説明

Fターム[5J500AF16]の内容

増幅器一般 (93,357) | 解決手段、解決思想 (8,039) | 実装、半導体構造の工夫 (331)

Fターム[5J500AF16]に分類される特許

61 - 80 / 331



【課題】信号の広帯域化を図る。
【解決手段】入力信号に対し、それぞれ所望の減衰量を設定可能なゲイン切り替え部GCk(k=1〜n、nは2以上の整数)と、ゲイン切り替え部GCkの出力をそれぞれ入力に接続し、出力を共通に接続する入力差動対TXkと、それぞれのゲイン切り替え部GCkの減衰量及びそれぞれの入力差動対TXkの活性化を制御するスイッチ制御回路103と、を備え、ゲイン切り替え部GCkは、入力信号を一端に受け、他端を入力差動対TXkの入力端に接続する抵抗素子RPkAと、スイッチ制御回路103によってオンオフが制御されるスイッチ素子SWPkj(j=1〜m、mは2以上の整数)と、一端を抵抗素子RPkAの他端に接続し、他端をそれぞれスイッチ素子SWPkjを介して基準電圧VREFに接続する抵抗素子群PRkと、を備える。 (もっと読む)


【課題】最低所要供給電圧が低く、小さいチップ領域を占め、電流消費が低く、供給電圧の変動に強いバンドギャップリファレンス回路を提供する。
【解決手段】電圧ジェネレータ(VG)と、供給回路(SC)と、バイアス要素(BB)および制御要素(CB)を含むバイアス回路(BC)とを、バンドギャップリファレンス回路は含む。供給回路(SC)の制御要素(CS)およびバイアス回路(BC)の制御要素(CB)のうちの一つは、擬似格子整合型高電子移動度トランジスタまたはヘテロ接合バイポーラトランジスタを含み、供給回路(SC)のバイアス要素(BS)およびバイアス回路(BC)のバイアス要素(BB)のうちの一つは、ロングゲート擬似格子整合型高電子移動度トランジスタまたは抵抗を含む。擬似構成整合型高電子移動度トランジスタおよびヘテロ接合バイポーラトランジスタは、GaAs BiFET技術プロセスを用いて製造される。 (もっと読む)


【課題】高出力と専有面積の縮小とを両立させた電力増幅装置を提供する。
【解決手段】基板上に形成された電力増幅装置300であって、全体で環状の一次インダクタ1,2と、グランドパターン4〜8と、トランジスタ対(Q1p,Q1n)および(Q2p,Q2n)と、二次インダクタ3とを備える。グランドパターン4〜8は、基板に垂直な方向から見て、環状の一次インダクタ1,2の内側の領域の一部から外側の領域に及ぶように設けられ、外側の領域の複数箇所で接地される。各一次インダクタ1,2の両端には、対応のトランジスタ対を構成する第1および第2のトランジスタの第1の主電極がそれぞれ接続される。第1および第2のトランジスタの各第2の主電極は、一次インダクタの内側の領域でグランドパターンに接続されるとともに、上記の接地された複数箇所のいずれとも電気的に導通する。 (もっと読む)


ヘテロ接合バイポーラトランジスタ及びロングゲート疑似格子整合高電子移動度トランジスタを備える回路ユニット(CU)。前記ロングゲート疑似格子整合高電子移動度トランジスタのソース(S)又はドレイン(D)が、前記ヘテロ接合バイポーラトランジスタのコレクタ(C)又はエミッタ(E)に電気的に結合される。 (もっと読む)


【課題】ドレイン変調に用いられる電源電圧の遅延や歪みを軽減した増幅器及び信号処理装置を提供する。
【解決手段】増幅器10は、ドレイン変調を行う増幅器であって、互いに対向する第1主面及び第2主面を有するプリント基板400と、第1主面上に配置された増幅回路100と、ドレイン変調を行うための可変の電源電圧を増幅回路100に供給する変調電源回路200と、を備え、変調電源回路200は、電源電圧を出力する出力部250を有し、増幅回路100は、電源電圧が供給される入力部150を有し、出力部250は、プリント基板400の第2主面側に位置し、プリント基板400を貫通する導体を介して入力部150に接続される。 (もっと読む)


【課題】広帯域特性の改善と隣接セルからの干渉問題の抑制を両立できる増幅器を得る。
【解決手段】3セル以上のユニットセルトランジスタ(11)が等間隔に配置されたマルチセルトランジスタ(10)と、スリット(23)で区切られたオープンスタブ(22)により、基本波の整数倍の周波数で短絡状態を形成するように各ユニットセルトランジスタに対応して設けられた高調波処理回路(21)を複数有し、各高調波処理回路がトーナメント構成となるように線路構成された出力整合回路(20)とを備えた増幅器であって、各高調波処理回路(21)は、マルチセルトランジスタを構成する各ユニットセルトランジスタのゲートまたはドレイン端子の少なくとも一方から、電気長で1/2波長未満の距離に配置され、オープンスタブ(22)が、主線路と平行して片側に1本で配置されている。 (もっと読む)


