説明

ウェーハ加工装置

【課題】効率的な除湿がなされる除湿手段を備えたウェーハ加工装置を提供する。
【解決手段】チャックテーブル26に空気吸引作用を発生させる減圧管30や、切削ユニット47,57のエアベアリング機構に供給する圧縮空気を除湿する除湿装置80を備える。除湿装置80には、除湿によって分離された水分を外部に放出するためのパージ用空気が供給されるが、そのパージ用空気として、減圧管30および切削ユニット47,57から排出される圧縮空気を再利用する。従来のように除湿した圧縮空気の一部をパージ用空気に利用するといったロスを生じさせず、除湿の効率化を図る。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体ウェーハ等のウェーハを加工するウェーハ加工装置に関する。ウェーハの加工としては、切断や溝加工等の切削、薄化するための研削、研削面の研磨等が挙げられる。
【背景技術】
【0002】
半導体デバイスは、円盤状の半導体ウェーハの表面に格子状の分割予定ラインによって多数の矩形領域を区画し、これら矩形領域の表面にICやLSI等の電子回路を形成し、次いで裏面を研削した後に研磨するなど必要な処理をしてから、全ての分割予定ラインを切削して切断する、すなわちダイシングすることにより得られている。このようにして得られる半導体デバイスは、樹脂封止によりパッケージングされて、携帯電話やPC(パーソナル・コンピュータ)等の各種電気・電子機器に広く用いられている。
【0003】
半導体ウェーハから多数の半導体デバイスを得るためには、上記のようにウェーハに対して研削、研磨、切削など、種々の加工が施されるが、それらのウェーハ加工装置の可動部には、エアシリンダ等のエアアクチュエータが用いられている場合が多い。また、ウェーハの被加工面を露出する状態に保持するチャックテーブルや、ウェーハを取り上げて搬送する搬送機構のウェーハ保持パッドには、空気を吸引してウェーハを吸着する真空吸引式が適用されている。また、切削工具等を高速回転させるスピンドルには、スピンドルシャフトを空気圧で支持するエアベアリング機構が用いられている。さらに、加工後のウェーハの洗浄や乾燥等にも空気が利用されている。このように、ウェーハ加工装置には空気圧を利用した種々の機構が装備されており、そのため、各機構には、圧縮空気が供給される。
【0004】
ところで、この種のウェーハ加工装置においては、使用環境や季節等によって、供給される圧縮空気が断熱膨張することを主な原因として結露が発生する場合がある。結露の発生は機構の安定した動作を阻害するので回避する必要があり、そのために、各機構に供給する圧縮空気を除湿することが考えられる。圧縮空気の除湿には、例えば特許文献1に記載の除湿装置が適用可能である。
【0005】
【特許文献1】特許第2891953号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
上記特許文献1に記載の除湿装置は、高分子浸透膜からなる中空糸膜を束ねたものをハウジング内に収容したもので、圧縮空気を、ハウジング内に設定される高圧領域に供給して中空糸膜を通過させることにより、圧縮空気中の水分が分離されて除湿され、除湿された空気はハウジング外に送り出される。中空糸膜によって分離された水分は、ハウジング内に設定される低圧領域に流入するが、この低圧領域にパージ用空気を供給することによって、水分が速やかに排出され、除湿効果が高まるとされている。
【0007】
ところがこの除湿装置では、低圧領域に供給されるパージ用空気は、中空糸膜を通過して除湿された空気の一部を利用している。したがって、除湿装置内に送り込んだ除湿前の圧縮空気の全量を除湿された空気として利用することはできず、ロスが生じるといった難点があった。
【0008】
よって本発明は、供給された除湿前の圧縮空気の全量を除湿された圧縮空気として全て利用することができ、除湿の大幅な効率化が図られた除湿手段を備えたウェーハ加工装置を提供することを目的としている。
【課題を解決するための手段】
【0009】
本発明は、ウェーハを保持する保持手段と、該保持手段に保持されたウェーハに加工を施す加工手段と、圧縮空気を除湿する除湿手段とを少なくとも備えたウェーハ加工装置であって、除湿手段は、高分子浸透膜からなる多数本の中空糸膜が所定の形状に束ねられてなる除湿部材と、該除湿部材を収容するハウジングとを備えるとともに、該ハウジング内の空間には、除湿部材によって高圧領域と低圧領域とが区画されており、ハウジングは、高圧領域に圧縮空気を供給する圧縮空気供給口と、該圧縮空気供給口から高圧領域に供給されて除湿部材を通過して除湿された圧縮空気をハウジング外に送り出す除湿空気送り出し口と、低圧領域にパージ用空気を供給するパージ用空気供給口と、低圧領域からパージ用空気を排出するパージ用空気排気口とを備えており、該ハウジングのパージ用空気供給口から低圧領域に供給されるパージ用空気として、当該ウェーハ加工装置から排出される排出空気が利用されることを特徴としている。
