説明

ウェーハマッピング装置およびウェーハマッピング方法

【課題】半導体基板が格納容器から飛び出しているか否かを高速かつ確実に検出することができるウェーハマッピング装置を提供すること。
【解決手段】実施形態のウェーハマッピング装置では、照明光学系が、ウェーハ側面に対して垂直に交わる線状スリット光を、各ウェーハの複数箇所に照射する。第1および第2の撮像部は、前記線状スリット光が照射されているウェーハの側面をそれぞれ第1および第2の撮像画像として撮像する。格納状態検出部は、前記第1および第2の撮像画像が撮像されている場合には、三角測量方法で前記ウェーハの前記格納容器からの飛び出し量を算出し、前記第1および第2の撮像画像の何れか一方のみが撮像されている場合には、前記線状スリット光の反射光が画像面上で結像する結像位置と、基準位置と、を比較することにより、前記ウェーハが前記格納容器から飛び出しているか否かを判定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、ウェーハマッピング装置およびウェーハマッピング方法に関する。
【背景技術】
【0002】
半導体製造装置では、ウェーハ搬送キャリアである格納容器(FOUP)と半導体製造装置との間でウェーハの受け渡しをする際に、FOUPを半導体製造装置に接続した後、搬送ロボットがFOUP内のウェーハ格納状態を確認している(マッピング処理)。
【0003】
このようなマッピング処理では、FOUP内の何れのスロットにウェーハが格納されているか、ウェーハが斜め方向に収まっていないか、ウェーハがFOUPから飛び出していないかなどが検出される。
【0004】
従来のウェーハマッピング方法では、ロボットアームのエンドエフェクト先端に取り付けられた1対のフォトセンサを、ウェーハ円弧部分と僅かに重なる位置まで移動させている。その後、ロボットアームをウェーハ積載方向に昇降させることで、各スロット内のウェーハの有無を検出していた。
【0005】
しかしながら、搬送ロボットが絶えずウェーハの搬送動作を行っている状況下では以下の問題があった。
1.マッピング処理にロボット動作を含むので、ウェーハ格納状態を検出し終えるまでに長時間を要する。
2.ウェーハを1枚ずつしか検出できない。
3.ウェーハ搬送動作と並列してマッピング処理を行うことができない。
【0006】
また、カメラを用いた画像処理によってウェーハマッピングを行う場合、カメラが故障した場合には、ウェーハがFOUPから飛び出しているか否かを検出できなくなるという問題があった。このような上記4つの問題により、ウェーハがFOUPから飛び出しているか否かを高速かつ確実に検出することはできなかった。このため、ウェーハがFOUPから飛び出しているか否かを高速かつ確実に検出することが望まれている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2005−64515号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明が解決しようとする課題は、ウェーハが格納容器から飛び出しているか否かを高速かつ確実に検出することができるウェーハマッピング装置およびウェーハマッピング方法を提供することである。
【課題を解決するための手段】
【0009】
実施形態によれば、ウェーハマッピング装置が提供される。ウェーハマッピング装置は、照明光学系と、第1の撮像部と、第2の撮像部と、格納状態検出部と、を備えている。前記照明光学系は、半導体基板を格納している格納容器が載置台に載置された状態で前記半導体基板の側面の長手方向に対して垂直に交わる線状スリット光を、前記格納容器の開口部側から各半導体基板の側面の複数箇所に照射する。前記第1の撮像部は、第1の位置に配置されるとともに、前記線状スリット光が照射されている半導体基板の側面を撮像する。前記第2の撮像部は、第2の位置に配置されるとともに、前記線状スリット光が照射されている半導体基板の側面を撮像する。前記格納状態検出部は、前記第1の撮像部で撮像された第1の撮像画像および前記第2の撮像部で撮像された第2の撮像画像の少なくとも一方を用いて、前記半導体基板の格納容器内での格納状態を検出する。さらに、前記格納状態検出部は、前記第1の撮像画像および前記第2の撮像画像の両方が撮像されている場合には、前記第1の撮像画像および前記第2の撮像画像の両方を用いて三角測量方法で前記半導体基板の前記格納容器からの飛び出し量を算出する。また、前記格納状態検出部は、前記第1の撮像画像および前記第2の撮像画像の何れか一方のみが撮像されている場合には、撮像された撮像画像に基づいて、前記線状スリット光の反射光が画像面上で結像する結像位置と、前記結像位置の基準位置と、を比較することにより、前記半導体基板が前記格納容器から飛び出しているか否かを判定する。
【図面の簡単な説明】
【0010】
【図1】図1は、実施形態に係る半導体製造装置の一例を示す上面図である。
【図2】図2は、ウェーハロード機構とウェーハマッピング機構の構成例を示す斜視図である。
【図3】図3は、ウェーハマッピング装置の構成を示すブロック図である。
【図4】図4は、ウェーハマッピングの処理手順を示すフローチャートである。
【図5】図5は、カメラの配置位置とウェーハの測定位置との関係を示す図である。
【図6】図6は、カメラ画像の取得処理を説明するための図である。
【図7】図7は、測定ポイントの抽出処理を説明するための図である。
【図8】図8は、ウェーハ有無情報とクロススロット情報の取得処理を説明するための図である。
【図9】図9は、カメラの配置例を説明するための図である。
【図10】図10は、三角測量を用いたウェーハの飛び出し距離算出方法を説明するための図である。
【図11】図11は、一方のカメラが故障した場合のウェーハの飛び出し有無判定処理を説明するための図である。
【図12】図12は、半導体製造装置の動作タイミングを示す図である。
【図13】図13は、ウェーハロード機構に複数のFOUPがセットされる場合のカメラの配置例を示す図である。
【図14】図14は、ウェーハマッピング装置のハードウェア構成を示す図である。
【図15】図15は、実施形態に係る半導体製造装置の他の構成例を示す上面図である。
【発明を実施するための形態】
【0011】
以下に添付図面を参照して、実施形態に係るウェーハマッピング装置およびウェーハマッピング方法を詳細に説明する。なお、この実施形態により本発明が限定されるものではない。
【0012】
(実施形態)
図1は、実施形態に係る半導体製造装置の一例を示す上面図である。半導体製造装置100Xは、例えば、ドライエッチング装置などの枚様式装置であり、半導体製造設備内などに配置される。
【0013】
半導体製造装置100Xは、概略円板状をなすウェーハWのFOUP(Front-Opening Unified Pod)8内での格納状態を検出する。そして、半導体製造装置100Xは、ウェーハWの格納状態(ウェーハマッピングに関する情報)を示す情報として、ウェーハ有無情報、クロススロット情報、ウェーハ飛び出し情報を生成する。ウェーハ有無情報は、FOUP8内にウェーハWが格納されているか否かを示す情報である。クロススロット情報は、ウェーハWがFOUP8内のスロットに対して斜め方向に格納されているか否かを示す情報である。ウェーハ飛び出し情報は、FOUP8から飛び出しているウェーハWの飛び出し距離が許容範囲内であるか否かを示す飛び出し判定情報と、ウェーハWがFOUP8内からどれだけの距離だけ飛び出しているかを示す飛び出し距離情報と、である。
【0014】
本実施形態の半導体製造装置100Xは、2台のカメラ2L,2Rによって、FOUP8内におけるウェーハWの格納状態を検出するとともに、一方のカメラが故障した場合には、他方のカメラでウェーハWの格納状態を検出する。
【0015】