【課題】 高調波成分の負荷を、基本波の調整に影響されることなく短絡から開放までの範囲で最適な負荷となるよう独立して設定することができ、高い電力変換効率を得ることができる電力増幅器を提供する。
【解決手段】 トランジスタ3の出力に、高調波に対する負荷を設定して反射する高調波反射回路4と、設定された高調波に対する後段の負荷の影響を分離する負荷分離回路5と、基本波についてトランジスタ3と出力負荷との整合を取る基本波整合調整回路6を備え、高調波反射回路4に設けられた先端開放スタブ23の長さが調整されることで、高調波の負荷を調整する電力増幅器としており、高調波成分及び基本波について独立して最適な負荷調整を行うことができ、電力変換効率を向上させることができるものである。 (もっと読む)


【課題】高精度な駆動電流を生成可能な電流駆動回路を提供する。
【解決手段】電圧/電流変換回路16は、中間電圧Vmをそれに比例した駆動電流ILEDに変換する。第1抵抗R1は、第1トランジスタM1の一端と接地端子の間に設けられる。第2抵抗R2、第3抵抗R3は、第1抵抗R1と並列な経路に、直列に設けられる。第1演算増幅器OA1は、その第1入力端子に中間電圧Vmが印加され、その第2入力端子に第2抵抗R2と第3抵抗R3の接続点の電圧が印加され、その出力端子が第1トランジスタM1の制御端子と接続される。第1カレントミラー回路CM1は、第1トランジスタに流れる電流を折り返す。第2カレントミラー回路CM2は、第1カレントミラー回路CM1の出力電流を折り返し、駆動電流ILEDを生成する。第2抵抗R2と第3抵抗R3は、その分圧比が調節可能に構成される。 (もっと読む)


【課題】温度分布の変動による利得変動を安定的に補償する電力増幅装置を提供する。
【解決手段】カスケード接続の最終段において、電界効果型トランジスタFET6−1〜FET6−8は並列に配置されている。温度センサ12〜15は、カスケード接続最終段の電界効果型トランジスタのうち少なくとも2以上の電界効果型トランジスタの近傍に設けられる。可変アッテネータ11は、各電界効果型トランジスタの利得を制御する。制御回路16は、温度センサ12〜15の温度検出結果に基づいて、可変アッテネータ11を制御する。 (もっと読む)


【課題】高周波増幅回路において、LC共振を用いずにピーキングをかけること。
【解決手段】高周波増幅回路は、1段目にトランジスタTr1を用いたエミッタ接地増幅回路、2段目にダーリントン接続のトランジスタTr2、Tr3を用いたエミッタ接地回路の2段増幅の構成となっている。トランジスタTr1のエミッタとトランジスタTr2のコレクタとの間には容量素子が挿入されている。容量素子は、ダイオード接続のトランジスタTr4であり、トランジスタTr4のエミッタはトランジスタTr2のコレクタに、トランジスタTr4のベースおよびコレクタはトランジスタTr1のエミッタに接続されている。ダイオード接続のトランジスタTr4によって位相をずらしてフィードバックすることにより、高域での利得を向上させることができる。 (もっと読む)


【課題】 ギガビットオーダーの光信号受信回路で問題となる光信号受信回路内電源配線および接地電位配線および基板を介した高周波ノイズ回りこみによる発振現象を抑制する光信号受信回路を提供する。
【解決手段】 前置増幅器と参照電圧生成回路とが、共通の第1の接地電位配線および第1の電源配線に接続され、第1の接地電位配線の電位が給電される半導体基板上の第1の素子形成領域に形成され、主増幅器が第1の接地電位配線および第1の電源配線とは分離された、第2の接地電位配線および第2の電源配線に接続され、第2の接地電位配線の電位が給電される半導体基板上の第2の素子形成領域に形成され、第1の接地電位配線の電位が給電される第1の基板給電箇所と、第2の接地電位配線の電位が給電される第2の基板給電箇所との最も近接する基板給電間隔が、交流的に十分減衰される基板透過特性が得られる程度に離れた光信号受信回路を構成する。 (もっと読む)


【課題】InGaPをエミッタ層として有し、熱的安定性と通電に対する信頼性を両立することの出来るHBTを用いた電力増幅器を提供する。
【解決手段】InGaPエミッタ層を有するHBTにおいて、InGaPエミッタ層5とAlGaAsバラスト抵抗層7の間にGaAs層6を挿入し、ベース層4から逆注入された正孔がAlGaAsバラスト抵抗層7まで拡散、到達することを抑制する。 (もっと読む)


【課題】パワー素子の駆動が不当に低下することが抑制された半導体装置。
【解決手段】複数のパワー素子が同一の半導体基板に形成された半導体装置であって、半導体基板における複数のパワー素子それぞれと隣接する位置に形成された複数の検温素子と、該検温素子の出力信号に基づいて、パワー素子の駆動信号を制御する制御部と、を有し、制御部は、複数の検温素子の出力信号に基づいて、複数のパワー素子の内、他のパワー素子と比べて発熱状態が異なるパワー素子を算定し、算定したパワー素子の温度が、他のパワー素子の温度と同じになるように、駆動信号を制御する。 (もっと読む)


