説明

ガスセンサの故障を判定するための方法および装置

【課題】ガスセンサの故障を識別するための方法および装置を提供すること。
【解決手段】ガス混合物にさらされたガスセンサの故障識別のための方法が、ガス混合物中の2つのガス種の濃度に応じた出力を有するガスセンサに関して開示される。この方法は、2つのそのようなセンサから出力信号を受信するステップと、第1のガスセンサまたは第2のガスセンサの故障を識別するためにセンサのモデルを実装する制御装置で出力信号を処理するステップと、識別された故障の表示を提供するステップとを含む。

【発明の詳細な説明】
【背景技術】
【0001】
[0001]関連の背景は、排気ガス処理システムおよびそれに関する診断機能の分野に関する。先の努力傾注分野に関して、エンジン排気ガスの望ましくない構成成分の排出を最小限にするために様々な排気ガス処理システムが当技術分野で開発されている。選択的触媒還元(SCR)システム、触媒を含む処理デバイス、および触媒の前で排気ガス供給流中にアンモニア(NH)などの材料を注入するように動作可能なシステムを使用してNO排出を減少させることが知られている。SCR触媒は、NH(または他の還元剤、例えば排気中で分解されてNHを生成する水性尿素)によるNOの還元を促進するように構成される。NHまたは尿素は、SCR触媒の存在下でNOと選択的に結合してNとHOを生成する。これは、「ENGINE EXHAUST EMISSION CONTROL SYSTEM PROVIDING ON−BOARD AMMONIA GENERATION」という名称の米国特許出願公開第2007/0271908号に全般的に記載されており、その内容を参照として組み込む。例えばディーゼルエンジンに関しては、アンモニアによるNOの選択的触媒還元(SCR)が、余剰酸素の存在下でNOを除去するのにおそらく最も選択性が高く、高活性の反応である。NH源は定期的に補給しなければならず、SCR触媒へのNHの注入には厳密な制御が必要である。過剰な注入は、テールパイプから雰囲気へのNHの解放(「スリップ」)を引き起こすことがあり、一方、注入が少なすぎると、排気の還元が不十分になる(すなわちNとHOへのNO転換が不十分になる)ことがある。
[0002]これらのシステムは、静止・触媒用途では十分に実証されている。アンモニアを直接使用することが一般に可能でない(または少なくとも望ましくない)移動型の用途では、尿素水溶液が、排気ガス流中での適切なアンモニア源であることが実証されている。これにより、広範囲の車両用途でSCRを使用できるようになっている。
【先行技術文献】
【特許文献】
【0002】
【特許文献1】米国特許出願公開第2007/0271908号
【発明の概要】
【発明が解決しようとする課題】
【0003】
[0003]テールパイプからのNO排出量の削減を求めるより一層厳しい要件が、重量ディーゼル式車両に課されている。NOの選択的触媒還元(SCR)技術を用いた液体尿素定量供給システムが当技術分野で開発されており、これらのシステムは、世界中での現在および将来のディーゼルNO排出基準に合うように実行し得る解決策を提供する。また、アンモニア排出量も、規制によって、または単純に品質の問題として設定されることがある。例えば、NHスリップターゲットに関して提案される将来の欧州排出ガス規制(例えばEU6)は、平均10ppm、ピークで30ppmに指定する。しかし、処理システムが、最大の(すなわち少なくともNO排出基準を満たす)NO還元を実現し、それと同時に、特に処理システムの寿命にわたって許容範囲内のNH排出を維持するという上述した課題が残っている。
【0004】
[0004]上述した物質排出基準に加えて、車両ベースのエンジンおよび排出システムは、典型的には、テールパイプ排出基準の遵守を保証するために様々な自己監視診断機能も必要とする。これに関して、米国連邦政府および州政府の車載診断装置規制(例えばOBD−II)は、いくつかの排出関連の車載システムが監視されること、およびシステムが所定の通りに機能していない場合に車両操作者が通知を受けるようにすることを要求する。したがって、自動車電子回路は、典型的には、事前プログラムされた診断データ管理機能または同様のサービスを含み、これは、様々な構成要素もしくはシステムの動作状態に関する診断アルゴリズム/回路から報告を受けるように、様々な標準化された診断トラブルコード(DTC)をセット/リセットするように、かつ/またはそうでなければ警報(例えばMIL)を発するように構成される。そのような診断機能の狙いは、排出性能に影響が及ぼされるレベルまで構成要素および/またはシステムの性能が劣化した時に操作者に知らせ、修正を進めるように(例えばDTCを介して)情報を提供することである。
