説明

Fターム[5J055FX05]の内容

Fターム[5J055FX05]に分類される特許

61 - 80 / 1,457


【課題】耐圧の向上が図られる半導体装置を提供する。
【解決手段】n-型半導体領域には、ドレイン領域となるn-型の拡散領域が形成されている。n-型の拡散領域の周囲を取囲むようにp型の拡散領域が形成されている。p型の拡散領域には、ソース領域となるn+型の拡散領域が形成されている。n-型の拡散領域の直下には、p-型の埋め込み層13が形成されている。n-型の半導体領域の領域には、高電位が印加されるn+型の拡散領域が形成され、そのn+型の拡散領域の表面上には電極が形成されている。電極とドレイン電極とは、配線20によって電気的に接続されている。配線20の直下に位置する部分に、p-埋め込み層13に達するトレンチ3aが形成されて、ポリシリコン膜81が形成されている。 (もっと読む)


【課題】半導体スイッチ,負荷電流,温度,主回路構成等によるサージ電圧の波形に応じて半導体スイッチの動作タイミングを調整することなく、各半導体スイッチの電圧分担を均等化させる。
【解決手段】直列接続された複数の半導体スイッチA,Bに出力されるゲート信号のタイミングを調整するゲートタイミング制御回路3において、コンパレータ4,4により、各半導体スイッチA,BのVce検出(A),(B)と、予め設定されたしきい値とを比較してVce検出における立ち上がりのタイミングを示すVce信号(A),(B)を出力する。そして、時間差制御部8において、ゲート信号に基づいて、前記各Vce信号(A),(B)の変化のタイミングが整合するように生成されたゲート出力(A),(B)をゲートドライバ2に出力する。 (もっと読む)


【課題】電源電圧が変動しても半導体デバイスのオン動作及びオフ動作を安定して駆動できる半導体デバイス駆動回路を得る。
【解決手段】ドライブ回路10は、入力回路11より得られる制御信号S11に基づき、インバータG4から電源電圧VCCにより決定される“H”(オンレベル)、あるいは接地電圧GNDにより決定される“L”(オフレベル)の出力電圧VOUT1を駆動信号として半導体デバイスQ1のゲートに出力する。基準電源部14は抵抗R1及びR2の直列接続により、電源電圧VCC,接地電圧GND間の電位差を所定の分圧比率(抵抗R1及びR2による抵抗比)で分圧して得られる電圧が基準電圧VREF1として得られる。バッファ回路8は基準電圧VREF1により決定される基準信号となる出力電圧VOUT2を半導体デバイスQ1のソースに付与する。 (もっと読む)


【課題】高耐圧回路の素子破壊を防止する際、半導体チップ面積の増大を軽減する。
【解決手段】半導体集積回路ICは、高電源電圧で動作する高耐圧回路100、200と低電源電圧で動作する低耐圧回路300、400を内蔵する。入力信号Aに応答して、高耐圧回路の第1素子5と第2素子3はオン状態とオフ状態に、低耐圧回路の第3素子7と第4素子8はオフ状態とオン状態に制御される。この状態において、高電源電圧供給端子に所定レベルのサージ電圧が供給される。この状態で、初期サージ電流が第1素子5と第2素子3の容量を介して低耐圧回路の出力端子Yに流入する。出力端子Yの電圧降下は、高耐圧回路の第2素子3のターンオン電圧に設定される。第2素子3はオフ状態からオン状態に制御されて、サージ電圧のエネルギーを吸収するサージ吸収電流が第1素子5と第2素子3に流入する。 (もっと読む)