【0010】
本発明の除湿手段によれば、圧縮空気が、ハウジングの圧縮空気供給口からハウジング内の高圧領域に供給され、中空糸膜からなる除湿部材を通過して、圧縮空気送り出し口からハウジング外に送り出される。除湿部材を通過する間に、圧縮空気に含まれる水分が中空糸膜を浸透して低圧領域に分離し、これによって高圧領域を通過してハウジング外に送り出される圧縮空気は除湿されたものとなる。
【0011】
除湿手段においては、低圧領域に分離した水分は、パージ用空気供給口から低圧領域に供給されてパージ用空気排気口から排出する空気により、速やかにハウジング外に排出され、これによって除湿効果が高められる。ここで、本発明のポイントは、パージ用空気供給口に供給するパージ用空気として、当該ウェーハ加工装置から排出される排出空気を利用している点にあり、従来のように除湿した圧縮空気の一部をパージ用空気としては用いない。このため、供給された除湿前の圧縮空気の全量を除湿された圧縮空気として全て利用することができる。したがって、除湿手段の大幅な効率化が図られる。
【0012】
本発明でのウェーハ加工装置からの排出空気は、空気吸引作用によって吸引力を発生させる減圧手段からの排出空気を含むように構成される。また、加工手段の具体例としては、スピンドルハウジングに挿入したスピンドルシャフトを空気圧で回転可能に支持するエアベアリング機構を備えたものが挙げられ、この場合のウェーハ加工装置からの排出空気は、エアベアリング機構からの排出空気を含むように構成される。また、本発明の加工手段としては、ウェーハを切削する切削手段、ウェーハを研削する研削手段、またはウェーハを研磨する研磨手段等が挙げられる。
【発明の効果】
【0013】
本発明のウェーハ加工装置によれば、除湿手段によって除湿された圧縮空気がウェーハ加工装置に供給されるため、結露が効果的に防止される。そして、本発明の除湿手段によれば、当該ウェーハ加工装置からの排出空気をパージ用空気として利用するため、該除湿手段に供給された除湿前の圧縮空気の全量を、除湿された圧縮空気として全て利用することができる。その結果、除湿された圧縮空気を効率的に利用することができる。
【発明を実施するための最良の形態】
【0014】
以下、図面を参照して本発明に係る一実施形態を説明する。
図1は、一実施形態に係るダイシング装置(ウェーハ加工装置)10を示している。このダイシング装置10は、高速回転させた切削ブレード60によって半導体ウェーハ(以下、ウェーハ)1を個々の半導体デバイスに分割するもので、一対の切削ブレード60を互いに対向配置した2軸対向型である。
【0015】
図1の符合11はベースフレームであり、このベースフレーム11には門型コラム12が固定されている。ベースフレーム11上の中央部には水平なX方向に延びる一対のX軸リニアガイド21が設けられており、これらX軸リニアガイド21に、X軸スライダ22が摺動自在に取り付けられている。X軸スライダ22は、X軸送りモータ23によって作動するボールねじ送り機構24により、X軸リニアガイド21に沿って往復移動させられる。X軸スライダ22上には、テーブルベース25を介して円盤状のチャックテーブル(保持手段)26が設けられている。
【0016】
チャックテーブル26は、Z方向(鉛直方向)を回転軸として回転自在にテーブルベース25上に支持されており、図示せぬ回転駆動機構によって時計方向あるいは反時計方向に回転させられる。チャックテーブル26は真空吸引式であり、水平な上面の周縁を残した大部分が、円形状のポーラスな真空吸着部26aとなっている。チャックテーブル26には、真空吸着部26aに通じる空気吸入路(図示略)が形成されており、この空気吸入路を介して真空吸着部26aの上方の空気が吸引される真空運転が行われると、真空吸着部26aに載置されたウェーハ1は吸着状態となって保持される。ウェーハ1はチャックテーブル26とともに、X軸スライダ22の移動に伴ってX方向に往復移動させられる。
【0017】
チャックテーブル26の空気吸引作用は、図2に示すT字状の減圧管(減圧手段)30によって発生する。減圧管30には、供給口31から排気口32に向かう直線状の空気流路33と、この空気流路33に対してT字状に交差する減圧流路34とが形成されている。この減圧管30は、減圧流路34の開口である吸入口35が、吸入ライン36を介してチャックテーブル26の上記空気吸入路に接続される。この減圧管30によれば、供給口31から排気口32に向けて空気流路33に空気を圧送すると、減圧流路34が負圧となり、吸引口35から空気流路33に向かって空気が吸引される。この空気吸引作用により、ウェーハ1はチャックテーブル26の真空吸着部26aに吸着、保持される。減圧管30の供給口31には供給ライン37が接続され、排気口32には排気ライン38が接続されている。