【0005】
[0005]上述した排気処理システムの寿命にわたって、様々な構成成分が摩耗や劣化などを生じ、場合によっては全体の性能を損なわせる。例えば、SCR触媒または定量供給システムの劣化により、処理システムがNOおよびNH排出基準の一方または両方を満たさなくなることがある。そのような状況を検出するための診断方法は、「DIAGNOSTIC METHODS FOR SELECTIVE CATALYTIC REDUCTION (SCR) EXHAUST TREATMENT SYSTEMS」という名称の米国特許出願公開第2010/0101214号に全般的に記載されており、その内容を参照として組み込む。しかし、どの技術分野でも常に改良が望まれている。
【課題を解決するための手段】
【0006】
[0006]本発明の第1の態様では、ガスセンサの故障を識別するための方法が提供される。この方法は、ガス混合物中の第1のガス種とガス混合物中の第2のガス種の両方の濃度に従って変化する出力を有する第1のガスセンサから第1の出力信号を受信するステップを含む。この方法はさらに、ガス混合物中の第1のガス種とガス混合物中の第2のガス種の両方の濃度に従って変化する出力を有する第2のガスセンサから第2の出力信号を受信するステップを含む。この方法はさらに、第1の出力信号および第2の出力信号を、第1のガスセンサのモデルおよび第2のガスセンサのモデルを実装する診断制御装置内で処理して、第1のガスセンサまたは第2のガスセンサの故障を識別するステップを含む。
【0007】
[0007]本発明の第2の態様では、ガスセンサ用の故障識別システムが、ガス混合物中の第1のガス種とガス混合物中の第2のガス種の両方の濃度に従って変化する出力を有する第1のガスセンサを含む。このシステムはさらに、ガス混合物中の第1のガス種とガス混合物中の第2のガス種の両方の濃度に従って変化する出力を有する第2のガスセンサを含む。このシステムはさらに、第1のガスセンサまたは第2のガスセンサの故障を識別するために第1のガスセンサのモデルおよび第2のガスセンサのモデルを実装する診断制御装置を含む。
【0008】
[0008]本発明のさらなる態様は、本明細書で以下に提示する詳細な説明および実施例から明らかになろう。提示する詳細な説明および実施例は、例示として意図されており、本発明の範囲を制限する意図はないことを理解されたい。
【図面の簡単な説明】
【0009】
【図1】[0009]本発明の診断方法を実施することができる排気処理システムを示す概略ブロック図である。
【図2】[0010]試料ガス中での選択されたNO分圧およびNH分圧での、NHセルでの電圧、NOセルでの電圧、およびNH−NOセルでの電圧のグラフである。
【図3】[0011]ガスセンサと電気的な装置とのインターフェースを示す電気的な簡略概略図である。
【図4】[0012]本発明の態様を組み込む第1の診断方法の流れ図である。
【図5】[0013]本発明の態様を組み込む第2の診断方法の流れ図である。
【発明を実施するための形態】
【0010】
[0014]次に図面を参照する。図面中、様々な図で同一の構成要素を識別するために同様の参照番号を使用する。図1は、例示的なディーゼルサイクル内燃機関10を示す概略ブロック図であり、内燃機関10の燃焼排気ガス12が、排気ガス処理システム14に供給される。排気ガスは、排気ガス処理システム14を通って流れる流れとして表され、参照符号12EO(エンジン出口)、12、12、12、および12TP(テールパイプ)で表される一連の矢印として示される。本発明は、自動車の(すなわち移動型の)実施形態に関連付けて説明するが、静止型の用途にも有用に適用できることを理解すべきである。さらに、本発明の実施形態は、重量車両での用途(例えば高速道路トラクタやトラックなど)にも軽量車両での用途(例えば乗用車)にも使用することができる。加えて、本発明の実施形態は、さらに例えば圧縮点火(例えばディーゼル)エンジンや火花点火エンジンなど様々なタイプの内燃機関にも有用に適用できる。
【0011】
[0015]例示的実施形態では、エンジン10はターボ過給ディーゼルエンジンでよい。構成した実施形態では、エンジン10は、DuraMaxという商標名の下で市販されている従来の排気量6.6リットルの8気筒ターボ過給ディーゼルエンジンを備えた。これは例にすぎないことを理解すべきである。
【0012】