半導体製造装置100Xは、2台のカメラ2L,2RによってウェーハWの格納状態を検出する場合(通常状態の場合)には、ウェーハ飛び出し情報としてウェーハWがFOUP8内からどれだけの距離だけ飛び出しているかを検出する。また、半導体製造装置100Xは、カメラ2L,2Rの何れか一方によってウェーハWの格納状態を検出する場合(異常状態の場合)には、ウェーハ飛び出し情報としてウェーハWがFOUP8内から飛び出しているか否かを検出する。
【0016】
半導体製造装置100Xは、ウェーハロード機構3と、ウェーハマッピング機構1Xと、プロセス処理機構5と、制御装置30Xと、を備えて構成されている。ウェーハロード機構3は、搬送ロボット4と、FOUP載置台7と、を有している。
【0017】
FOUP8は、ウェーハ(半導体基板)Wを搬送する際にウェーハWが格納されるキャリアである。FOUP8内のウェーハWに対して、プロセス処理機構5でエッチングなどの処理を行う際には、FOUP8がFOUP載置台(ロードポート)7に載置される。各ウェーハWは、ウェーハWの中心が同軸方向に並び且つウェーハWの各主面が略等間隔で平行方向に並ぶようFOUP8内に格納される。換言すると、ウェーハWはFOUP8内で同軸方向に並ぶよう積載される。そして、プロセス処理機構5でウェーハ処理される際には、各ウェーハWの主面が水平方向となるよう、FOUP8がFOUP載置台7に載置される。半導体製造装置100Xでは、FOUP8がFOUP載置台7に載置された後、FOUP8内におけるウェーハWの格納状態を検出する。
【0018】
搬送ロボット4は、FOUP8内のウェーハWを1枚ずつ順番にプロセス処理機構5に搬送するとともに、プロセス処理機構5でエッチングなどが終わったウェーハWを1枚ずつ順番にFOUP8内に搬送する。搬送ロボット4は、ロボットアーム41を備えており、ロボットアーム41上にウェーハWを載せた状態で、プロセス処理機構5とFOUP8との間でウェーハWの搬送を行う。
【0019】
ウェーハマッピング機構1Xは、ウェーハマッピング装置10Xと、2台のカメラ2L,2Rと、3台の照明光学系9A,9B,9Cと、を有している。照明光学系9A〜9Cは、それぞれ、FOUP8内のウェーハWに光(後述するスリットライト)を照射する機能を有しており、照明機器やレンズ等を備えている。照明光学系9A〜9Cは、カメラ2L,2Rが画像を撮像する際に、ウェーハWの側面に対してスリットライトを照射する。照明光学系9A,9B,9Cは、それぞれFOUP8内に格納されているウェーハWの側面(周縁部)の左側、中央部、右側にスリットライトを照射する。なお、1つの照明装置によって3つの照明光学系9A〜9Cを構成してもよいし、各照明光学系9A〜9Cを別々の構成としてもよい。
【0020】
カメラ2Lは、ウェーハWの側面を左側から撮像し、カメラ2Rは、ウェーハWの側面を右側から撮像する。カメラ2L,2Rは、ウェーハWの側面を撮像することにより、ウェーハWからの反射光を撮像する。
【0021】
ウェーハマッピング装置10Xは、カメラ2L,2Rが撮像した画像(反射光の位置)を用いて、ウェーハWのFOUP8内での格納状態を判定するコンピュータなどである。ウェーハマッピング装置10Xは、ウェーハWの格納状態(ウェーハマッピング結果)を、制御装置30Xに送る。
【0022】
プロセス処理機構5は、搬出入部38と、3つのプロセスチャンバ35〜37と、を有している。搬出入部38へは、搬送ロボット4によってFOUP8から取り出されたウェーハWが搬入される。
【0023】
搬出入部38は、室内の真空引きを行う真空引き部(図示せず)と、ウェーハWをプロセスチャンバ35〜37の何れかに搬送する真空側搬送ロボット(図示せず)と、を備えている。
【0024】
搬出入部38へ搬入されたウェーハWは、搬出入部38でAir Lockされ、真空引き部によって真空引きされるとともに、真空側搬送ロボットによってプロセスチャンバ35〜37の何れかに搬送される。プロセスチャンバ35〜37でエッチングなどが終わったウェーハWは、真空側搬送ロボットによって搬出入部38に送られ、搬送ロボット4によって搬出入部38からFOUP8に戻される。
【0025】
制御装置30Xは、ウェーハロード機構3、ウェーハマッピング機構1X、プロセス処理機構5を制御するコンピュータなどである。制御装置30Xは、FOUP8がFOUP載置台7に載置されたことをセンサ(図示せず)などによって検出すると、ウェーハマッピング機構1Xにウェーハマッピングの実行を指示する。具体的には、制御装置30Xは、照明光学系9A〜9Cに対し、照明光(スリットライト)の照射を指示する。これにより、照明光学系9A〜9CからのスリットライトがウェーハWの側面に照射される。
【0026】
また、制御装置30Xは、カメラ2L,2Rに対し、画像の撮像を指示する。これにより、カメラ2L,2Rは、全ウェーハWの側面を撮像する。また、制御装置30Xは、ウェーハマッピング装置10Xに対し、カメラ2L,2Rで撮像された画像に基づいたウェーハマッピングを行うよう指示する。
【0027】
また、制御装置30Xは、ウェーハマッピング機構1Xによるウェーハマッピング結果に基づいて、搬送ロボット4を制御する。例えば、ウェーハWがFOUP8から所定の距離だけ飛び出している場合には、この飛び出し距離に応じた位置にあるウェーハWを取り出すよう、搬送ロボット4に指示を送る。
【0028】
図2は、ウェーハロード機構とウェーハマッピング機構の構成例を示す斜視図である。なお、図2では、ウェーハマッピング装置10Xと制御装置30Xとを1つのコンピュータで構成した場合を示している。また、カメラ2L,2Rとコンピュータ(ウェーハマッピング装置10X、制御装置30X)との接続や、搬送ロボット4とコンピュータとの接続の図示を省略している。
【0029】
ウェーハマッピング機構1Xでは、例えば、カメラ2L,2Rの頭上または、その近傍に照明光学系9A,9B,9Cが、FOUP8と対面するよう配置されている。例えば、カメラ2Lと照明光学系9Aとの組と、カメラ2Rと照明光学系9Cとの組と、がFOUP8に対して左右対称となるよう、カメラ2L,2R、照明光学系9A,9Cが配置される。そして、カメラ2Lとカメラ2Rとの間(左右対称の対称軸上)に、照明光学系9Bが配置される。
【0030】
本実施形態では、ウェーハロード機構3によるウェーハWの搬送とは独立して、ウェーハマッピング機構1XがウェーハWのウェーハマッピングを行う。このため、本実施形態の搬送ロボット4は、ウェーハWの搬送に専念することができ、ウェーハマッピングのための動作を行う必要がない。
【0031】
ウェーハWのロード処理は、ウェーハマッピング機構1Xによるウェーハマッピング結果に基づいて行われる。例えば、FOUP8内にウェーハWが格納されていると判定されたスロットからウェーハWを取り出すよう、搬送ロボット4を動作させる。
【0032】
図3は、ウェーハマッピング装置の構成を示すブロック図である。ウェーハマッピング装置10Xは、画像入力部11、ウェーハ検出方法判定部12、測定ポイント抽出部13、ウェーハ有無判定部15、クロススロット判定部16、ウェーハ飛び出し距離算出部17、ウェーハ飛び出し判定部18、ウェーハマッピング結果出力部19、設定情報入力部20、基準画素位置記憶部21を備えている。
【0033】
画像入力部11は、カメラ2L,2Rから送られてくる画像を入力して、ウェーハ検出方法判定部12、測定ポイント抽出部13に送る。ウェーハ検出方法判定部12は、カメラ2L,2Rから送られてくる画像に基づいて、カメラ2L,2Rが故障しているか否かを判定する。ウェーハ検出方法判定部12は、例えば、カメラ2Lからの画像が送られてこない場合にカメラ2Lが故障していると判定し、カメラ2Rからの画像が送られてこない場合にカメラ2Rが故障していると判定する。ウェーハ検出方法判定部12は、カメラ2L,2Rの一方が故障している場合に、故障しているカメラ2L,2Rを示す故障情報を測定ポイント抽出部13に送る。
【0034】
測定ポイント抽出部13は、カメラ2L,2Rから送られてくる画像からウェーハWの位置を示す画像(測定ポイント)を抽出する。測定ポイント抽出部13は、抽出した測定ポイントの位置をウェーハ有無判定部15、クロススロット判定部16に送る。
