説明

熱アシスト磁気記録媒体及び磁気記録再生装置

【課題】1Tbit/inch以上の面記録密度を有する熱アシスト磁気記録媒体を提供する。
【解決手段】少なくとも基板101の上に、第1の磁性層106と第2の磁性層107とが順に積層された構造を有し、第1の磁性層106が、L1構造を有するFePt合金、L1構造を有するCoPt合金、又はL1構造を有するCoPt合金の何れかの結晶粒と、SiO、TiO、Cr、Al、Ta、ZrO、Y、CeO、MnO、TiO、ZnO、MgO、Cのうち少なくとも1種以上の粒界偏析材料とを含むグラニュラー構造を有し、且つ、第1の磁性層106中の粒界偏析材料の含有率が、基板101側から第2の磁性層107側に向かって減少している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ハードディスク装置(HDD)等に用いられる熱アシスト磁気記録媒体及びそれを用いた磁気記録再生装置に関する。
【背景技術】
【0002】
近年、磁気記録媒体に近接場光等を照射して表面を局所的に加熱し、この磁気記録媒体の保磁力を低下させて書き込みを行う熱アシスト記録が、1Tbit/inchクラスの面記録密度を実現できる次世代記録方式として注目されている。
【0003】
この熱アシスト記録を用いた場合、室温における保磁力が数十kOeの磁気記録媒体でも、現状ヘッドの記録磁界により容易に書き込みを行うことができる。このため、熱アシスト磁気記録媒体では、磁性層に10J/m台の高い結晶磁気異方性(Ku)を有する材料を使用することが可能となり、熱安定性を維持したまま、磁性粒径を6nm以下にまで微細化することができる。
【0004】
このような高Ku材料としては、L1型の結晶構造を有するFePt合金(Ku:約7×10J/m)や、L1型の結晶構造を有するCoPt合金(Ku:約5×10J/m)等が知られている。さらに、L1型の結晶構造を有するCoPt合金も10erg/cc台の高いKuを示す。それ以外にも、CoSm合金や、NdFeB合金等の希土類合金も高いKuを示すことが知られている。また、Co/Pt多層膜や、Co/Pd多層膜等も高い異方性磁界(Hk)を示すと同時に、キュリー温度の制御が比較的容易であるため、熱アシスト磁気記録媒体の磁性層として検討されている。
【0005】
現行の垂直磁気記録媒体の磁性層は、Co合金がSiO等の酸化物により分断されたグラニュラー構造を有し、酸化物によってCo結晶粒間の磁気的交換結合が低減されるため、高い媒体SN比が得られる。しかしながら、一般にグラニュラー構造を有する磁性層は、磁化反転磁界(Hsw)分散が大きい。高い面記録密度を実現するためには、磁気記録媒体のHsw分散を低減する必要があるため、グラニュラー構造を有する磁性層上に、酸化物を含まず、膜面内方向に磁気的に連続的に結合した磁性層が形成されている。これは、グラニュラー構造を有する磁性層中の磁性粒子間に、均一な交換結合を導入するためである。これにより、Hsw分散を低減することができる。上記酸化物を含まない連続膜は、Cap層とも呼ばれ、グラニュラー構造を有する磁性層と、Cap層とからなる積層構造は、CGC(Coupled Granular and Continuous)構造とも呼ばれている。
【0006】
熱アシスト磁気記録媒体の場合、磁性層にはL1型の結晶構造を有するFePt合金等の高いKuを示す材料を用いることが望ましい。しかしながら、この場合も、磁性粒径の微細化及び磁性粒間の交換結合低減のため、SiO、TiO、Cr、Al、Ta、ZrO、Y、CeO、MnO、TiO、ZnO、MgO等の酸化物や、Cを粒界偏析材料として添加する必要がある。また、6nm以下の微細粒径と、十分な交換結合の低減を実現するためには、上記粒界偏析材料の含有率は、30体積%以上、好ましくは40体積%以上とする必要がある。
【0007】
下記非特許文献1には、FePt合金に50原子%のCを添加することにより、磁性粒径を5.5nmまで低減できることが記載されている。また、下記非特許文献2には、FePt合金に20体積%のTiOを添加することにより、磁性粒径を5nmまで低減できることが記載されている。さらに、下記非特許文献3には、FePt合金に50体積%のSiOを添加することにより、磁性粒径を2.9nmまで低減できることが記載されている。但し、この場合は、FePt合金の結晶粒がコラム構造とはなっておらず、膜面垂直方向に分断された球状構造となっている。
【先行技術文献】
【非特許文献】
【0008】
【非特許文献1】Appl. Phys. Express, 101301, 2008
【非特許文献2】J. Appl. Phys. 104, 023904, 2008
【非特許文献3】IEEE. Trans. Magn., vol.45, 839-844, 2009
【発明の概要】
【発明が解決しようとする課題】
【0009】
上述したように、高い媒体SN比を実現するためには、磁性粒径を微細化すると同時に、Hsw分散を低減する必要がある。Hsw分散は、保磁力分散(ΔHc/Hc)と相関があるため、通常、ΔHc/Hcを測定することによりHsw分散を評価できる。熱アシスト磁気記録媒体の場合、記録時に磁性層を200〜400℃まで加熱する必要があるが、この温度領域での保磁力分散は、現状のグラニュラー媒体に比べて著しく高い。このため、保磁力分散の低減は、熱アシスト磁気記録媒体の高密度化を図る上で極めて重要な課題である。