【課題】ウォッチドッグのための特殊な構成を追加することなく、マイコンラッチ時に自動的かつ確実にマイコンにリセットをかける
【解決手段】水晶振動子Xtalを用いた水晶発振回路からクロック信号を入力されるマイコン200のリセット回路100であって、マイコン200は、出力がHighとLowとで周期的に変動するGPIO端子201を備え、クロック信号の入力が停止されたときに自動的にリセット状態となる構成とされ、リセット回路100は、GPIO端子201の出力をコンデンサを用いて平滑し、平滑電圧がHighとLowの中間電位のときは水晶振動子Xtalの負性抵抗より小さい抵抗を発生して水晶振動子Xtalに印加し、平滑電圧がHighとLowのいずれかになると水晶振動子Xtalの負性抵抗以上の抵抗を発生して水晶振動子Xtalに印加する。 (もっと読む)


【課題】 2つの出力素子の入力が共にハイレベルになり次に電源オン状態に移行する際に動作を開始することができないとい問題を解決する。
【解決手段】 電源制御手段16は、スイッチングアンプ10が電源オフ状態に移行する場合に、スイッチSWがオフ状態になり、コンデンサC102を強制的に放電させ、第2電源電圧V2に対する基準電位V3を強制的に低下させる。基準電位V3に対するロジック電源電圧Vddは、基準電位V3と同じだけ低下していくので、基準電位V3から見たロジック電源電圧Vddは固定される。定電流回路は、第2電源電圧V2に対する基準電位V3の低下に伴い、定電流Iを減少させ、第1の電流I1および第2の電流I2を減少させる。従って、基準電位V3から見たロジック電源電圧Vddが低下しないうちに、第1の電流I1、第2の電流I2を減少させ、パルス発生手段の動作を正常な状態で終了できる。 (もっと読む)


【課題】スイッチング制御する制御回路の負担を軽減するスイッチング回路を提供する。
【解決手段】第1のスイッチング素子の制御電極と第1のスイッチング素子をスイッチング制御する制御回路との間に接続される抵抗と、第1のスイッチング素子の制御電極と第1のスイッチング素子の低電位側電極との間に接続される第1のコンデンサと、第1のコンデンサと直列に接続される第2のスイッチング素子とを備え、第2のスイッチング素子の高電位側電極は、第1のスイッチング素子の制御電極に電気的に接続され、第2のスイッチング素子の低電位側電極は第1のスイッチング素子の低電位側電力端子に電気的に接続され、第2のスイッチング素子の制御電極は、抵抗と制御回路の間に接続されている。 (もっと読む)


【課題】良好な逆回復特性と良好なEMCとを同時に実現することが出来て、かつ、従来の半導体装置よりも安価である半導体装置及び電子機器を提供する。
【解決手段】半導体装置1は、FET3のソースとMOSFET4のドレインとが接続されるとともに、一端が、FET3のゲートに接続され、他端が、MOSFET4のソースに接続される抵抗Rgsと、アノードが、FET3のゲートに接続され、カソードが、MOSFET4ソースに接続されるダイオードD1とを備える。 (もっと読む)


【課題】表示装置の走査信号線の駆動回路において、走査信号線の出力波形なまりを改善し、表示品質を高めた表示装置を提供する。
【解決手段】表示装置は、複数の信号線Gに対して、順に画素トランジスタを導通させる電位であるアクティブ電位を印加する駆動回路210を備え、前記駆動回路210は、前記複数の信号線のうちの一の信号線である出力信号線の一端に、より上位の前記出力信号線において出力されるアクティブ電位が入力されることに起因して、クロック信号を印加してアクティブ電位を出力させる主駆動回路240と、前記出力信号線の他端、及び前記クロック信号の信号線が、ソース/ドレインを介して接続されたトランジスタである補助トランジスタを含む補助駆動回路250と、を有する。 (もっと読む)


【課題】ゲート電流を抑制し且つ高速動作が可能なスイッチング回路を提供する。
【解決手段】窒化物半導体層の主面上に、第1の主電極Dswと第2の主電極Sswの間に配置された制御電極Gswを有するスイッチング素子Tswと、スイッチング素子Tswの第1の主電極Dswにアノード端子が接続された第1の整流素子D1、第1の整流素子D1のカソード端子に第1の主電極DD1が接続され、スイッチング素子Tswの制御電極Gswに第2の主電極SD1が接続された第1の駆動素子TD1、スイッチング素子Tswの制御電極Gswに第1の主電極DD2が接続され、スイッチング素子の第2の主電極Sswに第2の主電極SD2が接続された第2の駆動素子TD2、及び、第1の駆動素子TD1の制御電極GD1と第2の駆動素子TD2の制御電極GD2にそれぞれ入力される制御信号を受信する入力端子IN_H,IN_Lを有する駆動回路10とを備える。 (もっと読む)