【0035】
また、測定ポイント抽出部13は、ウェーハ検出方法判定部12から故障情報を受け取っていない場合(カメラ2L,2Rが故障していない場合)に、測定ポイントの位置をカメラ2L,2Rに対応付けして、ウェーハ飛び出し距離算出部17に送る。この場合の測定ポイントの位置は、カメラ2Lからの画像に基づいて検出した位置と、カメラ2Rからの画像に基づいて検出した位置と、の両方である。
【0036】
また、測定ポイント抽出部13は、ウェーハ検出方法判定部12から故障情報を受け取った場合(カメラ2L,2Rの何れか一方が故障している場合)に、故障していないカメラの画像から抽出した測定ポイントの位置と、故障情報と、をウェーハ飛び出し判定部18に送る。この場合の測定ポイントの位置は、故障していないカメラからの画像に基づいて検出した位置である。
【0037】
設定情報入力部20は、測定ポイントの基準位置を入力して、基準画素位置記憶部21に記憶させる。測定ポイントの基準位置は、FOUP8内の正常位置にウェーハWが格納されている場合(飛び出しが無い場合)にカメラ2L,2Rで検出される測定ポイントの画素位置(以下、基準画素位置という)である。例えば、予めウェーハWをFOUP8内の正常位置に格納させた状態で実際に測定ポイントの位置を検出し、この検出結果を基準画素位置として設定しておく。基準画素位置としては、カメラ2L用の基準画素位置と、カメラ2R用の基準画素位置と、を設定しておく。なお、基準画素位置は、照明光学系9A〜9Cからのスリットライトの照射方向、カメラ2L,2Rの配置位置、ウェーハWの正常位置などに基づいて算出してもよい。基準画素位置記憶部21は、基準画素位置を記憶するメモリなどである。
【0038】
ウェーハ有無判定部15は、少なくとも一方の測定ポイントの位置に基づいて、FOUP8内にウェーハWが格納されているか否かをスロット毎に判定する。ウェーハ有無判定部15は、判定結果をウェーハ有無情報として、ウェーハマッピング結果出力部19に送る。
【0039】
クロススロット判定部16は、少なくとも一方の測定ポイントの位置に基づいて、ウェーハWがFOUP8内のスロットに対して斜め方向に格納されているか否かをウェーハW毎に判定する。クロススロット判定部16は、判定結果をクロススロット情報として、ウェーハマッピング結果出力部19に送る。
【0040】
ウェーハ飛び出し距離算出部17は、カメラ2L,2Rを用いて検出された測定ポイントの各位置に基づいて、ウェーハWがFOUP8内からどれだけの距離だけ飛び出しているかを飛び出し距離情報として算出する。ウェーハ飛び出し距離算出部17は、飛び出し距離情報をウェーハ飛び出し判定部18に送る。
【0041】
ウェーハ飛び出し判定部18は、ウェーハ飛び出し距離算出部17から飛び出し距離情報を受信した場合には、飛び出し距離の閾値(画素間距離の閾値)と、算出された飛び出し距離(検出した画素間距離)とを比較することにより、飛び出し距離が許容範囲内であるか否かを判定する。飛び出し距離の閾値は、例えば基準画素位置記憶部21などに格納しておく。
【0042】
飛び出し距離が許容範囲内である場合、ウェーハ飛び出し判定部18は、飛び出し距離が許容範囲内であることを示す飛び出し判定情報と、飛び出し距離情報と、をウェーハ飛び出し情報としてウェーハマッピング結果出力部19に送る。
【0043】
飛び出し距離が許容範囲外である場合、ウェーハ飛び出し判定部18は、飛び出し距離が許容範囲外であることを示す飛び出し判定情報をウェーハ飛び出し情報としてウェーハマッピング結果出力部19に送る。
【0044】
また、ウェーハ飛び出し判定部18は、測定ポイント抽出部13から測定ポイントの位置を受信した場合、測定ポイントの位置と基準画素位置とを比較し、位置の差分を算出する。ウェーハ飛び出し判定部18は、算出した位置の差分と、位置差分の閾値と、を比較することにより、測定ポイントの位置が許容範囲内であるか否かを判定する。位置差分の閾値は、例えば基準画素位置記憶部21などに格納しておく。
【0045】
ウェーハ飛び出し判定部18は、測定ポイントの位置が許容範囲内であるか否かに基づいて、ウェーハWが飛び出しているか否かを判定する。ウェーハ飛び出し判定部18は、測定ポイントの位置が許容範囲内でない場合に、ウェーハWが飛び出していると判定し、許容範囲内である場合に、ウェーハWが飛び出していないと判定する。
【0046】
ウェーハマッピング結果出力部19は、ウェーハ有無情報、クロススロット情報、ウェーハ飛び出し情報を、制御装置30Xに送る。なお、ウェーハマッピング装置10Xが液晶モニタなどの表示装置を備えている場合には、ウェーハ有無情報、クロススロット情報、ウェーハ飛び出し情報を表示装置に表示させてもよい。
【0047】
制御装置30Xは、ウェーハロード機構3を制御するロード制御部31と、プロセス処理機構5を制御するプロセス制御部32と、ウェーハマッピング機構1Xを制御するマッピング制御部33と、を有している。
【0048】
ロード制御部31は、ウェーハ有無情報、クロススロット情報、ウェーハ飛び出し情報に基づいて、ウェーハWのロードに関する制御(搬送ロボット4の移動および停止、搬送の中止)を行う。
【0049】
ロード制御部31は、ウェーハ取り出し位置制御部34を有している。ウェーハ取り出し位置制御部34は、ウェーハ飛び出し情報内の飛び出し距離情報に基づいて、飛び出し距離の位置にあるウェーハWを取り出すよう、搬送ロボット4に指示を送る。
【0050】
図4は、ウェーハマッピングの処理手順を示すフローチャートである。プロセス処理機構5でエッチングなどの処理を行う際には、FOUP8がFOUP載置台7に載置される。制御装置30Xは、FOUP8がFOUP載置台7に載置されたことをセンサなどによって検出すると、マッピング制御部33からウェーハマッピング機構1Xにウェーハマッピングの実行を指示する。これにより、照明光学系9A〜9CからのスリットライトがウェーハWの側面に照射される。そして、カメラ2L,2Rは、ウェーハWの側面を撮像し、これによりカメラ画像(ウェーハ画像)が取得される(ステップS10)。
【0051】
ウェーハマッピング装置10Xの画像入力部11は、カメラ2L,2Rから送られてくる画像を入力して、ウェーハ検出方法判定部12、測定ポイント抽出部13に送る。ウェーハ検出方法判定部12は、カメラ2L,2Rから画像が送られてくるか否かに基づいて、カメラ2L,2Rが故障しているか否かを判定する。ウェーハ検出方法判定部12は、カメラ2L,2Rの一方が故障している場合には、故障していない他方のカメラでウェーハマッピングを行う(ウェーハ飛び出し距離を算出しない)と判断する。また、ウェーハ検出方法判定部12は、カメラ2L,2Rが両方とも故障していない場合には、両方のカメラ2L,2Rでウェーハマッピングを行う(ウェーハ飛び出し距離を算出する)と判断する。これにより、ウェーハWの格納状態の検出方法が判定される(ステップS20)。
【0052】
ウェーハ検出方法判定部12は、カメラ2L,2Rの少なくとも一方が故障している場合に、故障しているカメラ2L,2Rを示す故障情報を測定ポイント抽出部13に送る。測定ポイント抽出部13は、カメラ2L,2Rから送られてくるカメラ画像から測定ポイントを抽出する(ステップS30)。測定ポイント抽出部13は、抽出した測定ポイントの位置をウェーハ有無判定部15、クロススロット判定部16に送る。
【0053】
また、測定ポイント抽出部13は、ウェーハ検出方法判定部12から故障情報を受け取っていない場合に、カメラ2Lに対応する測定ポイントの位置と、カメラ2Rに対応する測定ポイントの位置と、をウェーハ飛び出し距離算出部17に送る。このとき、各測定ポイントの位置が、何れのカメラ2L,2Rで撮像されたものであるかを区別できるよう、測定対象ポイントとカメラ2L,2Rとを対応付けしてウェーハ飛び出し距離算出部17に送られる。
【0054】
一方、測定ポイント抽出部13は、ウェーハ検出方法判定部12から故障情報を受け取った場合に、故障していないカメラの画像から抽出した測定ポイントの位置と、故障情報と、をウェーハ飛び出し判定部18に送る。