【0010】
現状のグラニュラー媒体では、グラニュラー構造を有する磁性層上に連続構造を有する磁性層を積層したCGC構造、もしくはECC構造と呼ばれる構成とすることによって、保磁力分散を低減している。しかしながら、本発明者らが検討を行った結果、FePt合金と、SiO等の粒界偏析材料とからなるグラニュラー構造の磁性層の上に、CoCrPt合金等の連続膜を形成しても保磁力分散を低減できないことが明らかとなった。その理由は以下の通りである。
【0011】
すなわち、磁性粒径を5〜6nm以下に微細化するためには、SiO等の粒界偏析材料を概ね30体積%以上添加量する必要がある。しかしながら、粒界偏析材料を30体積%以上添加した場合、磁性層が基板面に対して垂直な方向に連続成長したコラム構造をとらなくなる。これは、粒界偏析材料を過剰に添加すると、粒界偏析材料が磁性粒界のみならず、磁性結晶の表面にも析出するためである。
【0012】
上記非特許文献3には、Cを15体積%添加したFePt磁性層の断面TEM観察を行った結果、コラム状のFePt結晶粒の上に、球状のFePtが不連続に成長していることが記載されている。この場合、グラニュラー構造を有する磁性層の上に、連続構造のCap層を形成しても、FePt磁性粒子間に交換結合を導入することができない。また、磁性層の上部に形成された球状の磁性結晶は、磁気的に孤立しており、且つ、反転磁界が小さいため、保磁力分散を拡げる大きな要因となっている。したがって、保磁力分散を低減するためには、上記球状結晶粒の発生を抑制し、磁性層に基板面に対して垂直な方向に連続成長したコラム構造を取らせる必要がある。
【0013】
本発明は、このような従来の事情に鑑みて提案されたものであり、1Tbit/inch以上の面記録密度を有する熱アシスト磁気記録媒体、並びに、そのような熱アシスト磁気記録媒体を備えた大容量の磁気記録再生装置を提供することを目的とする。
【課題を解決するための手段】
【0014】
本発明は、以下の手段を提供する。
(1) 少なくとも基板の上に、第1の磁性層と第2の磁性層とが順に積層された構造を有し、前記第1の磁性層が、L1構造を有するFePt合金、L1構造を有するCoPt合金、又はL1構造を有するCoPt合金の何れかの結晶粒と、SiO、TiO、Cr、Al、Ta、ZrO、Y、CeO、MnO、TiO、ZnO、MgO、Cのうち少なくとも1種以上の粒界偏析材料とを含むグラニュラー構造を有し、
且つ、前記第1の磁性層中の粒界偏析材料の含有率が、前記基板側から前記第2の磁性層側に向かって減少していることを特徴とする熱アシスト磁気記録媒体。
(2) 前記第1の磁性層中の粒界偏析材料の含有率が、前記基板側から前記第2の磁性層側に向かって一定である領域と、前記基板側から前記第2の磁性層側に向かって減少している領域とを含むことを特徴とする前項(1)に記載の熱アシスト磁気記録媒体。
(3) 前記粒界偏析材料の含有率が一定となる領域の割合が、前記第1の磁性層の層厚の70%以下であることを特徴とする前項(2)に記載の熱アシスト磁気記録媒体。
(4) 前記粒界偏析材料の含有率が一定となる領域において、この粒界偏析材料の含有率が、30体積%以上であることを特徴とする前項(2)又は(3)に記載の熱アシスト磁気記録媒体。
(5) 前記第2の磁性層が、Coを含有し、且つ、Zr、Ta、Nb、B、Siのうちの少なくとも1種以上を含有する非晶質合金であることを特徴とする前項(1)〜(4)の何れか一項に記載の熱アシスト磁気記録媒体。
(6) 前記第2の磁性層が、Feを含有し、且つ、Zr、Ta、Nb、B、Siのうちの少なくとも1種以上を含有する非晶質合金であることを特徴とする前項(1)〜(4)の何れか一項に記載の熱アシスト磁気記録媒体。
(7) 前記第2の磁性層が、Feを含有するBCC構造、又はFCC構造の合金であることを特徴とする前項(1)〜(4)の何れか一項に記載の熱アシスト磁気記録媒体。
(8) 前記第2の磁性層が、Coを含有するHCP構造の合金であることを特徴とする前項(1)〜(4)の何れか一項に記載の熱アシスト磁気記録媒体。
(9) 前記第2の磁性層の結晶磁気異方性定数が、前記第1の磁性層の結晶磁気異方性定数よりも低いことを特徴とする前項(1)〜(4)の何れか一項に記載の熱アシスト磁気記録媒体。
(10)
前項(1)〜(9)の何れか一項に記載の熱アシスト磁気記録媒体と、
前記熱アシスト磁気記録媒体を記録方向に駆動する媒体駆動部と、
前記熱アシスト磁気記録媒体を加熱するレーザー発生部と、前記レーザー発生部から発生したレーザー光を先端部へと導く導波路とを有して、前記熱アシスト磁気記録媒体に対する記録動作と再生動作とを行う磁気ヘッドと、
前記磁気ヘッドを前記熱アシスト磁気記録媒体に対して相対移動させるヘッド移動部と、
前記磁気ヘッドへの信号入力と前記磁気ヘッドから出力信号の再生とを行うための記録再生信号処理系とを備えることを特徴とする磁気記録再生装置。
【発明の効果】
【0015】
以上のように、本発明によれば、1Tbit/inch以上の面記録密度を有する熱アシスト磁気記録媒体を実現し、そのような熱アシスト磁気記録媒体を備えた大容量の磁気記録再生装置を提供することが可能である。
【図面の簡単な説明】
【0016】
【図1】第1の実施例において作製した磁気記録媒体の層構成を示す断面図である。