[0016]また、図1は、エンジン10の動作を制御するように構成されたエンジン制御ユニット(ECU)16も示す。そのために、ECU16は、当技術分野で一般に知られている従来の装置を備えることができる。一般に、ECU16は、少なくとも1つのマイクロプロセッサまたは他の処理ユニットと、読み出し専用メモリ(ROM)やランダムアクセスメモリ(RAM)など関連のメモリデバイスと、タイミングクロックと、外部アナログおよびデジタルデバイスからの入力を監視し、出力デバイスを制御するための入力デバイスとを含むことができる。ECU16は、複数のセンサおよび入力機構を使用してエンジン動作状況および他の入力(例えば操作者入力)を監視するように動作可能であり、さらに、予め確立されたアルゴリズムと、監視された状況および入力からの情報を組み込む較正とを使用して、複数の出力システムおよびアクチュエータを用いてエンジン動作を制御するように動作可能である。見やすくするために、エンジンシステムで採用される従来のセンサの多くを省略していることを理解すべきである。ECU16は、エンジン10から出る質量空気流量を示す排気空気質量流量(MAF)パラメータ20を計算するように構成することができる。
【0013】
[0017]ECU16で実行されるソフトウェアアルゴリズムおよび較正は、一般に、当業者に知られている従来のストラテジを含むことがある。全般的には、ECU16は、様々な入力に応答して、燃料供給(燃料噴射器の開放、持続、および閉鎖)およびエンジン動作の他の側面を制御するのに必要な出力を生成する。これらはすべて当技術分野で知られている。
【0014】
[0018]エンジン10の制御に加えて、ECU16は、典型的には様々な診断も行うように構成される。このために、ECU16は、診断データ管理機能など、様々なより低レベルの診断ルーチン/回路から受信されるレポートを管理するより高レベルのサービスを含み、(1つまたは複数の)診断トラブルコード/サービスコードをセットまたはリセットし、様々な警報を発動または停止させるように構成されることができる。これらはすべて当技術分野で一般に知られている。一例として、いくつかの不連続監視診断機能においてそのような診断が2度失敗すると診断トラブルコード(DTC)がセットされて故障表示ランプ(MIL)が点灯されるように、そのような診断データ管理機能を予め構成することができる。図1に示されるように、ECU16は、対応する診断トラブルコード(DTC)24をセットするように、かつ/またはMIL26の照明など操作者警報を発するように構成することができる。図示しないが、一実施形態では、ECU16は、そのようなセットされたDTCを検索するために(例えば熟練した技師が)問い合わせることができるように構成することができる。一般に、診断トラブルコードの記憶およびその後の問合せおよび検索のプロセスは当業者によく知られており、さらに詳細には説明しない。
【0015】
[0019]引き続き図1を参照すると、排気ガス処理システム14は、ディーゼル酸化触媒(DOC)28と、ディーゼル粒子フィルタ(DPF)30と、定量供給サブシステム32と、選択的触媒還元(SCR)触媒38とを含むことができ、定量供給サブシステム32は、少なくとも(i)還元剤(例えば尿素水溶液)貯蔵タンク34および(ii)定量供給ユニット36を含む。さらに、図1は、処理システム14内に配設される、および/または処理システム14によって使用される様々なセンサを示す。これらは、DOC入口温度信号41(TDOC_IN)を生成するように構成されたDOC入口温度センサ39と、感知されたNO濃度を示すNO信号42(NO)を生成するように構成されたNOセンサ40と、SCR触媒38の入口に位置され、第1の温度信号46(TIN)を生成するように構成された第1の排気ガス温度センサ44と、第2の温度信号50(TOUT)を生成するように構成された任意選択の第2の排気ガス温度センサ48と、第1の圧力信号54(PIN)を生成するように構成された第1の圧力センサ52と、第2の圧力信号58(POUT)を生成するように構成された第2の圧力センサ56と、感知されたNH濃度を示すアンモニア濃度信号62を生成するように構成されたアンモニア(NH)濃度センサ60とを含む。多くの商用車では、テールパイプから出るNO濃度を示す第2のNO信号66を生成するためのNOセンサ64が提供される。しかし、そのようなセンサは、万全を期すためにのみ図示する。
【0016】
[0020]DOC28およびDPF30は、それらの既知の機能を行うために従来の構成要素を備えることができる。