【0018】
図1に示すように、ウェーハ1は、ダイシングテープ2を介して環状のダイシングフレーム3の内側に保持された状態で、チャックテーブル26上に保持される。チャックテーブル26の周囲には、ダイシングフレーム3を着脱自在に保持する複数のクランプ27が配設されている。これらクランプ27は、テーブルベース25に取り付けられている。
【0019】
門型コラム12は、X軸リニアガイド21を挟んで水平なY方向に並ぶ一対の脚部12aと、これら脚部12aの上端部間に水平に架け渡された梁部12bとを有している。梁部12bの一側面には、Y方向に延びる上下一対のY軸リニアガイド13が設けられており、これらY軸リニアガイド13に、第1Y軸スライダ41と第2Y軸スライダ51とがそれぞれ摺動自在に取り付けられている。第1Y軸スライダ41は、図示せぬ第1Y軸送りモータによって作動する第1Y軸ボールねじ送り機構43によりY軸リニアガイド13に沿って往復移動させられる。一方、第2Y軸スライダ51は、第2Y軸送りモータ52によって作動する第2Y軸ボールねじ送り機構53によりY軸リニアガイド13に沿って往復移動させられる。
【0020】
第1Y軸スライダ41および第2Y軸スライダ51には、Z方向に延びる一対のZ軸リニアガイド14がそれぞれ設けられており、第1Y軸スライダ41のZ軸リニアガイド14には第1Z軸スライダ44が、また、第2Y軸スライダ51のZ軸リニアガイド14には第2Z軸スライダ54が、それぞれ摺動自在に取り付けられている。第1Z軸スライダ44は、第1Z軸送りモータ45によって作動する図示せぬ第1Z軸ボールねじ送り機構により、Z軸リニアガイド14に沿って昇降させられる。一方、第2Z軸スライダ54は、第2Z軸送りモータ55によって作動する図示せぬ第2Z軸ボールねじ送り機構により、Z軸リニアガイド14に沿って昇降させられる。
【0021】
第1Z軸スライダ44の下端部には、第1ブラケット46を介して第1切削ユニット47が固定されており、第2Z軸スライダ54の下端部には、第2ブラケット56を介して第2切削ユニット57が固定されている。
【0022】
各切削ユニット47,57は同一構成であって、図3に示すように、円筒状で先端側(図3で左側)が開口しているスピンドルハウジング61と、このスピンドルハウジング61の内部に同軸的、かつ回転可能に挿入されたスピンドルシャフト62と、スピンドルシャフト62を高速回転させるサーボモータ63とを備えている。スピンドルハウジング61の先端開口61bからは、スピンドルシャフト62の先端に設けられたブレード固定部62aが突出しており、そのブレード固定部62aに、図1に示すディスク状の切削ブレード60が固定される。
【0023】
スピンドルシャフト62は、ハウジング21の内面との間に均一な微小隙間を隔ててラジアル/スラスト方向を支持する周知のエアベアリング機構により、スピンドルハウジング61内に回転可能に支持される。スピンドルシャフト62の軸方向中間部には、スラストベアリング62aが形成されており、このスラストベアリング62aが、スピンドルハウジング61の内周面に形成された環状溝61aに嵌入されることにより、スピンドルシャフト62のスラスト方向が支持されるようになっている。
【0024】
サーボモータ63は周知の永久磁石式であって、スピンドルシャフト62のブレード固定部62aとは反対側(図3において右側)の端部の外周面に一体的に固着された永久磁石製の円筒状ロータ63aと、このロータ63aを包囲する状態にスピンドルハウジング62の内周面に固定された円筒状のステータ63bとを備えている。このサーボモータ63は、ステータ63bに電圧を印加するとロータ63aが回転し、これによってスピンドルシャフト62が軸回りに回転するようになっている。
【0025】
スピンドルハウジング61の先端開口61bの近傍には、供給口64が形成されているとともに、この供給口64に接続管65が取り付けられている。接続管65は、供給ライン66が接続されている。一方、スピンドルハウジング61の先端開口61bとは反対側の端部には、排気口67が形成されているとともに、この排気口67にも接続管68が取り付けられている。排気側の接続管68には、排気ライン69が接続されている。
【0026】