【0055】
ウェーハ有無判定部15は、測定ポイントの位置に基づいて、FOUP8内にウェーハWが格納されているか否か(ウェーハWの有無)をスロット毎に判定する(ステップS40)。ウェーハ有無判定部15は、判定結果をウェーハ有無情報として、ウェーハマッピング結果出力部19に送る。
【0056】
クロススロット判定部16は、測定ポイントの位置に基づいて、ウェーハWがFOUP8内のスロットに対して斜め方向に格納されているか否か(クロススロット)をウェーハW毎に判定する(ステップS50)。クロススロット判定部16は、判定結果をクロススロット情報として、ウェーハマッピング結果出力部19に送る。
【0057】
ウェーハ飛び出し距離算出部17が、測定ポイント抽出部13から測定ポイントの位置を受信した場合、ウェーハ飛び出し距離算出部17は、カメラ2L,2Rが故障していないと判断する(ステップS60、No)。この場合、ウェーハ飛び出し距離算出部17は、カメラ2L,2Rを用いて検出された測定ポイントの各位置に基づいて、ウェーハWの飛び出し距離として飛び出し距離情報を算出する(ステップS70)。ウェーハ飛び出し距離算出部17は、飛び出し距離情報をウェーハ飛び出し判定部18に送る。
【0058】
ウェーハ飛び出し判定部18は、ウェーハ飛び出し距離算出部17から飛び出し距離情報を受信し、故障情報を受信していない場合には、飛び出し距離の閾値と、算出された飛び出し距離とを比較することにより、飛び出し距離が許容範囲内であるか否かを判定する(ステップS80)。
【0059】
飛び出し距離が許容範囲内である場合、ウェーハ飛び出し判定部18は、飛び出し距離が許容範囲内であることを示す飛び出し判定情報と、飛び出し距離情報と、をウェーハ飛び出し情報としてウェーハマッピング結果出力部19に送る。
【0060】
飛び出し距離が許容範囲外である場合、ウェーハ飛び出し判定部18は、飛び出し距離が許容範囲外であることを示す飛び出し判定情報をウェーハ飛び出し情報としてウェーハマッピング結果出力部19に送る。
【0061】
一方、ウェーハ飛び出し判定部18が、測定ポイント抽出部13から測定ポイントの位置と、故障情報と、を受信した場合、ウェーハ飛び出し判定部18は、カメラ2L,2Rの何れかが故障していると判断する(ステップS60、Yes)。この場合、ウェーハ飛び出し判定部18は、測定ポイントの位置と、基準画素位置と、を比較する(ステップS90)。ウェーハ飛び出し判定部18は、カメラ2Lが故障している場合(故障情報でカメラ2Lが指定されている場合)には、カメラ2Rの基準画素位置と、カメラ2Rから取得した測定ポイントの位置と、を比較する。また、ウェーハ飛び出し判定部18は、カメラ2Rが故障している場合(故障情報でカメラ2Rが指定されている場合)には、カメラ2Lの基準画素位置と、カメラ2Lから取得した測定ポイントの位置と、を比較する。
【0062】
これにより、ウェーハ飛び出し判定部18は、故障情報で示されていないカメラを用いて検出された測定ポイントの位置と、基準画素位置と、に基づいて、ウェーハWの飛び出し判定を行う(ステップS80)。具体的には、ウェーハ飛び出し判定部18は、測定ポイントの位置と基準画素位置とを比較し、位置の差分を算出する。そして、ウェーハ飛び出し判定部18は、算出した位置の差分と、位置差分の閾値と、を比較することにより、測定ポイントの位置が許容範囲内であるか否かを判定する。ウェーハ飛び出し判定部18は、測定ポイントの位置が許容範囲内であるか否かに基づいて、ウェーハWが飛び出しているか否かを判定する。
【0063】
ウェーハマッピング結果出力部19は、ウェーハ有無情報、クロススロット情報、ウェーハ飛び出し情報を、ウェーハマッピング結果として制御装置30Xに出力する(ステップS100)。制御装置30Xのロード制御部31は、ウェーハ有無情報、クロススロット情報、ウェーハ飛び出し情報に基づいて、ウェーハWのロードに関する制御を行う。
【0064】
具体的には、ウェーハ有無情報で、FOUP8内にウェーハWが格納されていると判定されたスロットからウェーハWが取り出される。また、クロススロット情報で、ウェーハWがFOUP8内のスロットに対して斜め方向に格納されている(複数のスロットに跨って格納されている)と判定された場合には、ウェーハマッピング装置10Xなどからエラー出力などが行われる。また、ウェーハ飛び出し情報で、FOUP8からウェーハWが飛び出していると判定された場合には、ウェーハWの飛び出し距離が許容範囲内であれば、ウェーハWの飛び出し距離に応じたウェーハWの取り出し処理が行われる。具体的には、ウェーハ取り出し位置制御部34は、ウェーハ飛び出し情報内の飛び出し距離情報に基づいて、飛び出し距離の位置にあるウェーハWを取り出すよう、搬送ロボット4に指示を送る。また、ウェーハWの飛び出し距離が許容範囲外である場合には、ウェーハマッピング装置10Xなどからエラー出力などが行われる。
【0065】
つぎに、ウェーハWの格納状態の検出方法(ウェーハ有無情報、クロススロット情報、ウェーハ飛び出し情報の算出方法)について説明する。本実施形態では、ウェーハ飛び出し情報の飛び出し距離情報を算出する際に、三角測量の原理を用いる。このため、半導体製造装置100Xは、2台のカメラ2L,2Rを備えている。
【0066】
図5は、カメラの配置位置とウェーハの測定位置との関係を示す図である。図5では、三角測量の幾何学配置を示している。半導体製造装置100Xでは、2台のカメラ2L,2Rがカメラ間距離dだけ離れた位置に平行配置される。図5では、カメラ2L,2Rの代わりに、左カメラ視野Clと右カメラ視野Crを図示している。図5において、FOUP8の開放面(ウェーハWの取り出し口の面)のうち横方向をX方向、縦方向をY方向で示し、FOUP8の奥行き方向をZ方向で示している。したがって、左カメラ視野Clと右カメラ視野Crは、ともにXY平面と平行な方向を向いている。
【0067】
図2に示したように、カメラ2L,2Rの頭上または、その近傍に照明光学系9A〜9Cが、FOUP8と対面するよう配置されている。照明光学系9A〜9Cは、例えばLED照明と長方形のスリットマスクを用いて構成されている。長方形のスリットマスクは、長方形の照明光をウェーハWの側面に照射するためのマスクであり、長方形の長手方向がウェーハWの積み重ね方向(鉛直方向)である。
【0068】
照明光学系9A〜9Cから出射された照明光は、スリットライト(線状スリット光である格子状ライト光)として、それぞれウェーハWの側面の左側、中央、右側に照射される。照明光学系9Aからのスリットライトは、ウェーハWの測定対象ポイントPのうち、ウェーハWの左側の測定対象ポイント26Aに照射される。同様に、照明光学系9Bからのスリットライトは、ウェーハWの中央の測定対象ポイント26Bに照射され、照明光学系9Cからのスリットライトは、ウェーハWの右側の測定対象ポイント26Cに照射される。
【0069】
そして、各測定対象ポイントPでスリットライトが反射されて、焦点距離fの位置にある左カメラ視野Clと右カメラ視野Crに入射する。例えば、測定対象ポイントP(X,Y,Z)での反射光25Lは、左カメラ視野Clで測定ポイントPl(Xl,Yl,Zl)として検出され、測定対象ポイントP(X,Y,Z)での反射光25Rは、右カメラ視野Crで測定ポイントPr(Xr,Yr,Zr)として検出される。
【0070】
つぎに、ウェーハWの格納状態検出手順について説明する。ウェーハWの格納状態検出処理は、以下の1〜4の順番で行われる。
1.予めレンズ収差による測定誤差を排除するため、各カメラ2L,2Rを補正しておく。
2.照明光学系9A〜9Cから、FOUP8内のウェーハW円周部の接線方向に対してスリットライトが垂直に重なるように照射する。この時、ウェーハWに照射されたスリットライトの内、各ウェーハWの外周部分から反射された光と周辺の様子が、左カメラ視野Clと右カメラ視野Crで結像される。