【図2】第1の実施例において第1の磁性層中のCの含有率を示すパターンのグラフである。
【図3】第1の実施例において第1の磁性層の加熱温度とHcとの関係を示すグラフである。
【図4】第1の実施例において第1の磁性層の加熱温度とΔHc/Hcとの関係を示すグラフである。
【図5】第1の実施例において第1の磁性層のHcとΔHc/Hcとの関係を示すグラフである。
【図6】第1の実施例において第2の磁性層のHcとΔHc/Hcとの関係を示すグラフである。
【図7】第2の実施例において作製した磁気記録媒体の層構成を示す断面図である。
【図8】第2の実施例において第1の磁性層中のTiOの含有率を示すパターンのグラフである。
【図9】第3の実施例において作製した磁気記録媒体の層構成を示す断面図である。
【図10】第4の実施例において用いた磁気記録再生装置の構成を示す斜視図である。
【図11】図10に示す磁気記録再生装置が備える磁気ヘッドの構成を模式的に示す断面図である。
【発明を実施するための形態】
【0017】
以下、本発明を適用した熱アシスト磁気記録媒体及び磁気記録再生装置について、図面を参照して詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
【0018】
本発明を適用した熱アシスト磁気記録媒体は、少なくとも基板の上に、第1の磁性層と第2の磁性層とが順に積層された構造を有し、第1の磁性層が、L1構造を有するFePt合金、L1構造を有するCoPt合金、又はL1構造を有するCoPt合金の何れかの結晶粒と、SiO、TiO、Cr、Al、Ta、ZrO、Y、CeO、MnO、TiO、ZnO、MgO、Cのうち少なくとも1種以上の粒界偏析材料とを含むグラニュラー構造を有し、且つ、第1の磁性層中の粒界偏析材料の含有率が基板側から第2の磁性層側に向かって減少していることを特徴とする。
【0019】
このうち、基板については、耐熱性に優れた結晶化ガラス基板や、化学強化ガラスの他、熱伝導率が高いシリコン(Si)基板を用いることができる。
【0020】
第1の磁性層は、L1構造を有するFePt合金、L1構造を有するCoPt合金、又はL1構造を有するCoPt合金の何れかの結晶粒(磁性粒子)の粒界に、SiO、TiO、Cr、Al、Ta、ZrO、Y、CeO、MnO、TiO、ZnO、MgO、C等などの粒界偏析材料(非磁性材料)又はこれらの混合材料が偏析したグラニュラ構造を有している。
【0021】
本発明では、第1の磁性層中の粒界偏析材料の含有率(濃度)を基板側から第2の磁性層側に向かって減少させることによって、過剰な粒界偏析材料がFePt合金、又はCoPt合金の結晶粒の上部に析出し、粒成長が垂直方向に分断されることを防ぐことができる。また、これによって、粒径が微細で、且つ、基板面に対して垂直な方向に連続成長したFePt合金、又はCoPt合金の結晶粒を形成することができる。
【0022】
第1の磁性層中の粒界偏析材料を減少させるには、例えば、FePtターゲットと粒界偏析材料ターゲットとを用いた同時スパッタにおいて、FePtターゲットに対する粒界偏析材料ターゲットの放電パワー比率を連続的、又は段階的に低下させるとよい。これにより、粒界偏析材料の含有率が連続的、又は段階的に低下した複数の層(多層膜)からなる第1の磁性層を形成することができる。
【0023】
また、粒界偏析材料の含有率が異なるFePtと粒界偏析材料との複合ターゲットを用いて、粒界偏析材料の含有率が低い順に多段成膜することによっても、粒界偏析材料の含有率が段階的に低下した複数の層(多層膜)からなる第1の磁性層を形成することができる。
【0024】
第1の磁性層は、この第1の磁性層中の粒界偏析材料の含有率(濃度)が基板側から第2の磁性層側に向かって一定である領域と、基板側から第2の磁性層側に向かって減少している領域とを含むものであってもよい。すなわち、第1の磁性層中の粒界偏析材料の含有率は、スパッタ成膜時の初期から減らしてもよいし、スパッタ成膜時の途中から減らしてもよい。
【0025】
例えば、第1の磁性層の層厚を10nmとした場合、粒界偏析材料の含有率を5nmまでは一定とし、それ以降は10nmまで段階的に粒界偏析材料の含有率を低下させてもよい。この場合、粒界偏析材料の含有率が一定となる領域の割合は、第1の磁性層の層厚の70%以下であることが好ましい。この割合が70%を越えると、過剰な粒界偏析材料によってコラム成長が阻害される恐れがあるので好ましくない。
【0026】
また、粒界偏析材料の含有率が一定となる領域において、この粒界偏析材料の含有率は30体積%以上、より好ましくは40体積%以上とすることが望ましい。これにより、FePt合金又はCoPt合金の結晶粒径を6nm以下に微細化できると同時に、粒界幅を1nm以上とし、磁性粒子間の交換結合を十分に低減することができる。
【0027】
第1の磁性層の層厚は、1nm以上、20nm以下とすることが望ましい。1nm未満では十分な再生出力が得られず、また、20nmを越えると結晶粒が著しく肥大化するため好ましくない。
【0028】
第2の磁性層は、第1の磁性層中のFePt結晶粒間又はCoPt結晶粒間に交換結合を導入するため、磁気的に結合した連続膜であることが望ましい。これにより、保磁力分散を効果的に低減できる。また、第2の磁性層は、第1の磁性層よりも結晶磁気異方性が低いことが望ましい。これにより、第1の磁性層の磁化反転をアシストすることができる。