切削ユニット47,57が運転されて切削ブレード60が回転する時には、スピンドルハウジング61内に、供給口64から圧縮空気が供給され、スピンドルハウジング61とスピンドルシャフト62との間の微少隙間に一定圧力の空気が充満した状態となってエアベアリング機構が構成される。スピンドルハウジング61内に供給された圧縮空気は、排気口67から排気ライン69に導かれて排出される。
【0027】
これら切削ユニット47,57は、図1に示すように、軸方向がY方向と平行で、かつスピンドルシャフト62が同軸的に向かい合う状態に、スピンドルハウジング61が各ブラケット46,56の下端部に固定されている。切削ユニット47,57は、それぞれY軸スライダ41,51の移動によってY方向に移動させられ、Y方向に互いに接近したり離間したりする。
【0028】
上記減圧管30の供給口31および切削ユニット47,57の供給口64には、図1に示すエアコンプレッサ70から圧縮空気が圧送される。エアコンプレッサ70から圧送される圧縮空気は、除湿装置(除湿手段)80によって除湿されてから、減圧管30および切削ユニット47,57に送られるようになっている。
【0029】
図4および図5に示すように、除湿装置80は円筒状のハウジング81を有している。このハウジング81内には、ポリイミド等の高分子浸透膜からなる中空糸膜を中実な円柱状に束ねてなる除湿部材82が、ほぼ同軸的に収容されている。図5に示すように、除湿部材82の図中上下の両端面とハウジング81の両端部の内面との間には、支持リング83が挟持されており、これら支持リング83によって除湿部材82はハウジング81内に固定状態で収容されている。そして、ハウジング81内の上下には、除湿部材82と支持リング83とによって高圧領域84a,84bが区画されている。また、ハウジング81内においては、除湿部材82の外側が低圧領域85とされている。高圧領域84aと高圧領域84bとは、除湿部材82を介して連通している。
【0030】
ハウジング81の一端部(図4、図5で上端部)には、高圧領域84aに連通する圧縮空気供給口86が形成されており、他端部(図4、図5で下端部)には、高圧領域84bに連通する圧縮空気送り出し口87が形成されている。圧縮空気供給口86には、エアコンプレッサ70からの圧縮空気の供給ライン(除湿前供給ライン)91が接続されている。この除湿前供給ライン91で圧送されてくる圧縮空気は、圧縮空気供給口86から高圧領域84aに入り、除湿部材82を通過して下流側の高圧領域84bに至り、圧縮空気送り出し口87から外部に送り出される。圧縮空気送り出し口87には、除湿された圧縮空気の供給ライン(除湿後供給ライン)92が接続されている。この除湿後供給ライン92は分岐して、減圧管30の供給ライン37と、各切削ユニット47,57の供給ライン66とに接続されている。
【0031】
また、ハウジング81の一端部および他端部には、低圧領域85に連通するパージ用空気供給口88と、パージ用空気排気口89とがそれぞれ形成されている。パージ用空気供給口88には、パージ用空気供給ライン93が接続されている。このパージ用空気供給ライン93には、減圧管30の排気ライン38と、各切削ユニット47,57の排気ライン69とが接続されている。ハウジング81のパージ用空気排気口89には、排出される空気を大気に放出する外部排気ライン94が接続されている。
【0032】
以上が一実施形態に係るダイシング装置10の構成であり、次に、このダイシング装置10によってウェーハ1を多数の半導体デバイスに分割する際の動作例を説明する。ダイシングテープ2を介してダイシングフレーム3に保持されたウェーハ1は、チャックテーブル26上に同心状に吸着、保持され、ダイシングフレーム3はクランプ27によって保持される。
【0033】
ウェーハ1を効率的に切断する方法として、1回のX方向の切削送りで2本の分割予定ラインを同時に切断する方法がある。この方法を採用する際には、まず、第1および第2の切削ユニット47,57のZ方向位置を同一とし、さらにY方向に互いに近付けて、同軸的に対向する各切削ブレード60の間隔を、ウェーハ1に設定されている格子状の分割予定ラインのうちの平行な2本の分割予定ラインに対応し、かつ、その間隔が最小となる軸間距離に設定する。最小間隔に設定される切削ブレード60の間隔は、3,4個程度の複数の半導体デバイスを挟む間隔に設定される。
【0034】
この状態を保持して各切削ユニット47,57を下降させ、Z方向位置を、チャックテーブル26上に保持したウェーハ1を切削ブレード60が切断可能な切り込み深さに応じた位置に位置付ける。次いで、各切削ブレード60を回転させた状態から、X軸スライダ22をX方向に移動させて切削送りし、各切削ブレード60を、チャックテーブル26上のウェーハ1の分割予定ラインに切り込ませて切断する。切削ブレード60の切り込み深さは、ウェーハ1を貫通し、かつ、ダイシングテープ2に僅かに入り込んでチャックテーブル26には接触しない程度に調整される。なお、分割予定ラインに切削ブレード60を位置決めするには、カメラ等を用いた周知のアライメント手段を利用して行われる。