3.これらのカメラ画像を2値化処理した後、ウェーハW外周部で反射した光の部分(画像)のみを抽出し、測定対象ポイントの位置(測定ポイントPl,Pr)とする。
4.この時に得られるカメラ画像から、FOUP8内のウェーハWの配置(飛び出し距離)を三角測量で測定する。
【0071】
つぎに、画像処理を用いた三角測量方法について説明する。画像処理を用いた三角測量方法では、(1)カメラ画像の取得、(2)測定ポイントの抽出、(3)ウェーハ格納情報の取得、の順番で各処理が行われる。
【0072】
(1)カメラ画像の取得
カメラ画像の取得は、FOUP8内の各ウェーハWに照明光学系9A〜9Cから複数個のスリットライトを照射した際に得られる画像を取得することによって行われる。図6は、カメラ画像の取得処理を説明するための図である。図6の(a)では、ウェーハWとスリットライト51とを示しており、図6の(b)では、カメラ画像に設定される反射光検出領域を示している。
【0073】
図6の(a)では、FOUP8の開放面(開口部)側から見たウェーハW(側面)を示している。FOUP8を開放面側から見た場合、それぞれのウェーハWは、各主面が対向するようFOUP8内に格納されている。カメラ画像を取得する際には、ウェーハWの側面の長手方向とスリットライト51A〜51Cの長手方向が垂直になるよう、スリットライト51A〜51CがウェーハWに照射される。スリットライト51A〜51Cは、それぞれ照明光学系9A〜9Cから出射された照明光であり、それぞれウェーハWの側面の左側、中央部、右側を照射する。
【0074】
ウェーハWでは外周部分(測定対象ポイントP)に当たった光のみが反射され、図6の(b)に示すように、カメラ画像として、ウェーハW上の測定対象ポイントに対する測定ポイント53Pが撮像される。なお、ここでの測定ポイント53Pが、図65に示した測定ポイントPl,Prの何れかに対応している。
【0075】
ウェーハWでは、毎回決まった範囲で反射が起こるので、カメラ視野Cl,Crの中で反射光の結像が期待される領域を検出領域52A〜52Cに設定しておく。検出領域52A〜52Cは、それぞれスリットライト51A〜51Cの反射光が検出される領域である。これにより、検出領域52Aには、各ウェーハWの側面の左側にある測定対象ポイントPに対する測定ポイント53Pが撮像される。同様に、検出領域52B,52Cには、各ウェーハWの側面の中央、右側にある測定対象ポイントPに対する測定ポイント53Pが撮像される。
【0076】
(2)測定ポイントの抽出
取得したカメラ画像は、測定ノイズまたは測定物(測定対象ポイントP)周辺からの拡散反射光を含んでいるので、そのままの状態で三角測量によるウェーハWの格納状態を検出することは困難である。そのため、本実施形態では、取得したデータ(カメラ画像)から、測定ポイント抽出部13が、測定ポイント53Pの2値化・強調処理を行う。
【0077】
図7は、測定ポイントの抽出処理を説明するための図である。図7の(a)では、カメラ画像として、測定ポイント53Pの画像と、測定ノイズ55の画像と、を示している。カメラ画像内の各カメラ画素54は、例えば256階調またはそれ以上の濃淡値で表されている。このため、各カメラ画素54に対して閾値以下の濃淡値を0にし、閾値以上の濃淡値を最大値(256など)に補正する2値化・強調処理を、測定ポイント抽出部13がカメラ画像に行なう。これにより、ノイズが除去され、測定ポイント53Pが強調されるので、測定ポイント抽出部13は、強調された測定ポイントを抽出する。
【0078】
図7(b)は、2値化・強調処理後のカメラ画像を示している。2値化・強調処理後のカメラ画像では、検出領域52A〜52C内に、各ウェーハWの測定ポイント53Pが表示されることとなる。
【0079】
(3)ウェーハ格納情報の取得
ウェーハ格納情報は、ウェーハWの積載に関する情報(Mapping処理で得られる情報)であり、(3−1)ウェーハ有無情報、(3−2)クロススロット情報、(3−3)ウェーハ飛び出し情報を含んでいる。
【0080】
(3−1)ウェーハ有無情報と(3−2)クロススロット情報の取得方法
図8は、ウェーハ有無情報とクロススロット情報の取得処理を説明するための図である。図8の(a)は、ウェーハ有無情報の取得処理を説明するための図であり、図8の(b)は、クロススロット情報の取得処理を説明するための図である。
【0081】
各スロット内のウェーハWの有無の確認は、2値化・強調処理されたカメラ画像に対して行われる。例えば、ウェーハ有無判定部15は、所定間隔Lで並ぶスロット毎に判定領域を設定する。図8の(a)では、スロット番号(N5)に対する判定領域61を示している。ウェーハ有無判定部15は、FOUP8内の全てのスロット(スロット番号(N1)〜(N25))に対して、判定領域61を設定し、各判定領域61を走査する。そして、ウェーハ有無判定部15は、判定領域61の中で3つの光点を横一列で検出できたか否かを、ウェーハ有無判定条件として、スロット毎にウェーハ有無を判定する。
【0082】
このとき、ウェーハ有無判定部15は、スリットライトの照射幅を考慮し、一定の面積をもつ反射点のみを測定ポイント53Pの認識対象としてもよい。これにより、2値化・強調処理で取り除けなかったノイズを測定対象から除去できる。
【0083】
なお、正常な格納状態のウェーハWを撮像することによって得られるカメラ画像を、基準となるカメラ画像に設定しておき、この基準となるカメラ画像と、撮像されたカメラ画像と、をパターンマッチングすることによって、ウェーハ有無を判定してもよい。
【0084】
また、クロススロット判定部16は、ウェーハWがFOUP8内のスロットに対して斜め方向に格納されているか否か(クロススロット)を判定する。図8の(b)に示すように、クロススロットがある場合に判定領域61内を走査すると、右側と左側の何れか一方のみに測定ポイント53Pが現れる。このため、クロススロット判定部16は、右側と左側の何れか一方のみから測定ポイント53Pを検出した場合に、このスロット番号の組み合わせでクロススロットを検出する。
【0085】
例えば、図8の(b)の場合、スロット番号(N11)において、右側から測定ポイント53Pが検出され、左側からは測定ポイント53Pが検出されない。また、スロット番号(N10)において、左側から測定ポイント53Pが検出され、右側からは測定ポイント53Pが検出されない。このため、クロススロット判定部16は、スロット番号(N10)のスロットとスロット番号(N11)のスロットとの間でクロススロットが発生していることを検出する。
【0086】
(3−3)ウェーハ飛び出し情報の取得
ウェーハ飛び出し距離算出部17は、各スロット内のウェーハ飛び出し情報を算出するために、三角測量方法を用いる。三角測量方法を適用するにあたり、半導体製造装置100Xでは、カメラ2L,2Rを所定の位置に配置しておく必要がある。
【0087】
図9は、カメラの配置例を説明するための図である。図9に示すように、カメラ2Lの画像面が左画像面73Lであり、カメラ2Rの画像面が左画像面73Rである。また、カメラ2Lの光軸が光軸72Lであり、カメラ2Rの光軸が光軸72Rである。また、カメラ2Lの光学中心が光学中心74Lであり、カメラ2Rの光学中心が光学中心74Rである。そして、光学中心74Lと光学中心74Rとを結ぶ線が、ベースラインとなる。
【0088】
本実施形態では、三角測量方法を用いてウェーハWの飛び出し距離を算出するため、仕様が一致するカメラ2L,2Rを2台配置し、且つ光軸72L,72Rが平行となるようカメラ2L,2Rを配置し、且つ光学中心74L,74RがX方向に距離dだけ離れるようカメラ2L,2Rを配置する。
【0089】
この場合において、カメラ2L側のエピポーラ線がエピポーラ線75Lであり、カメラ2R側のエピポーラ線がエピポーラ線75Rである。そして、光学中心74Lと、光学中心74Rと、測定対象ポイントPと、を結ぶ平面がエピポーラ平面76となる。
【0090】