[0021]定量供給サブシステム32は、供与量制御装置80によって生成されるNH要求信号に応答し、注入点(node)68にNO還元物質を送達するように構成され、このNO還元物質は、制御された正確な供与量70(例えば単位時間当たりの質量)で排気ガス流中に導入される。一般に、還元物質(「還元剤」)は、(1)NHガス、または(2)所定の既知の濃度の尿素を含有する尿素水溶液でよい。見やすくするために、定量供給ユニット32はブロック形式で図示してあり、いくつかの下位要素を備えることができ、これらの下位要素は、限定はしないが、一体型ポンプまたは貯蔵タンクから尿素水溶液を加圧下で輸送する他の圧力源を含むことがある流体送達機構と、(点68での)電子制御式噴射器やノズルなど流体調整機構と、プログラムされた供与量制御ユニットとを含むことができる。定量供給サブシステム32は、当技術分野で知られている様々な形態を取ることができ、市販の構成要素を備えることができる。
【0017】
[0022]SCR触媒38は、一方としてのNOと、他方としてのアンモニアガスNH(または分解してアンモニアNHになる水性尿素)など還元剤との選択的還元反応を促進するためのメカニズムを提供するように構成される。従来技術の項で上述したように、そのような選択的還元の生成物はNとHOである。一般に、関連する化学反応は文献に十分に記載されており、当業者にはよく理解されているので、より詳細には説明しない。一実施形態では、SCR触媒38は、銅ゼオライト(Cu−zeolite)材料を含むことがあるが、他の材料も知られている。例えば、Labargeらに付与された「HIGH SURFACE AREA LEAN NOx CATALYST」という名称の米国特許第6576587号、およびLiらに付与された「EXHAUST TREATMENT SYSTEMS AND METHODS FOR USING THE SAME」という名称の米国特許第7240484号を参照されたい。それらの特許はどちらも、本発明と同一の譲受人によって所有されており、それらの全体を参照として本明細書に組み込む。さらに、図示されるように、SCR触媒38はマルチブリック構成でよく、複数の個別のブリック(brick)38、38を含み、各「ブリック」が実質的に円板形状でよい。知られているように、「ブリック」は適切な筐体内に収容することができる。
【0018】
[0023]NO濃度センサ40は、注入点68の上流に位置される。すなわち、NOセンサ40は、NHガスの存在により生じ得るNO感知機能に対する干渉を回避するように位置される。しかし、別法として、NOセンサ40をさらに上流に、すなわちDOC28とDPF30の間、またはDOC28の上流に位置させることもできる。さらに、本明細書ではしばしば排気温度に言及するが、そのために、SCR入口温度センサ44(TIN)からの温度読取りを使用することができる。
【0019】
[0024]いくつかの実施形態では、NHセンサ60は、実線で示されるようにブリック間の位置に位置させることができる(すなわち、SCR触媒38の入口の下流であってSCR触媒38の出口の上流の任意の位置に位置させることができる)。図示されるように、NHセンサ60は、ほぼ中央の位置に位置させることができる。ブリック間での位置決めが重要である。この構成での感知されるアンモニア濃度レベルは、正常動作中でさえ、小さいが検出可能なレベルのブリック間NHスリップであり、ここで、後方にあるブリックの存在下で、下流でのこの検出可能なNHによるNO転換を仮定することができ、テールパイプでのNH濃度レベルを許容レベル内までさらに減少させる。あるいは、いくつかの実施形態では、NHセンサ60をSCR触媒38の出口に位置させることができる。図1に示されるセンサの残りの部分は、従来の構成要素を備えることができ、当業者に知られている従来の様式で機能するように構成される。
【0020】
[0025]供与量制御装置80は、NH要求信号を生成するように構成され、この信号は定量供給ユニット36に送信され、排気ガス流に送達すべき還元剤の指定量(例えば質量流量)に関するコマンドを表す。供与量制御装置80は、本明細書で説明する様々なセンサや他の制御ユニットなどと連結するために、参照番号18で表される複数の入出力部を含む。供与量制御装置80を独立したブロックとして図示したが、特定の構成に応じて、供与量制御装置80の機能は、独立した制御装置に実装する、ECU16に組み込む、またはシステム内に既にある他の制御ユニット(例えば定量供給ユニット)に全体または一部を組み込むことができることを理解すべきである。さらに、供与量制御装置80は、本明細書で説明する制御機能だけでなく、やはり本明細書で説明する様々な診断も行うように構成することができる。そのために、供与量制御装置80は、当技術分野で知られている従来の処理装置を含むことができ、処理装置は、関連のメモリに記憶された事前プログラムされた命令を実行することができ、すべて本明細書で説明する機能に従って実行される。すなわち、1つの好ましい実施形態では、本明細書で説明する制御および診断プロセスがプログラムされ、得られたソフトウェアコードが関連のメモリに記憶されることが企図される。前述の実施可能な説明に鑑みて、本発明をソフトウェアで実装するには、当業者の通常のプログラミング技能があれば足りる。さらに、そのような制御装置は、ROMとRAMの両方を備えるタイプのもの、すなわち不揮発性メモリと揮発性(変更可能)メモリの組合せでよく、それにより、ソフトウェアを記憶することができる一方で、動的に生成されるデータおよび/または信号の記憶および処理を可能にする。
