説明

Fターム[5J500AC92]の内容

増幅器一般 (93,357) | 目的、効果 (9,357) | 回路の簡素化、小型軽量化 (745)

Fターム[5J500AC92]の下位に属するFターム

Fターム[5J500AC92]に分類される特許

61 - 80 / 661


【課題】電圧制御によりゲイン調整を行うゲイン可変増幅器制御用の制御電圧を、基準電圧を用いることなく生成し、電圧制御ゲイン可変増幅器全体の小型化および消費電力の削減を図る。
【解決手段】ゲイン可変増幅器制御回路を構成する差動対として、nチャネル型トランジスタTR11とpチャネル型トランジスタTR12とを用い、共通のゲイン制御電圧S1をこれらトランジスタTR11およびTR12のゲートに供給する。各トランジスタTR11、TR12を流れる電流は、ゲイン制御電圧S1が増加するにつれて一方は増加し、他方は減少する特性となり、基準電圧を用いたゲイン可変増幅器制御回路と同一特性のゲイン可変増幅器制御電圧を得ることができる。よって、基準電圧発生回路を設ける必要がないため、装置全体の小型化および消費電力の削減を図ることができる。 (もっと読む)


【課題】出力バッファーの面積・体積・部品点数の増加を抑制するとともに、ドライブ能力を向上させることが可能な出力バッファー回路を提供する。
【解決手段】第一駆動信号LINを伝達する第一入力経路4a、第二駆動信号RINを伝達する第二入力経路4b、第一入力経路4aと対応する第一出力バッファー6a及び第二入力経路4bと対応する第二出力バッファー6bを備える出力バッファー回路1において、入力経路切り替え手段8が、ステレオモード及びモノラルモードのうち、モノラルモードでは、第一入力経路4aと第一出力バッファー6a及び第二出力バッファー6bとを電気的に接続させ、出力経路切り替え手段10が、第一出力バッファー6a及び第二出力バッファー6bと、第一入力経路4a及び第一出力バッファー6aと対応する第一負荷2aとを、電気的に接続させる。 (もっと読む)


【課題】入力の整合回路における損失の低減、並びに、回路の簡略化及び小型化が可能な電力分配合成器を提供する。
【解決手段】入力信号が入力される1次巻線としての環状の第1金属配線、及び、2次巻線としての複数の第2金属配線を有し、入力インピーダンスの整合をとるとともに、入力信号を複数の分配信号に分配する入力側トランスフォーマ120と、出力信号が出力される2次巻線としての環状の第3金属配線、及び、1次巻線としての複数の第4金属配線を有し、複数の分配信号を合成することで出力信号を出力するとともに、出力インピーダンスの整合をとる出力側トランスフォーマ130とを備え、入力側トランスフォーマ120が有する金属配線と出力側トランスフォーマ130が有する金属配線とは、互いに異なる金属配線層を用いて構成され、かつ、平面視した場合に交差している。 (もっと読む)


【課題】低周波数帯域の利得を効果的に抑圧して発振の発生を抑制すると共に、回路の高密度実装を可能とする多段増幅器を提供する。
【解決手段】FET1,2に、ゲートバイアス電圧を印加する入力整合回路3,5と、FET1,2に、ドレインバイアス電圧を印加する出力整合回路4,6と、出力整合回路4と入力整合回路5との間に直列接続されたコンデンサ15,16、および、一端がコンデンサ15,16間の接続点に接続され他端が接地された誘導性の線路17を含み構成されたハイパスフィルタ18と、を備え、コンデンサ15,16のキャパシタンス値および線路17のインダクタンス値は、増幅素子の動作周波数よりも低い周波数帯域において、出力整合回路6と出力整合回路4とハイパスフィルタ18とを介して形成されるドレインバイアスループ11の損失が、FET2の利得よりも大きくなるように設定する。 (もっと読む)


【課題】従来技術に比較して構成が簡単であって、消費電力を軽減できるオーディオミキシング装置及び方法、並びに当該オーディオミキシング装置を備えた電子機器を提供する。
【解決手段】オーディオミキシング装置は、複数のディジタルオーディオ信号からそれぞれ変換された複数のPDM信号を加算するアナログ加算器と、上記アナログ加算器から出力されるディジタルオーディオ信号をアナログオーディオ信号にDA変換して出力するDA変換器とを備えた。 (もっと読む)