つぎに、三角測量を用いたウェーハWの飛び出し距離算出方法について説明する。図10は、三角測量を用いたウェーハの飛び出し距離算出方法を説明するための図である。ここでは、ウェーハW上の測定対象ポイントP(x、z)に対し、ウェーハWの飛び出し距離を算出する場合について説明する。ウェーハ位置zの算出は、1つの測定対象ポイントPに対して、2台のカメラ視野それぞれで見たときのカメラ座標から算出する。
【0091】
図10では、カメラ2L,2Rの光学中心を、光学中心O,O’で示し、光軸とカメラ2L,2Rの画像面との交点を中心点Oi,Oi’で示している。また、測定対象ポイントPと光学中心Oとを結ぶ線と,カメラ2Lの画像面と、の交点が画素位置Lであり、画素位置Lから中心点Oiまでの距離がxlである。同様に、測定対象ポイントPと光学中心O’とを結ぶ線と,カメラ2Rの画像面と、の交点が画素位置Rであり、画素位置Rから中心点Oi’までの距離が−xrである。
【0092】
また、光学中心O,O’を結ぶ線(ベースライン)からカメラ2L,2Rの画像面までの距離が焦点距離fである。そして、カメラ2L,2Rの画像面から見たウェーハWのZ方向(奥行き方向)の位置がウェーハ位置zである。また、ここでは測定対象ポイントPからX軸方向に延ばした線と、カメラ2Lの光軸が交わる点をPzで示している。
【0093】
この場合において、ΔPLR∽ΔPOO’である。したがって、以下の関係が成り立つ。すなわち、ΔPLR∽ΔPOO’から関係式(A)が成立し、関係式(A)から関係式(B)が導出され、関係式(B)から関係式(C)が導出される。
PL/PO=LR/OO’・・・(A)
(PO−LO)/PO=(OO’−OiL−ROi’)/OO’・・・(B)
LO/PO=(xl−xr)/d・・・(C)
【0094】
また、ΔOLOi∽ΔOPPzである。したがって、以下の関係が成り立つ。すなわち、ΔOLOi∽ΔOPPzから関係式(D)が成立し、関係式(D)から関係式(E)が導出される。
LO/PO=OiO/PzO・・・(D)
LO/PO=f/z・・(E)
【0095】
さらに、関係式(C),(E)から、以下の関係が成り立つ。すなわち、関係式(C),(E)から、関係式(F)が成立し、関係式(F)から関係式(G)が導出される。
f/z=(xl−xr)/d・・・(F)
z=fd/(xl−xr)・・・(G)
【0096】
関係式(G)において、視差Dx=xl−xrであり、zが所定値より小さい場合に、ウェーハWはFOUP8から飛び出していると判定される。このように、ウェーハ位置zに基づいて、ウェーハWの飛び出し有無が判定される。
【0097】
制御装置30Xは、ウェーハWがFOUP8から所定の距離だけ飛び出している場合には、ウェーハ位置zに応じた位置にあるウェーハWを取り出すよう、搬送ロボット4に指示を送る。
【0098】
なお、ウェーハWの飛び出し有無を判定する際に、画像上の誤差と距離推定誤差との関係を考慮してもよい。この関係は、距離推定誤差をΔzとした場合に、以下の式(1)、式(2)によって示される。
【0099】
【数1】

【数2】

【0100】
このように、距離推定誤差をΔzは、ウェーハ位置zの2乗に比例し、ベースラインに反比例する。
【0101】
つぎに、カメラ2L,2Rのうちの一方のカメラが故障した場合のウェーハWの飛び出し有無判定処理について説明する。図11は、一方のカメラが故障した場合のウェーハの飛び出し有無判定処理を説明するための図である。なお、ここでは、照明光学系9Bから照射されるスリットライトの図示を省略している。
【0102】
図11において、ウェーハW1は、FOUP8内の正常な位置に格納されているウェーハであり、ウェーハW2は、FOUP8内から所定の距離だけ飛び出しているウェーハである。
【0103】
例えば、照明光学系9Aを、カメラ2Lの左側(図9で説明したエピポーラ平面76の外側)に配置し、照明光学系9Cを、カメラ2Rの右側(図9で説明したエピポーラ平面76の外側)に配置しておく。なお、照明光学系9A,9Cは、カメラ2L,2Rの光軸上以外であれば何れの位置に配置してもよい。
【0104】
これにより、ウェーハW1の場合、照明光学系9Aからのスリットライト27LがウェーハW1の測定対象ポイント81Lで反射されて、左画像面の画素位置83Lで結像される。同様に、ウェーハW1の場合、照明光学系9Cからのスリットライト27RがウェーハW1の測定対象ポイント81Rで反射されて、右画像面の画素位置83Rで結像される。
【0105】
また、ウェーハW2の場合、照明光学系9Aからのスリットライト27LがウェーハW2の測定対象ポイント82Lで反射されて、左画像面の画素位置84Lで結像される。同様に、ウェーハW2の場合、照明光学系9Cからのスリットライト27RがウェーハW2の測定対象ポイント82Rで反射されて、右画像面の画素位置84Rで結像される。
【0106】
このように、ウェーハWの位置がウェーハW1の位置である場合と、ウェーハW2の位置である場合とで、画像面で測定ポイントとなる画素位置がずれる。具体的には、スリットライト27LをウェーハW1,W2に照射した場合、画素位置83Lと画素位置84Lとで画素間距離a1だけずれることとなる。同様に、スリットライト27RをウェーハW1,W2に照射した場合、画素位置83Rと画素位置84Rとで画素間距離a2だけずれることとなる。
【0107】
このため、本実施形態では、画素間距離a1または画素間距離a2に基づいて、ウェーハWの飛び出し有無を判定する。具体的には、予め飛び出し距離の閾値として画素間距離の閾値を設定しておくとともに、基準の画素位置を設定しておく。そして、ウェーハ飛び出し判定部18は、カメラ2L,2Rの何れかによって撮像された画素位置と、基準の画素位置と、を比較することによって画素間距離a1,a2を算出する。さらに、ウェーハ飛び出し判定部18は、画素間距離の閾値と、画素間距離a1,a2に基づいて、飛び出し距離が許容範囲内であるか否かを判定する。
【0108】
画素間距離の閾値と基準の画素位置を設定する際には、ウェーハWがFOUP8から飛び出していない状態となるよう、FOUP8とウェーハWをFOUP載置台7にセットする。その後、照明光学系9A,9Cから照射されたスリットライトが、ウェーハWの円周部接線方向(水平方向)に対して垂直方向に入射した場合の反射光を、カメラ2L,2Rで撮像しておく。ここで撮像された反射光の画素位置が基準の画素位置(テスト画像データの位置)となる。基準の画素位置は、カメラ2L,2R毎に設定しておく。
【0109】
また、飛び出し距離の許容範囲に対応する画素間距離を算出しておく。そして、算出した画素間距離を、画素間距離の閾値に設定する。画素間距離の閾値は、カメラ2L,2R毎に設定しておく。
【0110】
なお、画素間距離の閾値は、他の方法によって設定してもよい。例えば、許容限界の飛び出し位置にウェーハWをセットし、この状態でウェーハWから反射された反射光をカメラ2L,2Rで撮像しておく。ここで撮像された反射光の画素位置が許容限界の画素位置となる。この場合、基準の画素位置と許容限界の画素位置との差を画素間距離の閾値に設定する。
【0111】
ウェーハWの飛び出し有無を判定する際には、画素間距離の閾値を設定した場合と同じ方法によって、カメラ画像を撮像する。具体的には、カメラ2Lが故障した場合には、カメラ2Rでスリットライトの反射光を撮像する。そして、ウェーハ飛び出し判定部18は、撮像した反射光の画素位置と、カメラ2Rに設定しておいた画素間距離の閾値および基準の画素位置と、を用いて、ウェーハWの飛び出し有無を判定する。
【0112】
同様に、カメラ2Rが故障した場合には、カメラ2Lでスリットライトの反射光を撮像する。そして、ウェーハ飛び出し判定部18は、撮像した反射光の画素位置と、カメラ2Lに設定しておいた画素間距離の閾値および基準の画素位置と、を用いて、ウェーハWの飛び出し有無を判定する。
【0113】
なお、ウェーハWの有無判定には検出領域52A〜52Cのうち何れの検出領域の画像を用いてもよい。例えば、カメラ2Lを用いてウェーハWの有無判定を行う場合には、検出領域52Aを用い、カメラ2Rを用いてウェーハWの有無判定を行う場合には、検出領域52Cを用いる。