【0035】
はじめの2本のX方向の分割予定ラインが切断されたら、次の2本の分割予定ラインを切断すべく、各切削ユニット47,57をY方向に分割予定ラインの間隔の長さだけ移動させる割り出し送りを行う。次いで、今度はチャックテーブル26を逆方向に復動させ、先に切断した2本の分割予定ラインの隣の分割予定ラインを切断する。
【0036】
以上のX方向への切削送りとY方向への割り出し送りを繰り返して、X方向に延びる全ての分割予定ラインを切断する。これが終わったらチャックテーブル26を90°回転させて、今までY方向に延びていた未切断の分割予定ラインを、改めてX方向と平行になるよう切り替える。そして、上記要領を繰り返して、X方向に延びる全ての分割予定ラインを切断する。これによって、格子状の多数の分割予定ラインは全て切断され、ウェーハ1は個々の半導体デバイスに個片化される。
【0037】
個片化された多数の半導体デバイスは、ダイシングテープ2に貼り付いたままの状態であってウェーハ1としての形態は保たれており、この後、適宜なピックアップ工程等に移されて個々の半導体デバイスが取り出される。
【0038】
次に、除湿装置80の作用を説明する。
チャックテーブル26に吸入ライン36を介して連結される減圧管30および切削ユニット47,57には、エアコンプレッサ70から圧送される圧縮空気が供給される。供給口される圧縮空気によって、チャックテーブル26の空気吸引作用が発生してウェーハ1はチャックテーブル26に吸着、保持される。また、供給される圧縮空気によって、切削ユニット47,57のエアベアリング機構が機能する。したがって、上記のようにしてウェーハ1をダイシングする際には、はじめからエアコンプレッサ70を作動させる。この場合、減圧管30および切削ユニット47,57に供給される圧縮空気は、除湿装置80によって除湿される。
【0039】
すなわち、エアコンプレッサ70で生成される圧縮空気は、除湿前供給ライン91を圧送されて圧縮空気供給口86から除湿装置80内に導入される。圧縮空気は、除湿装置80内の高圧領域84aに入り、除湿部材82を通過して高圧領域84bに至り、圧縮空気送り出し口87から除湿後供給ライン92に送り出される。
【0040】
ここで、圧縮空気が除湿部材82を通過する間に、圧縮空気に含まれる水分(気体状水分)が除湿部材82を浸透して外側の低圧領域85に分離する。これにより、高圧領域84bに至った圧縮空気は除湿されたものとなる。低圧領域85に分離した水分は、パージ用空気供給口88から低圧領域85に供給されてパージ用空気排気口89から排出する空気によって速やかにハウジング81外に排出され、これによって除湿効果が高められる。
【0041】
なお、除湿装置80による除湿の原理は、次の式で表される。
Q=ρΑ(Ρ1・Μ1−Ρ2・Μ2)
但し、Qは除湿部材82から低圧領域85へ流れる水分の透過流量、ρは気体状水分の透過速度定数、Αは除湿部材82の透過面積、Ρ1は高圧領域84a,84b側の圧力、Ρ2は低圧領域85側の圧力、Μ1は高圧領域84a,84b側における水分のモル分率、Μ2は低圧領域85側における水分のモル分率である。気体状水分の透過速度定数ρは、空気の構成気体である酸素および窒素に比して数倍〜数百倍程度大きく、除湿部材82を優先的に透過する。
【0042】
除湿装置80によって除湿された圧縮空気は、除湿後供給ライン92から、減圧管30に接続されている供給ライン37と、切削ユニット47,57に接続されている供給ライン66とに分岐される。減圧管30側の供給ライン37に送られた圧縮空気は、減圧管30の空気流路33を供給口31から排気口32に向かって圧送され、排気口32から排気ライン38に排出される。これにより、上記したようにチャックテーブル26が真空運転状態となり、ウェーハ1がチャックテーブル26上に吸着、保持される。
【0043】
一方、切削ユニット47,57側の供給ライン66に送られた圧縮空気は、接続管65を経て供給口64からスピンドルハウジング61内に導入され、スピンドルハウジング61とスピンドルシャフト62との間の微少隙間を所定圧力に保持してエアベアリング機構を構成する。スピンドルハウジング61内に供給された圧縮空気は、排気口67から接続管68を経て排気ライン69に排出される。
【0044】