【0021】
[0026]アンモニア(NH)濃度センサ60は、「AMMONIA GAS SENSOR」という名称の米国特許出願公開第2010/0032292号に全般的に記載されているガスセンサを備えることができ、その特許文献の内容を参照として組み込む。このセンサは第1の電極材料を含み、この第1の電極材料は、感知されたガス中のNH濃度に敏感であるが、感知されたガス中のNO濃度からの相互干渉も受けやすい。第2の電極材料も提供され、これは、NHまたはNOに対する電気化学的感度よりも、NOに対する電気化学的感度が高い。米国特許出願公開第2010/0032292号の開示は、2つのセンサ電極材料からの信号を処理してNH濃度の決定を改良することができる方法を詳述する。この開示の詳細はここでは繰り返さないが、本発明の態様を理解する助けとして、開示されているセンサ電極材料の特性を論じることは有用である。
【0022】
[0027]図2を参照すると、ガスセンサの電圧出力のグラフ100が示されている。試験したセンサは、BiVO(5%MgO)NH電極、TbMg0.2Cr0.8NO電極、およびPt基準電極を有していた。センサを560℃で動作させた。グラフは、NH感知セルでの電圧を示す線(線102)と、NO感知セルでの電圧を示す線(線104)と、NH−NOセルでの電圧を示す線106とを含む。グラフ100はさらに、NOおよびNO濃度を表す4つの時間間隔を含む。すなわち、NOおよびNO濃度が0ppm(parts per million)である第1の時間間隔108と、NO濃度が400ppmでありNO濃度が0ppmである第2の時間間隔110と、NO濃度が200ppmでありNO濃度が200ppmである第3の時間間隔112と、NO濃度が0ppmでありNO濃度が400ppmである第4の時間間隔114とである。
【0023】
[0028]時間間隔108、110、112、114はそれぞれ、NH濃度を表す7つの小区分を含む。すなわち、NH濃度が100ppmである第1の小区分116と、NH濃度が50ppmである第2の小区分118と、NH濃度が25ppmである第3の小区分120と、NH濃度が10ppmである第4の小区分122と、NH濃度が5ppmである第5の小区分124と、NH濃度が2.5ppmである第6の小区分126と、NH濃度が0ppmである第7の小区分128とである。残りのガスは、10%のO、1.5%のHO、および残部のNから構成される。
【0024】
[0029]図2に示されるように、NH感知セルでの電圧を表す線102は、測定されるガスからNOが排除されている時間間隔108と110では同一である。しかし、線102によって表されるNH感知セルでの電圧は、NOが存在する区分112および114ではより低い値(より高い絶対値)を有し、それにより、NH感知セルに対するNOの相互干渉効果を実証する。
【0025】
[0030]同様に、図2は、NO感知セルに対するNHの相互干渉効果も示す。NOが存在するどの時間間隔110、112、114内においても、NO感知セルでの電圧を表す線104は、各時間間隔の小区分116での100ppmから各時間間隔の小区分128での0ppmまでNH濃度が変えられる時のNH濃度の影響を示す。
【0026】
[0031]本明細書で開示するシステムおよび方法は、センサの故障決定を改良できるようにするために、これらの相互干渉効果を利用する。本発明のシステムおよび方法の一態様では、2つの電極材料それぞれによって生成される出力信号を比較して、NHおよびNOの濃度によって生み出される効果が電極材料の既知の相互干渉特性と一致するかどうか判断する。以下、例示的にこれらの態様をさらに説明する。
【0027】