【0029】
第2の磁性層には、非晶質合金又はこれに近い微結晶構造のもの、具体的には、Coを含有し、且つ、Zr、Ta、Nb、B、Siのうちの少なくとも1種以上を含有する合金、又は、Feを含有し、且つ、Zr、Ta、Nb、B、Siのうちの少なくとも1種以上を含有する合金を用いることができる。第2の磁性層に、これらの合金を用いた場合、磁気記録媒体の表面の平坦性が向上し、磁気ヘッドの浮上特性が改善される。
【0030】
また、第1の磁性層にL1型の結晶構造を有するFePt合金を用いた場合、第2の磁性層には、Feを主成分とするBCC構造又はFCC構造の合金、具体的には、FeNi、FeCr、FeV、FePtなどを用いることができる。これらの合金は、L1型の結晶構造を有するFePt合金上にエピタキシャル成長するため、第2の磁性層に非晶質合金を用いた場合に比べて、高いHcが得られる。
【0031】
一方、第1の磁性層にL1型の結晶構造を有するCoPt合金を用いた場合、第2の磁性層には、HCP構造を有するCo合金、具体的には、CoCr、CoCrPt、CoPt、CoCrTa、CoCrB、CoCrPtTa、CoCrPtB、CoCrPtTaBなどを用いることができる。これらの合金は、L1型の結晶構造を有するCoPt合金上にエピタキシャル成長するため、第2の磁性層に非晶質合金を用いた場合に比べて、高いHcが得られる。
【0032】
第2の磁性層の層厚は、0.5nm以上、10nm以下であることが好ましい。この第2の磁性層の層厚が0.5nm未満であると、表面の平坦性が劣化するため好ましくない。一方、この第2の磁性層の層厚が10nmを越えると、磁気ヘッドとのスペーシングが大きくなり過ぎるため好ましくない。
【0033】
また、本発明を適用した熱アシスト磁気記録媒体では、第1の磁性層の配向制御や、粒径制御、密着性の改善等を目的として、第1の磁性層の下に複数の下地層を設けることができる。
【0034】
例えば、第1の磁性層にL1構造を有するFePt合金を用いる場合には、このFePt合金に(001)配向をとらせるため、(100)配向したMgOからなる下地層を設けることが好ましい。MgOに(100)配向をとらせるには、例えば、基板上にTa層を形成し、このTa層上にMgOを形成すればよい。また、Ta層以外にも、Ni−40at%Ta層や、Cr−50at%Ti層などの非晶質合金層の上にMgO層を形成することによっても、このMgOに(100)配向をとらせることができる。
【0035】
また、150℃以上に加熱した基板にCr層を形成することにより、このCr層に(100)配向をとらせることができる。この(100)配向したCr層の上に、MgO層を形成することによっても、MgOに(100)配向をとらせることができる。
【0036】
なお、(100)配向したCr下地層を用いる場合には、Cr層上にMgO層を介さずに第1の磁性層を直接形成してもよい。これによって、第1の磁性層中のL1構造を有するFePt合金に(001)配向をとらせることができる。
【0037】
また、第1の磁性層にL1構造を有するCoPt合金を用いる場合は、このCoPt合金に(111)配向をとらせることが好ましい。この場合、下地層として、例えば(111)配向したPt層を用いることができる。この場合の下地層は、L1構造を有するCoPt合金に、(111)配向をとらせることができる材料であれば、特に制限されるものではない。
【0038】
また、本発明を適用した熱アシスト磁気記録媒体では、第1の磁性層の下に軟磁性下地層を設けることができる。この軟磁性下地層としては、例えば、Ru層を介して互いに反強磁性結合したCoFeTaZr合金や、CoFeTaSi合金、CoFeTaB合金、CoTaZr合金などを用いることができる。また、これらの合金を単層で使用したものを軟磁性下地層としてもよい。
【0039】
また、本発明を適用した熱アシスト磁気記録媒体では、記録時に近接場光により加熱された磁性層が、記録後、速やかに冷却されるように、基板と磁性層との間に、ヒートシンク層を設けることもできる。また、基板と磁性層との間であれば、ヒートシンク層の位置については、特に限定されるものではない。このヒートシンク層には、Cuや、Ag、Al又はこれらを主成分とする熱伝導率の高い材料を用いることができる。
【0040】
以上のように、本発明を適用した熱アシスト磁気記録媒体では、第1の磁性層中の粒界偏析材料の含有率を基板側から第2の磁性層側に向かって減少させることによって、過剰な粒界偏析材料がFePt合金、又はCoPt合金の結晶粒の上部に析出し、粒成長が垂直方向に分断されることを防ぐことができる。また、これによって、粒径が微細で、且つ、基板面に対して垂直な方向に連続成長したFePt合金、又はCoPt合金の結晶粒を形成することができる。
【0041】
本発明によれば、保磁力分散(ΔHc/Hc)を低減できるため、1Tbit/inch以上の面記録密度を有する熱アシスト記録媒体を実現でき、更に、これを用いた大容量の磁気記録再生装置を提供することが可能となる。
【実施例】
【0042】
以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。
【0043】
(第1の実施例)
第1の実施例において作製した熱アシスト磁気記録媒体の層構成の一例を図1に示す。