【課題】多数の各種のスピーカが増幅器に接続する時でも、1つの検出素子により、ほぼ同時に、小電流を流すのみで、また回路に抵抗を設ける必要もなく、容易に、且つ正確にスピーカの接続検出を行うことができる「スピーカ接続検出機能付増幅器」とする。
【解決手段】複数のスピーカ毎のオーディオ信号入力ラインにテスト信号を入力する。スピーカ毎の出力ブロックからの出力ラインの内、プラス側配線またはマイナス側配線を集中させると共に、他の配線は電流による磁気の影響を与えない位置にずらして配置し、集中させて配置した配線部分において、各配線の電流による磁気を検出する位置に磁気センサを設け、テスト信号が流れる各配線の電流による磁気を検出する。接続判定部では、検出した磁気信号を電流に変換した電流値と、予め設定した上限と下限の閾値とを比較し、その範囲内にない時には接続不良、または短絡と判定する。 (もっと読む)


【課題】従来技術に比較して構成が簡単であって、消費電力を軽減できるオーディオミキシング装置及び方法、並びに当該オーディオミキシング装置を備えた電子機器を提供する。
【解決手段】オーディオミキシング装置は、複数のディジタルオーディオ信号からそれぞれ変換された複数のPDM信号を加算するディジタル加算器と、上記ディジタル加算器から出力されるディジタルオーディオ信号をアナログオーディオ信号にDA変換して出力するDA変換器と、上記ディジタル加算器の前段に設けられ、複数のディジタルオーディオ信号をそれぞれ、所定の同一の同期化タイミングクロックを用いて互いに同期化して上記ディジタル加算器に出力する同期化回路を備えた。 (もっと読む)


【課題】 回路規模が比較的小さいCFR回路をEER方式の電力増幅回路5に実装できるようにする。
【解決手段】 本発明は、EER方式の電力増幅回路5に関する。この電力増幅回路5は、IQベースバンド信号の振幅成分に対応するスカラー量(例えば、瞬時電力P=I+Q)を算出する算出部12と、IQベースバンド信号の位相成分を抽出して高周波に変調する位相変調部13と、スカラー量の上限を所定の閾値相当に制限するCFR処理部14と、位相変調部13が出力する位相変調信号を入力信号とし、上限が制限されたスカラー量に応じた振幅変調信号を電源電圧として動作するパワーアンプ16とを備える。 (もっと読む)


【課題】従来技術では、回路規模の削減が難しかった。
【解決手段】反転増幅器の入出力間に帰還抵抗を接続した第1の増幅回路と、前記第1の増幅回路と実質的に同様な構成を備え、前記第1の増幅回路のバイアス電流を供給する第2の増幅回路と、アノードが前記第1の増幅回路の入力に接続され、カソードが前記第2の増幅回路の入力に接続されるフォトダイオードと、前記第2の増幅回路の出力と、前記第1の増幅回路の入力との間に接続される第1の抵抗と、を有する受光回路。 (もっと読む)


【課題】位相補償回路を内蔵する誤差増幅回路と比較して、回路規模及び回路の消費電流を大きくすることなく、位相補償容量を外付けにすることができる誤差増幅回路及び当該誤差増幅回路を用いたスイッチングレギュレータを提供する。
【解決手段】所定の基準電圧Vref1と入力電圧Vfb1との誤差を増幅して出力する誤差増幅器12と、誤差増幅器12にバイアス電流Ibias1を供給する電流生成回路11とを含む集積回路10を備えた誤差増幅回路10aにおいて、集積回路10は、電流生成回路11に接続されたバイアス電流制御端子T1と、位相補償抵抗14を介して誤差増幅器12の出力端子T11に接続された位相補償端子T2とを備え、誤差増幅回路10aは、位相補償端子T2に接続された位相補償容量30を集積回路10の外部に備える。 (もっと読む)