[0032]図3は、システム内にセンサを接続することができる一法を示す概略図である。図3において、センサアセンブリの全体が参照番号160として示され、センサアセンブリ160は、第1の感知セル162と、第2の感知セル166と、両感知セル162および166に熱的に結合された加熱器170とを含む。感知セル162は、ガス種の濃度に関係付けられる電圧EMF1を生成し、感知セル166は、ガス種の濃度に関係付けられる電圧EMF2を生成する。感知セル162および166は、それぞれ関連の電源インピーダンス164および168を含むと考えることができる。emfEMF1、EMF2と、感知セル162、166の電源インピーダンス164、168はどちらも感知セルの温度によって影響を及ぼされ、加熱器170は、所望のレベルで感知セル162、166の温度を維持するように制御される。また、センサ160は、加熱器170によって生成される温度を感知するために温度センサ(図示せず)を含むこともできる。図3は、ただ1つの加熱器と熱的に連絡する2つのemfセルを示すが、emfセルを個別の物理的実施形態で含むこともでき、各emfセルが専用の関連の加熱器を有することもあることを理解されたい。
【0028】
[0033]引き続き図3を参照すると、センサ160は、参照番号180で全体を表されるインターフェース装置に電気的に接続される。装置180は、感知セル162、166によって生成される電圧を測定するための測定手段186を含むものとして図示される。また、装置180は、加熱器170を所望の温度で維持するために、加熱器170と電気的に連絡する加熱器制御手段も含む。さらに、装置180は、第1の感知セル162の出力と電圧源V+の間に接続された第1のプルアップ抵抗器182と、第2の感知セル166の出力と電圧源V+の間に接続された第2のプルアップ抵抗器184とを含むものとして図示される。以下の実施例の論述において図3を参照する。
【実施例1】
【0029】
[0034](還元剤定量供給中のセンサ合理性試験)第1の診断方法は、還元剤が排気ガスに添加される、例えば尿素溶液が注入される時間間隔中に使用することができる。そのような時間間隔中、排気センサがさらされるガスは、比較的高濃度のNHを有する。図2に示されるように、NH感知セル(その出力が線102で示される)とNO感知セル(その出力が線104で示される)はどちらも、感知されたガス中のNHの濃度によって影響を及ぼされる。以下の論述では、NH感知セルの出力をEMF1と表し、NO感知セルの出力をEMF2と表す。
【0030】
[0035]図4を参照すると、第1の診断方法200は、それぞれNH感知セルおよびNO感知セルからEMF1およびEMF2の値を受け取るステップ205を含む。決定ステップ210において、ステップ205で受け取られたEMF1およびEMF2の測定値が、それぞれのセンサに関する所定の範囲とそれぞれ比較される。図3から理解されるように、還元剤定量供給中に測定される非常に低いEMF1の値は、感知セル162での短絡または感知セル162の他の損傷を示すものであることがある。還元剤定量供給中に測定される非常に低いEMF2の値は、感知セル166での短絡または感知セル166の他の損傷を示すものであることがある。EMF1またはEMF2の非常に高い測定値は、感知セル162または166での高いインピーダンスによるものであることがあり、これは、損壊したセンサ、または加熱器170もしくは加熱器制御装置188の不適切な動作によって引き起こされることがある。また、EMF1の高い測定値は、測定手段186と感知セル162の間の回路において開放された導体またはコネクタによるものであることもあり、それにより、測定手段186がプルアップ抵抗器182を通してV+を受け取る。また、EMF2の高い測定値は、測定手段186と感知セル166の間の回路において開放された導体またはコネクタによるものであることもあり、それにより、測定手段186がプルアップ抵抗器184を通してV+を受け取る。EMF1および/またはEMF2が所定の時間量を超えて一定値に留まる場合、これは、感知セル162および/または166が排気ガスから隔離されている可能性があることを示すことがあり、この原因は、例えば、センサ遮蔽または被覆層が煤またはセンサにとって有害な化学物質によって塞がれたことである。決定ステップ210で、EMF1および/またはEMF2の測定値が所定の範囲外にあるという結果が得られた場合、プロセスフローはステップ240に進む。
【0031】
[0036]ステップ215で、受け取られたEMF1およびEMF2の値からNHの濃度が求められる。NHの濃度は、EMF1およびEMF2をNH濃度に関係付ける所定の特性方程式を含む計算に基づいて求めることができる。例示的な特性方程式は、2010年12月21日出願の「METHOD AND DEVICE FOR CHARACTERIZATION AND SENSING OF EXHAUST GAS AND CONTROL OF ENGINES AND COMPONENTS FOR AFTERTREATMENT OF EXHAUST GASES」という名称の米国特許出願第12/974266号に開示されており、その特許文献の内容を参照として本明細書に組み込む。あるいは、ステップ215で、EMF1およびEMF2を入力として使用するルックアップテーブルによってNHの濃度を求めることができる。
