端子と短絡接続されている。 (もっと読む)


【課題】駆動回路の消費電力を小さく抑えることが可能な負荷制御装置を提供する。
【解決手段】駆動回路20は、双方向スイッチ10にゲート電圧Vg1,Vg2を印加するゲート駆動部21と、ゲート駆動部21の動作を制御する制御部22とを有している。さらに駆動回路20は、双方向スイッチ10にゲート端子から流れ込むゲート電流Ig1,Ig2を検出する電流検出部40を有しており、電流検出部40の検出値が制御部22へ入力される。制御部22は、外部から入力されるオンオフ信号と、電流検出部40から入力される検出値との両方に基づいて、ゲート駆動部21に与える駆動信号を決定する。ここで、制御部22は、オンオフ信号が「H」の期間において、低電位側のゲート電流Ig1,Ig2が小さくなるほどゲート電圧Vg1,Vg2が大きくなるように、ゲート駆動部21に与える駆動信号を調節する。 (もっと読む)


【課題】充電用スイッチング素子24lをオン操作することで、直流電圧源22lの端子電圧(制限用電圧VL)をスイッチング素子S*#のゲートに印加している期間において、ノイズ等によってコレクタ等からゲートへの電流の流れ込みが生じうること。
【解決手段】ゲート電圧Vgeは、端子T8を介して駆動制御部70によってモニタされる。駆動制御部70では、充電用スイッチング素子24lのオン操作期間においてゲート電圧Vgeが制限用電圧VLを上回る場合、シンクスイッチング素子60をオン操作して、ゲートの過剰な電荷を放電させる処理を行う。 (もっと読む)


【課題】オン駆動用定電流回路が故障しても、スイッチング素子の破損を抑えて駆動することができる電子装置を提供することを目的とする。
【解決手段】制御回路128は、オン駆動用定電流回路121が故障して、IGBT110dのゲートに正常時に流れ込む電流より大きい電流が流れ込むようになったとき、オフ駆動用定電流回路122の電流を調整する。これにより、IGBT110dのゲートに流れ込む電流、及び、ゲートから引き抜く電流を調整することができる。そのため、オン駆動用定電流回路121が故障しても、IGBT110dの破損を抑えて駆動することができる。 (もっと読む)


【課題】スイッチング素子駆動回路において、スイッチング素子のスイッチング損失を抑制する。
【解決手段】 ゲート電圧検出回路201は、スイッチング素子11のゲート電圧Vgsを検出し、このゲート電圧がスイッチング素子11の閾値電圧未満に設定された所定電圧未満のとき、Hレベルの昇圧指示信号を出力する。電圧制御回路103は、前記昇圧指示信号がLレベルの間は、制御電源102の所定電圧V1をそのまま出力し、前記昇圧指示信号がHレベルの間は、前記所定電圧V1を昇圧した電圧V2を出力する。駆動信号出力回路104は、PWMパルス出力回路111から出力されるPWMパルスの電圧を電圧制御回路103から出力される電圧に増幅する。従って、駆動信号出力回路104からスイッチング素子11への駆動信号は、前記PWMパルスがHレベルになった時に、先ず昇圧された電圧V2となり、スイッチング素子11のゲート電圧Vgsが所定電圧にまで上昇すると、所定電圧V1となる。 (もっと読む)


【課題】半導体スイッチングデバイスが完全な機能を維持していることを保証するために、サービス中にそれらを試験する方法を提供する。
【解決手段】負荷および電圧源2に接続するためのスイッチング回路1であって、負荷への電力をスイッチオンおよびスイッチオフするための1つまたは複数のスイッチングデバイス6、7、...、nと、負荷を短絡し、それにより負荷を電圧源から隔離するためのプルダウンデバイス4と、一度に複数のスイッチングデバイスのうちの少なくとも1つを起動するために、電圧源が負荷から隔離されている間に動作させることができるコントローラ3とを備え、起動された前記スイッチングデバイスまたは個々のスイッチングデバイスを通って電流が流れ、この電流を測定して、起動された前記スイッチングデバイスまたは個々のスイッチングデバイスが適切に動作しているかどうかを試験することができるスイッチング回路1が開示される。 (もっと読む)


【課題】駆動回路の消費電力を小さく抑えることが可能な負荷制御装置を提供する。
【解決手段】駆動回路20は、双方向スイッチ10にゲート電圧Vg1,Vg2を印加するゲート駆動部21と、ゲート駆動部21の動作を制御する制御部22とを有している。さらに駆動回路20は、双方向スイッチ10の両端に掛かる極間電圧Vsを検出する極間電圧検出部40を有しており、極間電圧検出部40の検出値が制御部22へ入力される。制御部22は、外部から入力されるオンオフ信号と、極間電圧検出部40から入力される検出値との両方に基づいて、ゲート駆動部21に与える駆動信号を決定する。ここで、制御部22は、オンオフ信号が「H」の期間において、極間電圧が大きくなるほどゲート電圧Vg1,Vg2が大きくなるように、ゲート駆動部21に与える駆動信号を調節する。 (もっと読む)