減圧管30および各切削ユニット47,57から排出された圧縮空気は、各排気ライン38,69からパージ用空気供給ライン93に入る。そしてこのパージ用空気供給ライン93に導かれて、除湿装置80のパージ用空気供給口88から低圧領域85に導入される。低圧領域85に送られた圧縮空気は、低圧領域85を通過してパージ用空気排気口89から外部排気ライン94に導かれて大気に放出される。低圧領域85を圧縮空気が通過して排出されることにより、除湿部材82によって低圧領域85に分離した水分が速やかに排出される。
【0045】
以上が一実施形態のダイシング装置10の動作であり、このダイシング装置10によれば、除湿装置80によって除湿された圧縮空気が減圧管30および切削ユニット47,57に供給されるため、断熱膨張等が原因で生じる結露が効果的に防止される。その結果、機構の停止や不安定な動作などの結露を原因とする不具合の発生が防止される。
【0046】
また、除湿装置80においては、減圧管30および各切削ユニット47,57から排出される圧縮空気を、低圧領域85に供給するパージ用空気として再利用している。従来では、除湿した圧縮空気の一部をパージ用空気として用いるなどしていたが、本実施形態では、供給された除湿前の圧縮空気の全量を除湿された圧縮空気として全て利用することができる。このため、除湿された圧縮空気を効率的に利用することができる。
【0047】
上記一実施形態では、チャックテーブル26に空気吸引作用を発生させる減圧管30と、エアベアリング機構を備えた切削ユニット47,57からの排気を、パージ用空気として除湿装置80に供給して再利用している。しかしながら本発明においては、除湿装置80に供給して再利用する排気はこれらに限られず、例えば、エアシリンダ等のエアアクチュエータからの排気や、ウェーハ1をチャックテーブル26に載置したりチャックテーブル26から取り上げたりする搬送機構が備える真空吸引式のウェーハ保持パッド等からの排出空気を利用することができる。さらには、ダイシング装置10内の空気のクリーン度を上げるための送風の排気等も含め、ダイシング装置10からのあらゆる排出空気を利用することが可能である。
【0048】
また、上記一実施形態は本発明のウェーハ加工装置として、ウェーハ1を切削する切削ブレード60を備えたダイシング装置10を示したものであるが、ウェーハ加工装置としては、ウェーハを研削する研削手段を備えたウェーハ研削装置や、ウェーハを研磨する研磨手段を備えたウェーハ研磨装置にも適用することができる。図6は、本発明をウェーハ研削装置に適用した他の実施形態を示している。
【0049】
図6に示すウェーハ研削装置(ウェーハ加工装置)100は、基台101上に、Y方向に移動自在にテーブルベース102が設けられており、このテーブルベース102上に、円盤状に形成されたチャックテーブル(保持手段)103が回転可能に支持されている。このチャックテーブル103は、上記一実施形態と同様に真空吸引式であって、水平な上面の真空吸着部103aにウェーハ1を吸着、保持する。チャックテーブル103の空気吸引作用は、上記減圧管30と同様の減圧管(図示略)が用いられる。テーブルベース102の移動路には、移動路102に研削屑等が落下することを防ぐ蛇腹状のカバー104が伸縮自在に設けられている。
【0050】
基台101の上面のY方向一端部(奥側の端部)には、コラム105が立設されている。このコラム105の前面(基台101側に向いたX・Z方向に沿った面)には、研削ユニット110が昇降可能に装備されている。
【0051】
研削ユニット110は、軸方向がZ方向に延びる円筒状のスピンドルハウジング111と、このスピンドルハウジング111内に同軸的、かつ回転可能に支持されたスピンドルシャフト112と、スピンドルシャフト112の下端に同軸的に固定された円盤状のフランジ113とを具備している。そしてフランジ113の下面に、円環状に配列された複数の砥石114aを有する砥石ホイール114が着脱自在に取り付けられている。研削ユニット110は、上記一実施形態の切削ユニット47,57と同様に、スピンドルハウジング111内のスピンドルシャフト112を空気圧で回転可能に支持するエアベアリング機構を備えている。スピンドルシャフト112を回転駆動するモータは、スピンドルハウジング111内に設けられている。
【0052】
砥石114aは、ウェーハ1の材質に応じたものが用いられ、例えば、ボンド材中に適宜な粒度のダイヤモンド砥粒等を混合して成形し、焼結したものなどが用いられる。砥石ホイール114の研削外径、すなわち複数の砥石114aの外周縁の直径は、少なくともウェーハ1の半径と同等以上で、一般的にはウェーハ1の直径にほぼ等しい大きさに設定される。
【0053】