第1の実施例において熱アシスト磁気記録媒体を作製する際は、ガラス基板101上に、層厚100nmのCr−50at%Ti合金からなる下地層102と、層厚30nmのCo−27at%Fe−5at%Zr−5at%B合金からなる単層の軟磁性下地層103とを順次形成した。その後、ガラス基板101を250℃まで加熱し、その上に、層厚10nmのCrからなる下地層104と、層厚5nmのMgOからなる下地層105とを順次形成した後、ガラス基板101を450℃まで加熱し、層厚10nmの(Fe−55at%Pt)−C合金からなる第1の磁性層106と、層厚3nmのCo−26at%Fe−10at%Ta−2at%B合金からなる第2の磁性層107と、層厚3nmのカーボン(C)からなる保護層108とを順次形成した。
【0044】
ここで、第1の磁性層106については、Fe−55at%Ptターゲットと、Cターゲットとを同時にスパッタすることにより形成した。また、Fe−55at%Ptターゲットに対するCターゲットの放電パワー比率を段階的に低下させることによって、第1の磁性層106中のC(粒界偏析材料)の含有率を層厚方向に段階的に低下させた。これにより、図2(a)〜(c)に示した3通りのC濃度プロファイル(P−1〜P−3)を有する熱アシスト磁気記録媒体を作製した。また、比較例として、図2(d)に示すように、第1の磁性層106中のCの含有率を40at%で一定としたC濃度プロファイル(P−4)を有する熱アシスト磁気記録媒体を作製した。
【0045】
以上のように作製された4種類のC濃度プロファイル(P−1〜P−4)を有する熱アシスト磁気記録媒体について、X線回折測定を行ったところ、何れの媒体からも、第1の磁性層106から強いL1−FePt(001)回折ピークが観察された。また、L1−FePt(002)回折ピークと、FCC−Fe(002)回折ピークとの混合ピークも観察された。また、後者の混合ピークに対する前者の回折ピークの積分強度比は1.7であり、規則度の高いL1型FePt合金結晶が形成されていることがわかった。
【0046】
また、上記4種類のC濃度プロファイル(P−1〜P−4)を有する熱アシスト磁気記録媒体について、280℃から360℃まで加熱したときの保磁力(Hc)の変化を図3に、保磁力分散(ΔHc/Hc)の変化を図4に示す。なお、ΔHc/Hcは、「IEEE Trans. Magn., vol.27, pp4975-4977, 1991」に記載の方法で測定した。具体的には、メジャーループ及びマイナーループにおいて、磁化の値が飽和値の50%となるときの磁界を測定し、両者の差分から、Hc分布がガウス分布であると仮定してΔHc/Hcを算出した。
【0047】
図3及び図4に示すように、上記4種類のC濃度プロファイル(P−1〜P−4)を有する熱アシスト磁気記録媒体は、何れも温度上昇と共にHcが低下し、ΔHc/Hcが増加していることがわかる。熱アシスト磁気記録媒体では、記録部分を局所的に加熱し、その部分のHcを十分に低下させて記録を行うため、上記結果は、記録時のΔHc/Hccが、室温での値に比べて大幅に増大することを示している。
【0048】
ΔHc/Hcの大小関係については、同一のHcで比較する必要があるため、上記図4で示したΔHc/Hcを、上記図3で示したHcの関数として図5に示した。
【0049】
図5に示すように、例えばHcが5kOeとなる場合で比較すると、本発明を適用して作製されたP−1〜P−3の熱アシスト磁気記録媒体は、比較例として作製されたP−4の熱アシスト磁気記録媒体に比べて、ΔHc/Hcが0.1〜0.4程度低くなっている。また、ΔHc/Hcは、P−1、P−2、P−3の順に低下しており、Cの含有率が減少する領域が広がるに従って、保磁力分散が改善されることがわかる。
【0050】
次に、比較例として、第1の磁性層106の上に第2の磁性層107を設けない熱アシスト磁気記録媒体を作製した。この比較例として示す磁気記録媒体は、上述した実施例として示す磁気記録媒体と同様の4種類のC濃度プロファイル(P−1〜P−4)を有する。また、成膜プロセスも上述した実施例として示す磁気記録媒体と同様である。これらの熱アシスト磁気記録媒体について、280℃から360℃まで加熱したときの保磁力(Hc)及び保磁力分散(ΔHc/Hc)を測定し、両者の関係を図6に示した。
【0051】
図6に示すように、HcとΔHc/Hcとの関係を示すプロットは、C濃度プロファイルによらず、同一線上にあり、Hcが5kOeeとなるときのΔHc/Hcは、0.8〜0.9程度と極めて高い。
【0052】
上記結果から、第1の磁性層106中にCの含有率を段階的に減少させたとしても、第2の磁性層107を設けなかった場合には、保磁力分散を改善できないことが明らかとなった。すなわち、本発明では、第1の磁性層106中のCの含有率を段階的に低減し、且つ、第1の磁性層106の上に第2の磁性層107を設けることで、保磁力分散を低減することが可能となる。
【0053】
(第2の実施例)
第2の実施例において作製した熱アシスト磁気記録媒体の層構成の一例を図7に示す。
第1の実施例において熱アシスト磁気記録媒体を作製する際は、ガラス基板201上に、層厚30nmのNi−40at%Ta合金からなる下地層202を形成した後、ガラス基板201を280℃まで加熱し、その上に、層厚10nmのCrからなる下地層203を形成した。その後、層厚100nmのAgからなるヒートシンク層204と、層厚10nmのMgOからなる下地層205とを順次形成した後、ガラス基板201を420℃まで加熱し、その上に、層厚10nmの(Fe−55at%Pt)−TiO合金からなる第1の磁性層206と、第2の磁性層207と、層厚3.5nmのカーボン(C)からなる保護層208とを順次形成した。