【課題】回路規模の小さい増幅回路を提供する。
【解決手段】増幅回路のオフセット電圧(G2・Vo1+Vo2)を補正するための補正電圧{(C2+2n・C1)・Vref/2n}の係数(C2+2n・C1)は、0〜(22n−1)の範囲で、変更される。この時、補正電圧生成用の分圧電圧を出力する分圧回路31の出力端子は、加減算電圧生成回路41及び42の両方に対し、22n個でなくて2・2n個である。よって、各分圧電圧を制御するための回路の回路規模が小さいので、増幅回路の回路規模も小さい。 (もっと読む)


【課題】従来よりも高効率で消費電力を抑えることが可能な高周波電力増幅器を提供する。
【解決手段】ソース接地され、ゲート端子が、信号が入力される入力ノードに接続された入力側トランジスタ10と、ゲート接地され、ソース端子が、入力側トランジスタ10のドレイン端子に共通に接続され、且つドレイン端子が、出力信号が出力される出力ノードに接続された複数の出力側トランジスタ20,30とを備え、各出力側トランジスタ20,30は、それぞれが異なるゲート・ソース間電圧によりバイアスされている構成とする。 (もっと読む)


【課題】複数の増幅段で構成される電圧増幅装置において、回路規模を抑えつつ、出力信号が含む電源電圧のリップル成分を抑制することが可能にする。
【解決手段】 一の電源電圧(VDD)から第一、第二基準電圧(V1、V2)を生成するバイアス回路(200)と、第一基準電圧を用いて入力信号(Vin)を増幅して第一出力信号(Vout1)を出力する第一増幅器(101)と、第二基準電圧を用いて第一出力信号を増幅して第二出力信号(Vout2)を出力する第二増幅器(102)とを備える。第一、第二基準電圧は、電源電圧のリップル成分を含む。第二増幅器は、互いに同相である第一出力信号が含むリップル成分と第二基準電圧が含むリップル成分とを入力して、第二基準電圧が含むリップル成分を第一出力信号が含むリップル成分により抑制する。 (もっと読む)


【課題】工数や費用を抑えたまま冗長度を小さくすることのできる送信装置を提供する。
【解決手段】この実施形態の送信装置は、送信信号を増幅して第1の増幅信号を出力する励振増幅器と、第1の増幅信号を複数の分配信号に分配する分配器と、分配信号それぞれを増幅して第2の増幅信号を出力する複数の電力増幅器と、複数の電力増幅器が出力した第2の増幅信号を合成して合成信号を出力する合成器とを備えている。そして、複数の電力増幅器それぞれの出力電力を検出する複数の増幅信号検出器と、増幅信号検出器それぞれの検出結果に基づいて、それぞれの出力電力が同一レベルとなるように複数の電力増幅器を制御する増幅レベル制御器と、合成器の出力電力または合成信号の歪み成分の少なくとも一方を検出する送信信号検出器と、送信信号検出器の検出結果に基づいて、合成器の出力電力または合成信号の歪み成分が第1のレベルとなるように励振増幅器を制御する送信レベル制御器とを有している。 (もっと読む)


【課題】SEPP回路の温度上昇の熱が放熱器を介してバイアス回路に伝わるまでの熱結合によるタイムラグを解消して、熱暴走の発生を未然に防止する。
【解決手段】トランジスタ素子を有して構成されるトランジスタQ1と、トランジスタQ1のトランジスタ素子とは逆極性のトランジスタ素子を有して構成されるトランジスタQ2と、が直列接続されると共に、両端が電源に接続されたシングルエンデッド・プッシュプル回路と、トランジスタQ1回路にバイアス電圧を印加するバイアス回路を構成するトランジスタQ5と、トランジスタQ2にバイアス電圧を印加するバイアス回路を構成するトランジスタQ6と、トランジスタQ1のベース電圧を検出してトランジスタQ5にフィードバックする直列接続の抵抗R3、R4と、トランジスタQ2のベース電圧を検出してトランジスタQ6にフィードバックする直列接続の抵抗R5、R6と、を備えている。 (もっと読む)