【0114】
ここで、半導体製造装置100Xの動作タイミングについて説明する。図12は、半導体製造装置の動作タイミングを示す図である。図12では、プロセスチャンバ35〜37、搬出入部38、搬送ロボット4、ウェーハマッピング機構1Xの動作に対するタイミングチャートを示している。
【0115】
搬送ロボット4は、大気側の搬送ロボットであり、FOUP8内のウェーハWをプロセス処理機構5の搬出入部38に搬送する。このウェーハWは、搬出入部38でAir Lockされる。ウェーハWがAir Lockされている間に搬出入部38では真空引きが行われる。この間は、搬送ロボット4による搬出入部38へのウェーハWの搬送は行えない。このため、搬送ロボット4による搬出入部38へのウェーハWの搬送と、搬出入部38でのAir Lock(真空引き)は、交互に行われる。
【0116】
真空引きが完了した後、ウェーハWは、真空側搬送ロボットによって、プロセスチャンバ35〜37の何れかに搬送される。そして、プロセスチャンバ35〜37では、ウェーハWが搬入された後、ウェーハWへのプロセス(ウェーハ処理)が行われる。
【0117】
本実施の形態では、ウェーハマッピングと、ウェーハWの搬送処理と、を独立したタイミングで行っている。このため、ウェーハマッピングは、何れのタイミングで行ってもよい。換言すると、ウェーハWの搬送完了を待つことなくウェーハマッピングが行われ、ウェーハマッピングの完了を待つことなくウェーハWの搬送が行われる。
【0118】
ところで、ウェーハWの搬送中にウェーハマッピングを行えない場合、ウェーハWの搬送中以外のタイミングでウェーハマッピングを行う必要がある。このため、ウェーハWの搬送完了を待ってウェーハマッピングが行われる。また、ウェーハマッピング以外のタイミングでウェーハWの搬送を行う必要がある。このため、ウェーハマッピングの完了を待ってウェーハWの搬送が行われる。
【0119】
なお、ウェーハロード機構3が複数のFOUP載置台7を有し、ウェーハロード機構3に複数のFOUP8をセットできる場合、1台のカメラで複数のFOUP8内を撮像してもよい。
【0120】
図13は、ウェーハロード機構に複数のFOUPがセットされる場合のカメラの配置例を示す図である。ウェーハロード機構3が複数のFOUP載置台7A〜7Cを有している場合、FOUP載置台7AにはFOUP80Aが載置され、FOUP載置台7BにはFOUP80Bが載置され、FOUP載置台7CにはFOUP80Cが載置される。
【0121】
この場合、カメラ1台で2つのFOUP内を撮像する。例えば、カメラ2Aとカメラ2BとによってFOUP80A内のウェーハWを撮像し、カメラ2Bとカメラ2CとによってFOUP80B内のウェーハWを撮像し、カメラ2Cとカメラ2DとによってFOUP80C内のウェーハWを撮像する。
【0122】
カメラ2A,2BとFOUP80Aとの配置関係、カメラ2B,2CとFOUP80Bとの配置関係、カメラ2C,2DとFOUP80Cとの配置関係は、それぞれカメラ2L,2RとFOUP8との配置関係と同じである。
【0123】
半導体装置(半導体集積回路)を製造する際には、種々の半導体製造装置にFOUP8がセットされ、各半導体製造装置でウェーハ処理が行われる。具体的には、成膜装置によってウェーハW上に膜が成膜され、レジスト塗布装置によってウェーハWにレジストを塗布する。そして、露光装置がマスクを用いてウェーハWに露光を行なう。その後、現像装置がウェーハWを現像してウェーハW上にレジストパターンを形成する。そして、レジストパターンをマスクとしてエッチング装置がウェーハWの下層側をエッチングする。これにより、レジストパターンに対応する実パターンがウェーハW上に形成される。半導体装置を製造する際には、成膜処理、レジスト塗布処理、露光処理、現像処理、エッチング処理などがレイヤ毎に繰り返される。
【0124】
つぎに、ウェーハマッピング装置10Xのハードウェア構成について説明する。図14は、ウェーハマッピング装置のハードウェア構成を示す図である。ウェーハマッピング装置10Xは、CPU(Central Processing Unit)91、ROM(Read Only Memory)92、RAM(Random Access Memory)93、表示部94、入力部95を有している。ウェーハマッピング装置10Xでは、これらのCPU91、ROM92、RAM93、表示部94、入力部95がバスラインを介して接続されている。
【0125】
CPU91は、コンピュータプログラムであるウェーハマッピングプログラム97を用いてパターンの判定を行う。表示部94は、液晶モニタなどの表示装置であり、CPU91からの指示に基づいて、図7(b)に示したカメラ画像、ウェーハ有無情報、クロススロット情報、ウェーハ飛び出し情報などを表示する。入力部95は、マウスやキーボードを備えて構成され、使用者から外部入力される指示情報(ウェーハWの格納状態検出に必要なパラメータ等)を入力する。入力部95へ入力された指示情報は、CPU91へ送られる。
【0126】
ウェーハマッピングプログラム97は、ROM92内に格納されており、バスラインを介してRAM93へロードされる。図14では、ウェーハマッピングプログラム97がRAM93へロードされた状態を示している。
【0127】
CPU91はRAM93内にロードされたウェーハマッピングプログラム97を実行する。具体的には、ウェーハマッピング装置10Xでは、使用者による入力部95からの指示入力に従って、CPU91がROM92内からウェーハマッピングプログラム97を読み出してRAM93内のプログラム格納領域に展開して各種処理を実行する。CPU91は、この各種処理に際して生じる各種データをRAM93内に形成されるデータ格納領域に一時的に記憶させておく。
【0128】
ウェーハマッピング装置10Xで実行されるウェーハマッピングプログラム97は、ウェーハ検出方法判定部12、測定ポイント抽出部13、ウェーハ有無判定部15、クロススロット判定部16、ウェーハ飛び出し距離算出部17、ウェーハ飛び出し判定部18を含むモジュール構成となっており、これらが主記憶装置上にロードされ、これらが主記憶装置上に生成される。
【0129】
なお、本実施の形態では、照明光学系9A〜9Cを、カメラ2L,2Rの頭上やカメラ2L,2Rの外側に配置する場合について説明したが、照明光学系9A〜9Cは、何れの位置に配置してもよい。また、3つの照明光学系9A〜9Cを配置する場合について説明したが、2つの照明光学系9A,9Cを配置してもよい。
【0130】
また、本実施の形態では、カメラ2L,2Rの何れか一方が故障した場合に、測定した画素位置と、基準の画素位置との間の距離である画素間距離に基づいて、ウェーハWの飛び出し有無を判定したが、画素間距離に基づいてウェーハWの飛び出し距離を算出してもよい。この場合、予め画素間距離とウェーハWの飛び出し距離との対応関係を設定しておく。そして、ウェーハ飛び出し距離算出部17が、算出した画素間距離と、対応関係と、に基づいて、ウェーハWの飛び出し距離を算出する。また、本実施形態では、スリットライトをウェーハWに照射することとしたが、スリットを介さない通常の照明光をウェーハWに照射してもよい。
【0131】
また、本実施の形態では、ウェーハマッピング装置10Xと、制御装置30Xと、を別々の構成としたが、制御装置30X内にウェーハマッピング装置10Xを設けてもよい。図15は、実施形態に係る半導体製造装置の他の構成例を示す上面図である。なお、図15の各構成要素のうち図2に示す半導体製造装置100Xと同一機能を達成する構成要素については同一番号を付しており、重複する説明は省略する。
【0132】
半導体製造装置100Yは、ウェーハロード機構3と、ウェーハマッピング機構1Yと、プロセス処理機構5と、制御装置30Yと、を備えて構成されている。ウェーハマッピング機構1Yは、カメラ2L,2Rと、照明光学系9A,9B,9Cと、を有しており、制御装置30Yは、ウェーハマッピング装置10Yを有している。また、ウェーハマッピング装置10Yは、ウェーハマッピング装置10Xと同様の機能を有している。