【0054】
そして、表1に示すように、第1の磁性層206中のTiO(粒界偏析材料)の濃度プロファイルと、第2の磁性層207との組み合わせを変更したNo.2−1〜2−13の熱アシスト磁気記録媒体を作製した。
【0055】
【表1】

【0056】
第1の磁性層206は、Fe−55at%Ptターゲットと、TiOターゲットとを同時にスパッタすることにより形成した。また、Fe−55at%Ptターゲットに対するTiOターゲットの放電パワー比率を段階的又は連続的に低下させることにより、図8(a)〜(f)に示す6種類のTiO濃度プロファイル(P−5〜P−10)を導入した。なお、比較例として、第1の磁性層106中のTiOの含有率を一定(20mol%)とした熱アシスト磁気記録媒体を作製した(NO.2−1〜2−13)。また、第2の磁性層207の層厚は2〜4nmとした。
【0057】
以上のように作製されたNO.2−1〜2−13の熱アシスト磁気記録媒体について、X線回折測定を行ったところ、何れの媒体においても、Cr下地層203及びAgヒートシンク層204から強いBCC(200)回折ピークが観察された。また、第1の磁性層206からは、強いL1−FePt(001)回折ピークが観察された。さらに、第1の磁性層206からは、L1−FePt(002)回折ピークと、FCC−Fe(200)回折ピークとの混合ピークも観察された。この第1の磁性層206から観察された回折ピークのうち、後者の混合ピークに対する前者の回折ピークの積分強度比は1.6であり、規則度の高いL1型FePt合金結晶が形成されていることがわかった。
【0058】
次に、NO.2−1〜2−12の熱アシスト磁気記録媒体について、平面TEM観察を行ったところ、第1の磁性層206については、何れの媒体もFePt合金の結晶粒がTiOで囲まれたグラニュラー構造であった。また、FePt合金の結晶粒の平均粒径は、5〜6nm程度であった。
【0059】
さらに、NO.2−1〜2−12の熱アシスト磁気記録媒体について、断面TEM観察を行ったところ、第1の磁性層206については、何れの媒体もFePt合金が基板面に対して垂直な方向に連続成長したコラム構造をとっていることがわかった。一方、NO.2−13の熱アシスト磁気記録媒体について、断面TEM観察を行ったところ、第1の磁性層206が、コラム構造のFePt結晶と、その上に形成された球状のFePt結晶からなる二層構造であることがわかった。
【0060】
また、第2の磁性層207に用いた合金からは、明瞭な格子縞が観察されなかった。これより、本実施例で用いた第2の磁性層207は、全て非晶質構造であることがわかる。
【0061】
次に、NO.2−1〜2−13の熱アシスト磁気記録媒体について、280℃から360℃まで加熱したときの保磁力(Hc)及び保磁力分散(ΔHc/Hc)を測定し、Hcが5kOeとなるときの温度におけるΔHc/Hcを見積もった。その結果を表1に示す。
【0062】
表1に示すように、本発明を適用して作製されたNO.2−1〜2−12の熱アシスト磁気記録媒体は、比較例として作製されたNO.2−13の熱アシスト磁気記録媒体に比べて、Hcが5kOeとなるときのΔHc/Hcが0.3〜0.6程度低くなっている。これは、上述したように、NO.2−13の熱アシスト磁気記録媒体では、第1の磁性層206が、コラム構造のFePt結晶と、その上に形成された球状のFePt結晶からなる二層構造であるのに対し、NO.2−1〜2−12の熱アシスト磁気記録媒体では、第1の磁性層が、FePt合金が基板面に対して垂直な方向に連続成長したコラム構造であることが原因と考えられる。
【0063】
以上のことから、本発明では、第1の磁性層206中のTiOの含有率を段階的に低減させることにより、第1の磁性層206に基板面に対して垂直な方向に連続成長したコラム構造を取らせることができ、これによって保磁力分散を低減できることが明らかとなった。
【0064】
また、ΔHc/Hcについては、第2の磁性層207の厚みを増加させる、又は、飽和磁束密度(Bs)を増加させることによって、更に低減することが可能である。但し、何れの場合も、第1の磁性層206中のFePt結晶粒間の交換結合が増大することによって、媒体ノイズが増大するため、第2の磁性層207の層厚とBsについては、このような媒体ノイズの増加を抑制するように設計する必要がある。
【0065】
なお、第2の磁性層207としては、上記以外にも、FeNi、FeCr、FeV、FePt等のBCC又はFCC合金などを用いることができる。
【0066】
(第3の実施例)
第3の実施例において作製した熱アシスト磁気記録媒体の層構成の一例を図9に示す。
第3の実施例において熱アシスト磁気記録媒体を作製する際は、ガラス基板301上に、層厚10nmのCo−50at%Ti合金からなる下地層302と、層厚200nmのCuからなるヒートシンク層303と、Ruを介して互いに反強磁性結合したCoFeTaZrB合金からなる層厚15nmの軟磁性下地層304と、層厚10nmのPdからなる下地層305とを順次形成した。その後、ガラス基板301を350℃まで加熱し、その上に、層厚13nmの第1の磁性層306と、層厚5nmのFe−27at%Co−10at%Ta合金からなる第2の磁性層307と、層厚3nmのカーボン(C)からなる保護層308とを順次形成した。