【課題】ブリッジ回路を構成する一対のMOSFETの内蔵ダイオードに流れる負荷電流の逆回復を速くする。
【解決手段】ブリッジ回路3は内蔵ダイオード4a、5aを内蔵したMOSFET4、5により構成される。MOSFET4、5はスイッチング制御回路6によりゲート駆動回路7、8を介して駆動制御される。負荷電流ILがコイル1からブリッジ回路に向けて流れる状態であって、例えば内蔵ダイオード4aを介して環流電流を流す状態からMOSFET5を介して負荷電流を流す状態への移行期間の終盤にMOSFET4をオンして内蔵ダイオード4aをオフさせ、電流I1がゼロ相当になったらMOSFET4をオフ、MOSFET5をクランプ状態で一定時間オンする。その後、MOSFET5を通常のオン状態に移行させる。 (もっと読む)


【課題】VM電位のdv/dtに起因する上アーム電力用スイッチング素子の誤動作を抑制できるレベルシフト回路並びにこれを備えたインバータ装置を提供する。
【解決手段】支持体Si基板上にBOX酸化膜を介しN型Si活性層を形成したSOI基板により構成し、分離酸化膜により分離されN型MOSFETを形成する第1のN型Si活性層、分離酸化膜により分離されP型拡散層による拡散抵抗を形成する第2のN型Si活性層、分離酸化膜により分離され上アーム制御電源の一端側に接続する第4のN型Si活性層から構成され、第1のN型Si活性層を形成する分離酸化膜と第4のN型Si活性層を形成する分離酸化膜は、隣接配置されるとともに、N型MOSFETのドレイン電極と拡散抵抗の第一の電極を接続し、拡散抵抗の第2の電極を上アーム制御電源の他端側に接続した。 (もっと読む)


【課題】定電流制御に異常が生じる場合、スイッチング素子S*#が熱破損するおそれが生じたり、スイッチング状態の切替に伴うサージが過度に大きくなったりするおそれがあること。
【解決手段】電源20から出力される正の電荷は、異常検出用抵抗体22、定電流用抵抗体24および充電用スイッチング素子32を介してスイッチング素子S*#のゲートに充電される。この際、定電流用抵抗体24の電圧降下量が規定値となるように、オペアンプ36によって充電用スイッチング素子32のゲート電圧が操作される。異常検出用抵抗体22の電圧降下量は、充電側異常判断部62に取り込まれ、これに基づき定電流制御の異常の有無が判断される。 (もっと読む)


【課題】スイッチング制御回路から出力される制御信号のハイレベル電圧が電界効果トランジスタをスイッチング駆動するのに十分なレベルに満たない場合でも、少ない部品の簡単な回路で駆動できるスイッチングトランジスタ駆動回路を提供する。
【解決手段】電圧Vin1(=V1+Vα)が印加された入力端子にソース端子が接続されたPチャネル型FET12と、一端がFET12のソース端子に接続され且つ他端がFET12のゲート端子に接続された抵抗器14と、ツェナー電圧Vzが電圧Vα以上であるツェナーダイオード15とを備え、ツェナーダイオード15のアノード端子をスイッチング制御IC11の制御信号出力端子(Drive)に接続し、ツェナーダイオード15のカソード端子をPチャネル型FET12のゲート端子に接続する。 (もっと読む)


【課題】 高耐圧プロセスを使用することなく、回路的に高耐圧化したレベルシフト回路を実現できるようにする。
【解決手段】 一対のCMOSインバータを有し一方のインバータの出力ノードを他方のインバータのPチャネル型MOSトランジスタのゲート端子に交差結合してなるラッチ回路(22)と、該ラッチ回路のいずれか一方の出力ノードに接続されたCMOSインバータからなる出力段(23)とを有するレベルシフト回路において、ラッチ回路を構成する一対のCMOSインバータの各Pチャネル型のMOSトランジスタ(Mp1,Mp2)とNチャネル型のMOSトランジスタ(Mn1,Mn2)との間に、ゲート端子が電源電圧と接地電位の中間の電位が印加される第3電圧端子(FGND)に接続されたPチャネル型のMOSトランジスタ(Mp4,Mp5)をそれぞれ直列形態で設けた。 (もっと読む)


【課題】過電流を検出する機能や過電流から出力スイッチング素子を保護する機能を備えた負荷制御装置を提供する。
【解決手段】スイッチングレギュレータ60から電力が供給されて少なくとも一つの負荷71、72に供給する出力電流I1、I2を制御する負荷制御装置1で、負荷に接続されて出力制御信号に応じて負荷に出力電流を供給するときに導通する出力スイッチング素子21、22と、出力電流が過電流であることに起因してスイッチングレギュレータの出力電圧値が所定電圧値を下回ったことを検出したとき、所定時間に亘り出力スイッチング素子を非通電状態に制御する出力スイッチング素子制御手段11、12、40とを備える。 (もっと読む)