【課題】単一のスイッチング素子でインンダクタンス素子をスイッチングすることにより、半導体材料がシリコン又はガリウム砒素からなるスイッチング素子を用いたプッシュプルの増幅器よりも高周波且つ大電力の増幅が可能なスイッチング回路、及び該スイッチング回路を備える包絡線信号増幅器を提供する。
【解決手段】スイッチング回路33aは、炭化珪素(SiC)を半導体材料とするn個のトランジスタ(FET)M1,M2,・・MnのゲートをコイルL1を介して縦続接続する入力側伝送線路と、各トランジスタM1,M2,・・MnのドレインをコイルL2を介して縦続接続する出力側伝送線路とを備える。入力端331から与えられて入力側伝送線路を伝播するPWM信号によってトランジスタMm(mは1からnまでの整数)を順次オンさせ、トランジスタMmのドレインに流入する電流と、出力側伝送線路を出力端332の方向に伝播する電流とを加算する。 (もっと読む)


【課題】多段接続される増幅器からのバイアス電流の逆流に起因するバイアス変動を効果的に抑制し、安定して信号増幅できる電力増幅器を提案する。
【解決手段】電力増幅器11は、多段接続されるトランジスタTr1,Tr2,Tr3を備え、これらのトランジスタTr1,Tr2,Tr3は、トランジスタTr1,Tr2を含む第一のグループと、最終段のトランジスタTr3を含む第二のグループとにグループ分けされる。バイアス回路31は、第一のグループに属するトランジスタTr1,Tr2にバイアス電流Ib1,Ib2を分岐供給する。バイアス回路32は、第二のグループに属するトランジスタTr3にバイアス電流Ib3を供給する。 (もっと読む)


【課題】一対の信号線に差動の信号を出力する差動出力駆動回路を備える半導体集積回路において、立ち上がり時間と立ち下がり時間とをそれぞれ独立に調整できるようにする。
【解決手段】一対の信号線4a,4bのそれぞれとGNDとの間に出力容量Ca,Cbを備えるとともに、それぞれの信号線4a,4bに直列に第1の抵抗R1a,R1bを介在し、かつ前記信号線4a,4bを第2の抵抗R2a,R2bによって電源電位にプルアップする。そして、該半導体集積回路1を基板に実装した後に測定された立ち上がり時間と立ち下がり時間とに応じて、抵抗値調整回路Aa,Abが、前記抵抗R1a,R2a;R1b,R2bの抵抗値をそれぞれ調整する。したがって、立ち上がり時間と立ち下がり時間とをそれぞれ独立に調整できるようになり、それらの対称性を維持しなければならないような規格に対しても対応可能となる。 (もっと読む)


【課題】制御電圧入力端子の個数を減少させることができる新規な可変インダクタならびにその新規な可変インダクタを備える電圧制御発振器、複合型PLL回路、フィルタ回路および増幅回路を提供する。
【解決手段】本発明の可変インダクタ5においては、複数のインダクタンス素子61、62、63、64におけるそれぞれの接続点とグランド10との間にそれぞれ接続された複数のスイッチダイオード7A、7B、7Cのそれぞれの一端側に対して、複数の定電圧入力端子8A、8B、8Cを介して、互いに異なる定電圧がそれぞれ供給されている。また、本実施形態の可変インダクタ5においては、複数のスイッチダイオード7A、7B、7Cにおけるそれぞれの他端側に対して、1個の制御電圧入力端子9を介して、制御電圧が供給されている。 (もっと読む)


【課題】複数の入力ポートと少なくとも1つの出力ポートとを備え、高い変圧器結合効率及び高い電力合成効率を達成するオンチップ変圧器電力合成器を提供する。
【解決手段】変圧器電力合成器は、複数の一次巻線導体と複数の二次巻線導体とを含む。一次巻線導体は、入力ポートにそれぞれ電気的に接続される。加えて、各一次巻線導体は対応する入力ポートのプラス端子とマイナス端子との間に電気的に接続されている。二次巻線導体は、一次巻線導体にそれぞれ磁気的に結合される。二次巻線導体は、出力ポートのプラス端子とマイナス端子との間に直列接続及び並列接続を含むトポロジー構造を持つように構成される。 (もっと読む)


【課題】トランスを用いて複数の増幅器対の出力を合成する電力増幅装置において、各増幅器対の差動動作のずれによって生じる出力の低下を抑制する。
【解決手段】電力増幅装置110は、基板上に全体で環状に設けられた複数の一次インダクタ7,8と、複数の増幅器対3〜6と、二次インダクタ9と、接続配線10とを備える。各増幅器対は、対応の一次インダクタの両端に接続され、差動入力信号として与えられた一対の第1および第2の信号IN(+),IN(−)をそれぞれ増幅して対応の一次インダクタに出力する。二次インダクタ9は、複数の一次インダクタ7,8に隣接して環状に設けられ、各一次インダクタで合成された第1および第2の信号の合成信号をさらに合成して出力する。接続配線10は、基板上で複数の一次インダクタ7,8の内側に設けられ、各一次インダクタの中点MP1,MP2を互いに電気的に接続する。 (もっと読む)


61 - 80 / 331