【課題】クランプ回路が未使用状態なのか断線状態なのかを判別する。
【解決手段】温度センサ1hの出力が入力される温度検出端子14a〜14cを利用し、クランプ回路5a〜5cや温度検出回路7a〜7cの一部がパワーモジュール1に接続されないときには温度検出端子14a〜14cの電位に基づいて温度センサ1hが接続されていない断線無効状態を検出する。例えば、温度検出端子14a〜14cのうち温度センサ1hに接続されない端子に断線検出無効化閾値Vth3以上の電圧を印加することで、温度検出端子14a〜14cが温度センサ1hに接続されていないことを検出する。これにより、クランプ回路5a〜5cに接続されるクランプ端子11a〜11cの電位に基づいて断線検出を行う際に、断線状態なのか断線無効状態なのかを温度検出端子14a〜14cの電位に応じて判定できる。 (もっと読む)


【課題】電流検出用の抵抗を使用せず、簡易回路で負荷ショートの保護が可能な電子制御装置を得る。
【解決手段】パルス発生源3と第2のスイッチング素子21との間に接続されたコンデンサ23を有するトリガ回路と、負荷4と第1のスイッチング素子11との交点と第2のスイッチング素子21のベース端子との間にダイオード25を介して接続されるラッチ回路を有する制御回路を備え、パルス発生源が駆動信号を出力時は、トリガ回路を介し所定時間第2のスイッチング素子21をオンし、第1のスイッチング素子11もオンさせ、前記交点の電圧で、ラッチ回路を介し第2のスイッチング素子21のオン状態を継続させる。駆動信号の停止時は、第1、第2のスイッチング素子は共にオフとし、負荷ショートが発生した時は、パルス発生源3の駆動信号が出力されている場合でも、交点の電圧で、ラッチ回路を介して第2のスイッチング素子21をオフし、第1のスイッチング素子11もオフする。 (もっと読む)


【課題】半導体スイッチング素子の温度変化によるサージ電圧の発生および変動を抑制すると共にスイッチング損失を低下させることができる半導体スイッチング素子駆動装置を提供する。
【解決手段】各切替スイッチ42a、42bが駆動信号に従ってオン/オフすることにより、駆動手段40が半導体スイッチング素子10の制御端子11に駆動電流を供給する。一方、温度検出手段20によって半導体スイッチング素子10の素子温度または半導体スイッチング素子10の動作環境温度を検出する。そして、駆動手段40は、温度検出手段20によって検出された素子温度または動作環境温度に従って制御端子11に印加する駆動電流の大きさを変更する。これにより、半導体スイッチング素子10の温度変化によるサージ電圧の発生および変動が抑制され、スイッチング損失が低下する。 (もっと読む)


【課題】スイッチポート切替時間が短く、かつ低消費電力、低面積を同時に満たす高周波スイッチモジュールを提供する。
【解決手段】デコーダ3は、前記スイッチポートを切替える制御信号CNTに応答し、スイッチ7を制御するためのスイッチ制御信号SWCNTを生成して、スイッチ切替タイミング検出器は、スイッチ制御信号SWCNTに応答し、スイッチ切替え検出信号t_swを生成し、周波数制御信号生成器は、スイッチ切替え検出信号t_swに応答し、周波数制御信号ICONT、CCONTを生成し、負電圧発生回路は、周波数制御信号ICONT、CCONTに応答し、前記負電圧発生回路内で生成したクロック信号の周波数を2つ以上のそれぞれ異なる周波数に切替つつ、負電圧出力信号NVG_OUTを生成し、スイッチ7は、スイッチ制御信号SWCNTと前記負電圧出力信号NVG_OUTに応答し、複数の高周波信号ポート間の経路を切替える。 (もっと読む)