【0032】
[0037]ステップ220で、ステップ215で求められたNHの濃度を使用して、NH濃度に対するNO感知セルの感度を表す所定の関係に基づいて予測されるEMF2値を求める。EMF2の予測値は、EMF2をNH濃度に関係付けるNO感知セルに関する所定の数学モデルに基づく計算に基づいて求めることができる。あるいは、EMF2の予測値は、入力としてNH濃度を使用するテーブルルックアップによって求めることができる。
【0033】
[0038]引き続き図4を参照すると、方法は、さらなる一連の決定ステップ225、230、および235を含む。ステップ225は、NH濃度に基づくEMF2の予測値を所定の範囲と比較する。EMF2の予測値が所定の範囲外である場合、これは、一方または両方の感知セル162、166の劣化を示し、この劣化は例えばセルの老化または汚染により生じることがある。決定ステップ225で、EMF2の予測値が所定の範囲外であるという結果が得られた場合、プロセスフローはステップ240に進む。
【0034】
[0039]ステップ225での試験が故障状態を示さない場合、方法は続いてステップ230に進む。このステップでは、差(EMF2の予測値−EMF2の測定値)が所定のしきい値と比較される。この差がしきい値を下回る場合、これは、NH感知セルの機能不良を示すものであることがあり、この機能不良は、ステップ210でのNH濃度の過小評価、およびそれに対応するステップ215でのEMF2の予測値の過小評価をもたらす。機能不良が示される場合、方法はステップ240に進む。
【0035】
[0040]ステップ230での試験が故障状態を示さない場合、方法は続いてステップ235に進む。このステップでは、差(EMF2の予測値−EMF2の測定値)が所定のしきい値と比較される。この差がこのしきい値を上回る場合、これは、NO感知セルの機能不良を示すものであることがあり、この機能不良により、セルは、NO感知セルの特性として知られているNHに対する相互干渉効果を示さなくなる。ステップ235によって機能不良が示される場合、方法はステップ240に進む。機能不良が検出されない場合、診断ルーチン200から抜ける。
【0036】
[0041]決定ステップ210、225、230、または235によって故障状態が検出されると、方法200におけるステップ240に入る。ステップ240は、該当する故障状態を示す。故障状態に対するシステムの応答は、故障状態の性質によって決まることができる。例えば、診断トラブルコード(DTC)がセットされることがあり、かつ/または故障表示ランプ(MIL)が点灯されることがある。故障状態の性質によっては、エンジンまたは排気処理システムの制御をフェールセーフバックアップモードに変えることができ、操縦性を保ち、かつ/または他の構成要素に対する損傷を防止する。
【実施例2】
【0037】
[0042](還元剤定量供給のない時間間隔中のセンサ合理性試験)第2の診断方法は、還元剤が排気ガスに添加されていない時間中に実行することができる。そのような時間間隔中、排気センサがさらされるガスは、エンジンマッピングまたは直接の測定によって予め決定することができるかなりの量のNOを含有し、また実質的にゼロのNHを含有する。先と同様に、以下の論述では、NH感知セルの出力をEMF1と表し、NO感知セルの出力をEMF2と表す。
【0038】
[0043]再び図2を参照すると、(時間間隔108、110、112、および114での小区分128で見られる)無視できるほど微量のNHという条件下で、(線102として示される)EMF1が、NO濃度に対する測定可能な感度を示すことを理解されよう。時間間隔108および110は、測定されるガスからNOが排除された状態を表し、時間間隔112は、200ppmのNOを表し、時間間隔114は、400ppmのNOを表すことを想起されたい。本発明の一態様は、さらなる診断情報を提供するために、低いNHレベルでのNH感知セルに対するNOのこの相互干渉効果を利用する。
【0039】
[0044]図5を参照すると、第2の診断方法300は、それぞれNH感知セルおよびNO感知セルからEMF1およびEMF2の値を受け取るステップ305を含む。