研削ユニット110は、スピンドルハウジング111が、コラム105に昇降自在に取り付けられたスライダ121に固定されている。スライダ121は、Z方向に延びる一対のガイドレール122に摺動自在に装着されている。スライダ121は、サーボモータ123によって駆動されるボールねじ式のZ軸送り機構124が作動することによってZ方向に移動させられる。この構成により、研削ユニット110はスライダ121とともに昇降する。研削ユニット110は、スライダ121に対してスピンドル112の軸心がZ方向に延びる状態に固定されており、砥石114aの刃面である下面は水平に設定される。
【0054】
上記構成の研削装置100によれば、テーブルベース102の移動によってチャックテーブル103上に保持されたウェーハ1が、研削ユニット110の下方の加工位置に送られる。そして、砥石ホイール114が回転しながらZ軸送り機構124によって下降し、砥石114aが、露出しているウェーハ1の被研削面を押圧することにより、ウェーハ1が研削される。ウェーハ1は、チャックテーブル103が回転することにより自転状態で研削ユニット110により研削される。
【0055】
さて、この研削装置100にも、上記一実施形態と同一の除湿装置80が装備されている。図6では、上記一実施形態と同一の構成要素には同一の符号を付してある。エアコンプレッサ70から除湿装置80を通過して除湿された圧縮空気は、除湿後供給ライン92から、チャックテーブル103に連結された減圧管および研削ユニット110のハウジング111内に供給される。そして、減圧管および研削ユニット110から排出された圧縮空気は、それぞれ排気ライン38,69からパージ用空気供給ライン93に入る。そして、パージ用空気供給ライン93に導かれて除湿装置80のパージ用空気供給口88から低圧領域85に導入され、低圧領域85内の水分をパージ用空気排気口89から排出しながら、外部排気ライン94を経て大気に放出される。
【0056】
この実施形態の研削装置100でも、除湿装置80によって除湿された圧縮空気がチャックテーブル103の減圧管および研削ユニット110に供給されるので、結露が効果的に防止される。そして、装置の運転(チャックテーブル103の真空運転や研削ユニット110のエアベアリング機構)に使用された圧縮空気の排気を除湿装置80に戻してパージ用空気として再利用しているための効果も、上記実施形態と同様に得られる。
【0057】
なお、上記実施形態の除湿装置80は本発明の除湿手段の一例であり、本発明はこれに限定されるものではない。図7は、除湿手段の他の構成例である除湿装置80Bを示している。この除湿装置80Bは、上記除湿装置80と同様のハウジング81を備えているが、ハウジング81内に収容される除湿部材82Bは、中空糸膜を円筒状に束ねてなるもので、中心に中空部82bを有している。この除湿部材82Bは図中上下の支持リング83を介してハウジング81内に固定されている。
【0058】
除湿部材82Bの内周面には中筒71が固定されており、中筒71の上下の端部には、中空部82bを封止する封止部材72,73が固定されている。上側の封止部材72には開口72aが形成されている。また、上側の支持リング83の内側であって封止部材72とハウジング81の上端部との間には、中リング74が挟持されて固定されている。この中リング74の内部は、封止部材72の開口72aと連通している。中筒71の上部、すなわち封止部材72に近い側には、中空部82bから除湿部材82Bに空気を通過させるための複数の通気孔71aが形成されている。
【0059】
この除湿装置80Bでは、ハウジング81内における上側の支持リング83と中リング74との間の環状の空間が上流側の高圧領域84aとされ、下側の支持リング83と、除湿部材82B、中筒71および封止部材73とで囲まれる空間が、下流側の高圧領域84bとされている。また、除湿部材82Bの外側が低圧領域85とされている。高圧領域84aと高圧領域84bとは、除湿部材82を介して連通している。
【0060】
そして、ハウジング81の上端部には、高圧領域84aに連通する圧縮空気供給口86と、中リング74の内部、封止部材72の開口72aを介して除湿部材82Bの中空部82bに連通するパージ用空気供給口88とが、それぞれ形成されている。また、ハウジング81の下端部には、高圧領域84bに連通する圧縮空気送り出し口87と、低圧領域85に連通するパージ用空気排気口89とが、それぞれ形成されている。
【0061】