【0133】
制御装置30Yにおいて、プロセス処理機構5を制御するプロセス処理制御装置と、ウェーハロード機構3を制御するウェーハロード制御装置と、が別々の構成である場合、ウェーハマッピング装置10Yは、プロセス処理制御装置とウェーハロード制御装置の何れに組み込んでもよい。
【0134】
また、制御装置30Yは、プロセス処理機構5を制御するプロセス処理制御ソフトウェア(プログラム)を備えており、ウェーハマッピング装置10Yをプロセス処理制御ソフトウェア内に実装(ソフトウェア実装)してもよい。
【0135】
また、制御装置30Yは、ウェーハロード機構3を制御するウェーハロード制御ソフトウェア(プログラム)を備えており、ウェーハマッピング装置10Yをウェーハロード制御ソフトウェア内に実装(ソフトウェア実装)してもよい。
【0136】
このように、本実施形態では、半導体製造装置100Xが、2台以上のカメラと、照明光学系と、を備え、画像処理による三角測量を用いてウェーハマッピングを行うので、搬送ロボット4の搬送動作とウェーハマッピング処理とを分けることが可能となる。これにより、ウェーハWの搬送を止めることなくウェーハマッピングを行うことが可能になる。したがって、半導体製造装置100Xにおいて、ウェーハWの搬送がウェーハ処理を律速する場合であっても、ウェーハ処理のスループットを向上させることができる。
【0137】
また、予めFOUP8内に25枚のウェーハWが格納された状態で、撮像したカメラ画像(テスト画像データ)を保持しておくことにより、一方のカメラで故障・トラブルが発生した場合であっても、他方のカメラ画像とテスト画像データとの間でパターンマッチングを行うことにより、ウェーハWの格納状態を取得できる。これにより、三角測量が行えなくなった場合でも、ウェーハ格納状態の取得機能を維持し続けることができ、その結果、半導体製造装置100Xのダウンタイム低下が可能になる。
【0138】
また、本実施の形態では、画像処理によってウェーハWの有無を検出するので、Lot単位で各スロットでのウェーハ有無を高速に検出できる。また、画像処理を用いてウェーハマッピングを行うので、ウェーハWの有無検出と同時にクロススロットおよびウェーハWの飛び出し有無を検出できる。
【0139】
このように実施形態によれば、画像処理を用いてウェーハマッピングを行うとともに、一方のカメラで故障・トラブルが発生した場合に、他方のカメラを用いてウェーハWの飛び出し有無を検出するので、ウェーハWがFOUP8から飛び出しているか否かを高速かつ確実に検出することが可能となる。
【0140】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0141】
1X,1Y…ウェーハマッピング機構、2L,2R…カメラ、3…ウェーハロード機構、4…搬送ロボット、5…プロセス処理機構、9A〜9C…照明光学系、10X,10Y…ウェーハマッピング装置、12…ウェーハ検出方法判定部、13…測定ポイント抽出部、15…ウェーハ有無判定部、16…クロススロット判定部、17…ウェーハ飛び出し距離算出部、18…ウェーハ飛び出し判定部、25L,25R…反射光、26A〜26C,81L,81R,P…測定対象ポイント、27L,27R,51A〜51C…スリットライト、30X,30Y…制御装置、34…ウェーハ取り出し位置制御部、52A〜52C…検出領域、53P,Pl,Pr…測定ポイント、61…判定領域、73L,73R…左画像面、83L,83R,84L,84R,L,R…画素位置、100X,100Y…半導体製造装置、a1,a2…画素間距離、W,W1,W2…ウェーハ



【特許請求の範囲】
【請求項1】
ウェーハを格納している格納容器が載置台に載置された状態で前記ウェーハの側面の長手方向に対して垂直に交わる線状スリット光を、前記格納容器の開口部側から各ウェーハの側面の複数箇所に照射する照明光学系と、
第1の位置に配置されるとともに、前記線状スリット光が照射されているウェーハの側面を撮像する第1の撮像部と、
第2の位置に配置されるとともに、前記線状スリット光が照射されているウェーハの側面を撮像する第2の撮像部と、
前記第1の撮像部で撮像された第1の撮像画像および前記第2の撮像部で撮像された第2の撮像画像の少なくとも一方を用いて、前記ウェーハの格納容器内での格納状態を検出する格納状態検出部と、
を備え、
前記格納状態検出部は、
前記第1の撮像画像および前記第2の撮像画像の両方が撮像されている場合には、前記第1の撮像画像および前記第2の撮像画像の両方を用いて三角測量方法で前記ウェーハの前記格納容器からの飛び出し量を算出し、
前記第1の撮像画像および前記第2の撮像画像の何れか一方のみが撮像されている場合には、撮像された撮像画像に基づいて、前記線状スリット光の反射光が画像面上で結像する結像位置と、前記結像位置の基準位置と、を比較することにより、前記ウェーハが前記格納容器から飛び出しているか否かを判定することを特徴とするウェーハマッピング装置。
【請求項2】
前記格納状態検出部は、前記第1の撮像画像および前記第2の撮像画像の少なくとも一方を用いて、前記格納容器内の何れのスロットに前記ウェーハが格納されているかを検出することを特徴とする請求項1に記載のウェーハマッピング装置。
【請求項3】
前記格納状態検出部は、前記第1の撮像画像および前記第2の撮像画像の少なくとも一方を用いて、前記格納容器内で複数のスロットに跨って格納されているウェーハの有無を検出することを特徴とする請求項1に記載のウェーハマッピング装置。
【請求項4】
前記格納状態検出部は、前記第1または第2の撮像画像の画像領域のうち前記線状スリット光の反射光が検出される位置近傍の画像領域に対して画像処理を行うことにより、前記ウェーハの格納容器内での格納状態を検出することを特徴とする請求項1〜3のいずれか1つに記載のウェーハマッピング装置。
【請求項5】
ウェーハを格納している格納容器が載置台に載置された状態で前記ウェーハの側面の長手方向に対して垂直に交わる線状スリット光を、前記格納容器の開口部側から各ウェーハの側面の複数箇所に照射する照明ステップと、
第1の位置に配置された第1の撮像部が、前記線状スリット光が照射されているウェーハの側面を撮像するとともに、第2の位置に配置された第2の撮像部が、前記線状スリット光が照射されているウェーハの側面を撮像する撮像ステップと、
前記第1の撮像部で撮像された第1の撮像画像および前記第2の撮像部で撮像された第2の撮像画像の少なくとも一方を用いて、前記ウェーハの格納容器内での格納状態を検出する格納状態検出ステップと、
を含み、
前記格納状態検出ステップは、
前記第1の撮像画像および前記第2の撮像画像の両方が撮像されている場合には、前記第1の撮像画像および前記第2の撮像画像の両方を用いて三角測量方法で前記ウェーハの前記格納容器からの飛び出し量を算出し、
前記第1の撮像画像および前記第2の撮像画像の何れか一方のみが撮像されている場合には、撮像された撮像画像に基づいて、前記線状スリット光の反射光が画像面上で結像する結像位置と、前記結像位置の基準位置と、を比較することにより、前記ウェーハが前記格納容器から飛び出しているか否かを判定することを特徴とするウェーハマッピング方法。
【請求項6】
前記飛び出し量が算出された場合に、前記ウェーハの搬送装置が、前記飛び出し量に応じた位置から前記ウェーハを取り出す搬送ステップをさらに含むことを特徴とする請求項5に記載のウェーハマッピング方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2013−4927(P2013−4927A)
【公開日】平成25年1月7日(2013.1.7)
【国際特許分類】
【出願番号】特願2011−137787(P2011−137787)
【出願日】平成23年6月21日(2011.6.21)
【出願人】(000003078)株式会社東芝 (54,554)
【Fターム(参考)】