【課題】回路面積が小さな電流源回路を提供する。
【解決手段】この電流源回路では、直流電圧V1に応じた値の参照電流I1を生成し、その電流I1のうちの電流IrをダイオードD1に流し、残りの電流I1−IrをダイオードD2に流し、ダイオードD1,D2のアノードの電圧VR1,VR2を差動増幅回路のトランジスタQ1,Q2のベースに与える。また、直流電圧V2に応じた値の参照電流I2を生成し、その電流I2を差動増幅回路の駆動電流とする。トランジスタQ1のコレクタに流れる定電流Io=Ir・(V2/V1)が電流源回路の出力電流Ioとなる。したがって、外付け用の端子および外部抵抗器が不要となる。 (もっと読む)


【課題】MIC増幅回路における雑音と歪とを低減する。
【課題を解決するための手段】基板実装型MICコネクタを実装した第一の基板に、電源重畳回路と信号入力結合回路と入力音声増幅回路とを、表面実装部品の第一の演算増幅器とアナログスイッチICと金属皮膜抵抗と容量として実装し、前記信号入力結合回路は、前記第一の演算増幅器の正入力と接地間の抵抗と正入力と低電圧電源間の抵抗とが設置され、前記第一の基板と接続された第二の基板に電源発生部と平衡出力音声増幅回路とを第二の演算増幅器とアナログスイッチICと金属皮膜抵抗と容量として実装し、前記第二の演算増幅器の正入力と接地間の抵抗と正入力と低電圧電源間の抵抗とが設置され、前記平衡出力音声増幅回路の共通帰還回路がタンタル電解コンデンサの逆極性の直列接続または低歪率セラミックコンデンサで容量結合されたことを特徴とする音声増幅回路。
(もっと読む)


【課題】トークカレントの低減を実現可能な高周波電力増幅装置を提供する。
【解決手段】例えば、出力レベルに応じていずれか一方が活性化されるパワーアンプ回路PA2m,PA2sと、伝送線路LNmn,LNsubを備え、LNmn,LNsubが互いに近接配置された領域を持つ。LNsubの他端(PA2sの出力ノード)は、PA2sが活性化された際、NMOSトランジスタMNswのオンに伴い接地電源電圧GNDとの間に容量C3が接続され、PA2mが活性化された際、MNswのオフに伴い開放状態とされる。PA2sが活性化された際、LNmnとLNsubには同一方向の電流が流れるため、強め合う磁気結合が生じる。一方、PA2mが活性化された際、LNmnに流れる電流と、MNswのオフ容量に伴いLNsubに洩れる電流とは反対方向となり、LNmnとLNsubには弱め合う磁気結合が生じる。 (もっと読む)


【課題】小型化を図ることができる整合回路を提供する。
【解決手段】半導体装置1のインピーダンス整合を取るための整合回路であって、半導体装置1上に設けられた第1のボンディングパッド1A及び第2のボンディングパッド1Bと、半導体装置1の外部に設けられた外部電極1と、第1のボンディングパッド1Aと外部電極2とを接続する第1のワイヤ4Aと、第2のボンディングパッド1Bと外部電極2とを接続する第2のワイヤ4Bとによって形成されるインダクタを少なくとも1つ備える整合回路。 (もっと読む)


入力信号(x)を処理する信号処理装置が、適応型プレディストータ(110,160)、増幅器(130)、及びダウンコンバータ(150)を備える。増幅器(130)は処理された信号(y’)を増幅して増幅された信号(y’’)を得るように構成されている。ダウンコンバータ(150)は、信号バージョンンの1つが位相シフトである、処理された信号(y’)のバージョンと増幅された信号(y’’)のバージョンとを乗算して、第1のダウンコンバートされた信号(zl,z1’)を取得し、処理された信号(y’)に、増幅された信号(y’’)を乗算して第2のダウンコンバートされた信号(z2,z2’)を取得するように構成されている。プレディストータ(110、160)は、入力信号(x)をプレディストーション特性に従って、予め歪ませて処理された信号(y’)を取得するように構成されている。そしてプレディストータ(110、160)はさらに、第1のダウンコンバートされた信号(zl,z1’)と第2のダウンコンバートされた信号(z2,z2’)に基づいてプレディストーション特性を適応させるように構成されている。
(もっと読む)


61 - 80 / 661