【課題】消費電力を抑えることの可能なインバータ回路、およびこのインバータ回路を備えた表示装置を提供する。
【解決手段】入力端子IN1から印加される電圧に応じてオンオフするトランジスタT3を介して、入力電圧Vin2がトランジスタT2のゲートに入力される。そのため、入力電圧Vin1,Vin2がともにハイとなったときだけ、トランジスタT1,T2の双方のゲートにオン電圧が印加される。 (もっと読む)


【課題】スイッチング素子のオンオフによる誘導性負荷の電流応答性を良好なものとしながら駆動回路内の発熱をより抑制する。
【解決手段】誘導性負荷10を駆動する駆動回路20に、誘導性負荷10と並列接続され且つ互いに直列接続された第1の抵抗42および第2の抵抗44と、第2の抵抗44に並列接続されたコンデンサ46と、誘導性負荷10と並列接続されゲートが抵抗42と第2の抵抗44(コンデンサ46)との接続点に接続されドレインがグランドに接地されたNチャネル型のFET32と、FET32のソースと電源ライン24との間に介在しドレインからソースの方向を順方向とする第1のダイオード34とを設ける。 (もっと読む)


【課題】電圧伝達経路における電圧降下が小さい過電圧保護回路を提供する。
【解決手段】入力電圧と第1の電圧とを入力して、昇圧した第2の電圧を、電圧伝達経路110の遮断または導通を制御するスイッチ回路SWのMOSトランジスタPSWのゲートに供給する昇圧回路CPと、MOSトランジスタPSWのゲートに蓄積された電荷を放電する放電回路DCGとを備える。 (もっと読む)


【課題】回路規模の増大を抑制しながら、コネクタに接続されたチャージャーの種類を的確に認識する。
【解決手段】電源検出回路12は、VBUS端子への外部からの給電を検出する。チャージャー検出回路14は、DP端子およびDM端子の電圧を検出することにより、チャージャーの種類を特定する。チャージャー検出回路14は、DP端子およびDM端子の少なくとも一方のオープン、プルアップ、プルダウンまたは両端子間のショートを検出する。 (もっと読む)


【課題】短絡保護のためのクランプ電圧の設定に基づいて、損失を抑制することが可能な負荷駆動装置を提供する。
【解決手段】IGBT1の温度、出力電流、ミラー電流もしくはゲート閾値電圧Vthを検出し、これらのいずれかに基づいてミラー電圧Vmirrorのバラツキに応じたクランプ電圧を演算する。これにより、クランプ電圧をその状況下でのミラー電圧Vmirrorに対応する値に低く抑えることが可能となり、クランプ電圧をミラー電圧Vmirrorのバラツキの最大値、つまりすべての環境変化等を含めた最大値を考慮して設計する場合と比較して、クランプ電圧を小さく抑えられる。したがって、クランプ時にIGBT1を損失が大きくなることを抑制しつつ、短絡耐量を向上することが可能となる。 (もっと読む)


【課題】低電圧試験のためのリセット回路及び方法を提供する。
【解決手段】低電圧試験回路125と、システム100および200と、集積回路パッケージ104および204における回路127の低電圧試験を実行する方法が、電源電圧の一部分である電圧を生成する電圧分割ラダー320、一部分を基準電圧と比較する比較器310、電圧分割ラダーのトポロジーを制御し、それによって一部分の値を変更するスイッチ350を含む、選択可能閾値リセット回路125を含み、スイッチは製品試験装置102および202からの信号によって制御され、信号は、選択可能閾値リセット回路のリセット閾値を標準リセット閾値未満に低減されるようにして、標準リセット閾値未満の電源電圧で回路を試験することを可能にする。 (もっと読む)


61 - 80 / 1,457