【0067】
また、第1の磁性層306には、層厚5nmの(Co−50at%Pt)−20mol%SiO層を形成した後、層厚2nmの(Co−50at%Pt)−15mol%SiO層、層厚2nmの(Co−50at%Pt)−10mol%SiO層、層厚2nmの(Co−50at%Pt)−5mol%SiO層、層厚2nmのCo−50at%Pt層を連続に形成した。
【0068】
なお、上記各層は、SiO含有率が異なるCoPt−SiO複合ターゲットを用いて、異なる成膜チャンバーにて形成した。本実施例では、上記5層構造のCoPt−SiO多層膜を第1の磁性層306とみなす。
【0069】
また、比較例として、第1の磁性層306に、層厚13nmの(Co−50at%Pt)−20mol%SiOの単層膜を用いた熱アシスト磁気記録媒体(NO.3−2)と、層厚13nmの(Co−50at%Pt)−5mol%SiOの単層膜を用いた熱アシスト磁気記録媒体(NO.3−3)を作製した。第1の磁性層306が異なる以外は、上記比較例媒体の層構成、成膜プロセスは、実施例媒体(NO.3−1)と同一である。
【0070】
【表2】

【0071】
NO.3−1〜3−3の熱アシスト磁気記録媒体について、X線回折測定を行ったところ、何れの媒体においても、第1の磁性層306からL1−CoPt(111)回折ピークと、L1−CoPt(333)回折ピークが観察された。これより、CoPt合金が良好なL1規則構造をとっていることが明らかとなった。
【0072】
また、NO.3−1〜3−3の熱アシスト磁気記録媒体について、280℃から360℃まで加熱したときの保磁力(Hc)及び保磁力分散(ΔHc/Hc)を測定し、Hcが5kOeとなるときの温度におけるΔHc/Hcを見積もった。さらに、Hcが5kOeとなるときの温度でダイナミック保磁力Hcを測定した。ここで、Hcは、Hcの磁界印加速度依存性からSharrockの式を用いて算出した。一般に、Hc/Hcは、磁性粒子間の交換結合の強さを表し、交換結合が強いほど低くなる。表2にNO.3−1〜3−3の熱アシスト磁気記録媒体のΔHc/HcとHc/Hcを示す。
【0073】
表2に示すように、本発明を適用して作製されたNO.3−1の熱アシスト磁気記録媒体は、ΔHc/Hcが0.37であった。また、Hc/Hcも0.32と比較的高く、交換結合が低減されていることがわかる。
【0074】
これに対して、NO.3−2の熱アシスト磁気記録媒体は、Hc/HcはNO.3−1の熱アシスト磁気記録媒体とほぼ同程度であるものの、ΔHc/Hcは1.01と著しく高い。このことは、NO.3−2の熱アシスト磁気記録媒体では、磁性粒子間の交換結合がNO.3−1の熱アシスト磁気記録媒体と同程度に低いものの、保磁力分散が著しく大きいことを示している。
【0075】
一方、NO.3−2の熱アシスト磁気記録媒体は、ΔHc/HcはNO.3−1の熱アシスト磁気記録媒体とほぼ同程度まで低減されているものの、Hc/Hcは0.12と著しく低い。これは、SiO(粒界偏析材料)の添加量を低減することによって、保磁力分散が小さくなるものの、磁性粒子間の交換結合が著しく強くなったことを示している。したがって、粒界偏析材料を単に減らすだけでは、磁性粒子間の交換結合を増大させずに、保磁力分散を低減することは困難である。
【0076】
以上のことから、磁性粒子間の交換結合を増大させずに、保磁力分散を低減するためには、本発明のように、第1の磁性層306中の粒界偏析材料の含有率をガラス基板301側から第2の磁性層307側に向かって減少させることが効果的であることが明らかとなった。
【0077】
なお、第2の磁性層307としては、上記FeCoTa合金以外にも、HCP構造を有するCoCr合金、CoCrPt合金、CoCrPtTa合金、CoCrPtB合金などを用いてもよい。
【0078】
(実施例4)
実施例4においては、上記第1〜第3の実施例において作製した熱アシスト磁気記録媒体の表面にパーフルオルポリエーテル系の潤滑剤を塗布した後、図10に示す磁気記録再生装置に組み込んだ。この磁気記録再生装置は、熱アシスト磁気記録媒体501と、熱アシスト磁気記録媒体を回転させるための媒体駆動部502と、熱アシスト磁気記録媒体501に対して記録動作と再生動作とを行う磁気ヘッド503と、磁気ヘッド503を熱アシスト磁気記録媒体501に対して相対移動させるためのヘッド駆動部504と、磁気ヘッド503への信号入力と磁気ヘッド503から出力信号の再生とを行うための記録再生信号処理系505とから概略構成される。なお、上記磁気記録再生装置には、図10に図示されていないものの、レーザー光を発生させるレーザー発生装置と、発生したレーザー光を磁気ヘッド503まで伝達するための導波路とが配置されている。
【0079】