【課題】スナバ抵抗体18#(#=p,n)の発熱量が無視できないこと。
【解決手段】スイッチング素子Sw#およびフリーホイールダイオードFD#を備える半導体チップ22#は、ビア導体32#、配線層34#、ビア導体38#を介して導体40#に接続されている。導体40#は、半導体チップ22#を垂直投影した投影領域からはみ出すようにして形成されており、はみ出した部分には絶縁膜42#およびスナバ抵抗体18#が積み重ねられている。スナバ抵抗体18#は、ビア導体44#、配線層46#およびビア導体48#を介してスナバ回路を構成するコンデンサ16に接続されている。 (もっと読む)


【課題】本発明では、上記のような問題を解消し、dV/dtによる誤動作を防止しつつも、外部要因に左右されることのない汎用的な誤動作防止機能を有する半導体回路および半導体装置を提供することを目的とする。
【解決手段】本発明にかかる半導体回路は、ON駆動信号に応答してON駆動電荷を充電するコンデンサ40と、OFF駆動信号に応答してOFF駆動電荷を充電するコンデンサ41と、ON駆動信号に応答して第1トリガー信号を発生させる信号発生回路20と、OFF駆動信号に応答して第2トリガー信号を発生させる信号発生回路21と、第2トリガー信号に応答して、ON駆動電荷を放電する放電回路30と、第1トリガー信号に応答して、OFF駆動電荷を放電する放電回路31とを備える。 (もっと読む)


【課題】より高速駆動に対応でき、かつ、消費電流を低減することができる負荷駆動装置を提供する。
【解決手段】ダーリントン回路によってスイッチングデバイス2を駆動するようにし、ダーリントン回路を構成する第1PchMOSFET5と第2PchMOSFET6のドレインを共にスイッチングデバイス2を構成するIGBTのゲートに接続する。これにより、第2PchMOSFET6の駆動電流もIGBTの駆動に用いることができるため、消費電流を低減できると共に、より大電流でのIGBT駆動が可能になるため高速駆動を行うことができる。また、第2抵抗4と並列的にスイッチ10を備え、このスイッチ10をプルアップ駆動時にオンさせる。これにより、プルアップ駆動時に第1PchMOSFET5のゲート−ソース間の抵抗値を低下させることが可能となり、駆動スピードが低下することを抑制することが可能となる。 (もっと読む)


【課題】スイッチング素子の立ち上がりの速度を高速に維持しつつ、スイッチング素子を駆動するドライバ回路の消費電流を削減することができる負荷駆動装置を提供する。
【解決手段】負荷10に接続されるスイッチング素子50と、定電流を生成する定電流生成部30と、定電流生成部30から流れ込む定電流の大きさに応じたオン時間でスイッチング素子50をオンするドライバ回路40と、を備えた構成とする。そして、定電流生成部30は、スイッチング素子50がオンするオン時間に達するまではドライバ回路40に第1電流量の大きさの定電流を流すことでスイッチング素子50の立ち上がりの速度を高速に維持する。また、定電流生成部30は、スイッチング素子50がオンするオン時間が経過した後はドライバ回路40に第1電流量よりも小さい第2電流量の定電流を流すことでドライバ回路40の消費電流を削減する。 (もっと読む)


【課題】定電流回路を搭載したドライブIC30の汎用性を高めることと小型化とが両立しにくいこと。
【解決手段】抵抗体22は、スイッチング素子Sw#のゲートの充電経路を構成する。スイッチング素子Sw#のゲートに要求される充電速度が大きい場合等には、抵抗体22にスイッチング素子60を直列接続し、スイッチング素子60にスイッチング素子32をダーリントン接続する。オペアンプ34では、抵抗体22の電圧降下量を一定値に制御すべくスイッチング素子32のゲート電圧を操作する。一方、スイッチング素子Sw#のゲートに要求される充電速度が小さい場合等には、スイッチング素子32を抵抗体22に直列接続し、スイッチング素子32のドレインをスイッチング素子Sw#のゲートに接続する。 (もっと読む)


【課題】パワー素子にクランプ回路を接続してパワー素子の駆動端子に印加される電圧を所定電圧にクランプするに際し、スイッチング素子を駆動するための定電流の消費電流を削減できる負荷駆動装置を提供する。
【解決手段】クランプ回路50は駆動端子41に接続されており、ドライバ回路30が駆動端子41に定電流を流すことにより駆動端子41に印加される電圧が所定電圧に達すると、駆動端子41に印加される電圧を所定電圧にクランプする。また、ドライバ回路30は、パワー素子40の駆動端子41に定電流を流すことでパワー素子40をオン駆動する。さらに、ドライバ回路30は、駆動端子41に印加される電圧が所定電圧に達した後、駆動端子41に流す定電流の電流量を、駆動端子41に印加される電圧が所定電圧に達するまでに駆動端子41に流す定電流の電流量よりも低減する可変定電流回路32を備えている。 (もっと読む)


161 - 180 / 1,003