この除湿装置80Bによれば、圧縮空気が圧縮空気供給口86から上流側の高圧領域84aに導入され、除湿部材82Bを通過する間に水分が分離して除湿され、高圧領域84bに至り、圧縮空気送り出し口87から排出される。また、パージ用空気が、パージ用空気供給口88から内部に導入される。パージ用空気は、中リング74の内部、封止部材72の開口72aを通って除湿部材82Bの中空部82bに入り、次いで、中筒71の複数の通気孔71aを通って除湿部材82Bに浸透する。そして除湿部材82Bの外側低圧領域85に抜け、パージ用空気排気口89から外部に排出される。除湿部材82Bで分離された水分は、中空部82bから除湿部材82Bを通過するパージ用空気によって低圧領域85に速やかに導かれ、パージ用空気排気口89から外部に排出される。
【0062】
この除湿装置80Bにあっても、パージ用空気供給口88から内部に供給されるパージ用空気は、ウェーハ加工装置からの排出空気が利用される。除湿装置80Bを、例えば図1に示したダイシング装置10に装備させる場合には、図7に示すように、エアコンプレッサ70からの除湿前供給ライン91が圧縮空気供給口86に接続され、除湿後供給ライン92が圧縮空気送り出し口87に接続される。また、パージ用空気供給ライン93がパージ用空気供給口88に接続され、外部排気ライン94がパージ用空気排気口89に接続される。これによって、上記の減圧管30および各切削ユニット47,57から排出される圧縮空気をパージ用空気として利用することができる。
【図面の簡単な説明】
【0063】
【図1】本発明の一実施形態に係るダイシング装置の斜視図である。
【図2】一実施形態のダイシング装置が具備するチャックテーブルに真空吸引作用を発生させる減圧管の断面図である。
【図3】一実施形態のダイシング装置が具備する切削ユニットの概要を示す断面図である。
【図4】一実施形態のダイシング装置が具備する除湿装置の斜視図である。
【図5】同除湿装置の縦断面図である。
【図6】本発明の他の実施形態に係る研削装置の斜視図である。
【図7】本発明の他の実施形態に係る除湿装置の断面図である。
【符号の説明】
【0064】
1…ウェーハ
10…ダイシング装置(ウェーハ加工装置)
26,103…チャックテーブル(保持手段)
30…減圧管(減圧手段)
47,57…切削ユニット(加工手段、切削手段)
61…スピンドルハウジング
62…スピンドルシャフト
70…エアコンプレッサ
80,80B…除湿装置(除湿手段)
81…ハウジング
82,82B…除湿部材
84a,84b…高圧領域
85…低圧領域
86…圧縮空気供給口
87…圧縮空気送り出し口
88…パージ用空気供給口
89…パージ用空気排気口
100…研削装置(ウェーハ加工装置)
110…研削ユニット(加工手段、研削手段)

【特許請求の範囲】
【請求項1】
ウェーハを保持する保持手段と、
該保持手段に保持されたウェーハに加工を施す加工手段と、
圧縮空気を除湿する除湿手段とを少なくとも備えたウェーハ加工装置であって、
前記除湿手段は、高分子浸透膜からなる多数本の中空糸膜が所定の形状に束ねられてなる除湿部材と、該除湿部材を収容するハウジングとを備えるとともに、該ハウジング内の空間には、前記除湿部材によって高圧領域と低圧領域とが区画されており、
前記ハウジングは、前記高圧領域に圧縮空気を供給する圧縮空気供給口と、該圧縮空気供給口から前記高圧領域に供給されて前記除湿部材を通過して除湿された圧縮空気をハウジング外に送り出す除湿空気送り出し口と、前記低圧領域にパージ用空気を供給するパージ用空気供給口と、前記低圧領域からパージ用空気を排出するパージ用空気排気口とを備えており、
該ハウジングの前記パージ用空気供給口から前記低圧領域に供給されるパージ用空気として、当該ウェーハ加工装置から排出される排出空気が利用されることを特徴とするウェーハ加工装置。
【請求項2】
前記排出空気は、空気吸引作用によって吸引力を発生させる減圧手段からの排出空気を含むことを特徴とする請求項1に記載のウェーハ加工装置。
【請求項3】
前記加工手段は、スピンドルハウジングに挿入したスピンドルシャフトを空気圧で回転可能に支持するエアベアリング機構を備えるものであって、前記排出空気は、該エアベアリング機構からの排出空気を含むことを特徴とする請求項1に記載のウェーハ加工装置。
【請求項4】
前記加工手段は、ウェーハを切削する切削手段、ウェーハを研削する研削手段、またはウェーハを研磨する研磨手段のいずれかであることを特徴とする請求項1〜3のいずれかに記載のウェーハ加工装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2009−176992(P2009−176992A)
【公開日】平成21年8月6日(2009.8.6)
【国際特許分類】
【出願番号】特願2008−14662(P2008−14662)
【出願日】平成20年1月25日(2008.1.25)
【出願人】(000134051)株式会社ディスコ (2,397)
【Fターム(参考)】