また、上記磁気記録再生装置に組み込んだ磁気ヘッド503の構造を図11に模式的に示す。この磁気ヘッド503は、記録ヘッド601と再生ヘッド602とを備え、記録ヘッド601は、主磁極603、補助磁極604、及び両者の間に挟まれたPSIM(Planar Solid Immersion Mirror)605から構成される。PSIM605は、例えば「Jpn.,J.Appl.Phys.,Vol145,no.2B,pp1314−1320(2006)」に記載されているような構造のものを用いることができる。記録ヘッド601は、PSIM605のグレーティング部606に半導体レーザーなどのレーザー光源607から波長440nmのレーザー光Lを照射し、PSIM605の先端部から発生した近接場光NLにより熱アシスト磁気記録媒体501を加熱しながら記録を行う。一方、再生ヘッド602は、上部シールド608と下部シールド609で挟まれたTMR素子610で構成されている。
【0080】
上記磁気ヘッド503により、熱アシスト磁気記録媒体501を加熱し、線記録密度21800kFCI(kilo Flux changes per Inch)で記録し、電磁変換特性を測定したところ、15dB以上の高い媒体SN比と良好な重ね書き特性が得られた。
【符号の説明】
【0081】
101…ガラス基板
102…下地層
103…軟磁性下地層
104…下地層
105…下地層
106…第1の磁性層
107…第2の磁性層
108…保護層
201…ガラス基板
202…下地層
203…下地層
204…ヒートシンク層
205…下地層
206…第1の磁性層
207…第2の磁性層
208…保護層
301…ガラス基板
302…下地層
303…ヒートシンク層
304…軟磁性下地層
305…下地層
306…第1の磁性層
307…第2の磁性層
308…保護層
501…熱アシスト磁気記録媒体
502…媒体駆動部
503…磁気ヘッド
504…ヘッド駆動部
505…記録再生信号処理系
601…記録ヘッド
602…再生ヘッド
603…主磁極
604…補助磁極
605…PSIM(Planar Solid Immersion Mirror)
606…グレーティング部
607…レーザー光源
608…上部シールド
609…下部シールド
610…TMR素子
L…レーザー光
NL…近接場光

【特許請求の範囲】
【請求項1】
少なくとも基板の上に、第1の磁性層と第2の磁性層とが順に積層された構造を有し、前記第1の磁性層が、L1構造を有するFePt合金、L1構造を有するCoPt合金、又はL1構造を有するCoPt合金の何れかの結晶粒と、SiO、TiO、Cr、Al、Ta、ZrO、Y、CeO、MnO、TiO、ZnO、MgO、Cのうち少なくとも1種以上の粒界偏析材料とを含むグラニュラー構造を有し、
且つ、前記第1の磁性層中の粒界偏析材料の含有率が、前記基板側から前記第2の磁性層側に向かって減少していることを特徴とする熱アシスト磁気記録媒体。
【請求項2】
前記第1の磁性層中の粒界偏析材料の含有率が、前記基板側から前記第2の磁性層側に向かって一定である領域と、前記基板側から前記第2の磁性層側に向かって減少している領域とを含むことを特徴とする請求項1に記載の熱アシスト磁気記録媒体。
【請求項3】
前記粒界偏析材料の含有率が一定となる領域の割合が、前記第1の磁性層の層厚の70%以下であることを特徴とする請求項2に記載の熱アシスト磁気記録媒体。
【請求項4】
前記粒界偏析材料の含有率が一定となる領域において、この粒界偏析材料の含有率が、30体積%以上であることを特徴とする請求項2又は3に記載の熱アシスト磁気記録媒体。
【請求項5】
前記第2の磁性層が、Coを含有し、且つ、Zr、Ta、Nb、B、Siのうちの少なくとも1種以上を含有する非晶質合金であることを特徴とする請求項1〜4の何れか一項に記載の熱アシスト磁気記録媒体。
【請求項6】
前記第2の磁性層が、Feを含有し、且つ、Zr、Ta、Nb、B、Siのうちの少なくとも1種以上を含有する非晶質合金であることを特徴とする請求項1〜4の何れか一項に記載の熱アシスト磁気記録媒体。
【請求項7】
前記第2の磁性層が、Feを含有するBCC構造、又はFCC構造の合金であることを特徴とする請求項1〜4の何れか一項に記載の熱アシスト磁気記録媒体。
【請求項8】
前記第2の磁性層が、Coを含有するHCP構造の合金であることを特徴とする請求項1〜4の何れか一項に記載の熱アシスト磁気記録媒体。
【請求項9】
前記第2の磁性層の結晶磁気異方性定数が、前記第1の磁性層の結晶磁気異方性定数よりも低いことを特徴とする請求項1〜4の何れか一項に記載の熱アシスト磁気記録媒体。
【請求項10】
請求項1〜9の何れか一項に記載の熱アシスト磁気記録媒体と、
前記熱アシスト磁気記録媒体を記録方向に駆動する媒体駆動部と、
前記熱アシスト磁気記録媒体を加熱するレーザー発生部と、前記レーザー発生部から発生したレーザー光を先端部へと導く導波路とを有して、前記熱アシスト磁気記録媒体に対する記録動作と再生動作とを行う磁気ヘッドと、
前記磁気ヘッドを前記熱アシスト磁気記録媒体に対して相対移動させるヘッド移動部と、
前記磁気ヘッドへの信号入力と前記磁気ヘッドから出力信号の再生とを行うための記録再生信号処理系とを備えることを特徴とする磁気記録再生装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2011−154746(P2011−154746A)
【公開日】平成23年8月11日(2011.8.11)
【国際特許分類】
【出願番号】特願2010−14271(P2010−14271)
【出願日】平成22年1月26日(2010.1.26)
【出願人】(000002004)昭和電工株式会社 (3,251)
【Fターム(参考)】