[0045]ステップ315で、EMF1およびEMF2の予測値が求められる。EMF1およびEMF2の予測値の決定は、排気中のNOおよびNOのレベルをエンジン動作状況に関係付ける所定のエンジンマッピング情報に基づくことができる。あるいは、EMF1およびEMF2の予測値は、例えば図1のセンサ40など別のセンサからの測定NOレベルに基づいて求められることができる。さらに、EMF1およびEMF2の予測値の決定は、EMF1およびEMF2を排気中のNOおよびNOのレベルに関係付ける所定のセンサ特性に基づくことができる。EMF1およびEMF2の予測値の決定は、ルックアップテーブル、式を利用した計算、またはそれらの組合せによって達成することができる。あるいは、EMF1およびEMF2の測定値を利用して、所定のセンサモデルに基づいてNOおよびNO(NO)を計算することができる。計算されたNOおよびNO(NO)は、所定のエンジンマッピングに基づく、またはセンサ40など別のNOセンサを用いたNOおよびNO(NO)の予測値と比較することができる。
【0040】
[0046]方法300でのステップ320は、ステップ315で求められたEMF1の予測値をステップ305で受け取られたEMF1の測定値と比較する。予測値と測定値の差が所定の範囲外である場合、これは故障状態を示す。例えば、EMF1の予測値よりもかなり低いEMF1の測定値は、感知セル162での短絡または感知セル162の他の損傷を示すことがある。また、予測値よりも低いEMF1の値は、感知セル162の熱損傷(溶融)または化学的汚染により生じることもある。
【0041】
[0047]EMF1の予測値よりもかなり高いEMF1の測定値は、感知セル162の高いインピーダンスを示すことがあり、これは、損壊した感知セル162、または加熱器170もしくは加熱器制御装置188の不適切な動作によって引き起こされることがある。また、予想値よりも高いEMF1の値は、測定手段186と感知セル162の間の回路において開放された導体またはコネクタによるものであることもあり、それにより、測定手段186がプルアップ抵抗器182を通してV+を受け取る。決定ステップ320で、EMF1の測定値がEMF1の予測値から所定量よりも大きく異なるという結果が得られた場合、プロセスフローはステップ340に進む。
【0042】
[0048]ステップ320でのEMF1の試験が故障状態を示さない場合、ステップ325は、ステップ315で求められたEMF2の予測値をステップ305で受け取られたEMF2の測定値と比較することによって、EMF2に対して同様の試験を行う。予測値と測定値の差が所定の範囲外である場合、これは故障状態を示す。例えば、EMF2の予測値よりもかなり低いEMF2の測定値は、感知セル166での短絡または感知セル166の他の損傷を示すことがある。また、予測値よりも低いEMF2の値は、感知セル166の熱損傷(溶融)または化学的汚染により生じることもある。
【0043】
[0049]EMF2の予測値よりもかなり高いEMF2の測定値は、感知セル166の高いインピーダンスを示すことがあり、これは、損壊した感知セル166、または加熱器170もしくは加熱器制御装置188の不適切な動作によって引き起こされることがある。また、予想値よりも高いEMF2の値は、測定手段186と感知セル166の間の回路において開放された導体またはコネクタによるものであることもあり、それにより、測定手段186がプルアップ抵抗器184を通してV+を受け取る。決定ステップ325で、EMF2の測定値がEMF2の予測値から所定量よりも大きく異なるという結果が得られた場合、プロセスフローはステップ340に進む。機能不良が検出されない場合、診断ルーチン300から出る。
【0044】
[0050]決定ステップ320か325のいずれかによって故障状態が検出されると、方法300におけるステップ340に入る。ステップ340は、該当する故障状態を示す。故障状態に対するシステムの応答は、故障状態の性質によって決まることができる。例えば、診断トラブルコード(DTC)がセットされることがあり、かつ/または故障表示ランプ(MIL)が点灯されることがある。故障状態の性質によっては、エンジンまたは排気処理システムの制御をフェールセーフバックアップモードに変えることができ、操縦性を保ち、かつ/または他の構成要素に対する損傷を防止する。
【0045】
[0051]上述の実施例において、示した方法ステップの順序は一例にすぎない。本明細書に開示する本発明の概念から逸脱することなくいくつかのステップを異なる順序で行うことができることを当業者は理解されよう。本発明をその実施形態に関して説明してきたが、本発明は、それに限定されるものとは意図されておらず、添付の特許請求の範囲に記載した範囲にのみ限定されるものと意図される。
【符号の説明】
【0046】
10 内燃機関、エンジン
12 燃焼排気ガス
14 排気ガス処理システム
16 エンジン制御ユニット(ECU)
18 入出力部
20 排気空気質量流量(MAF)パラメータ
24 診断トラブルコード(DTC)
28 ディーゼル酸化触媒(DOC)
30 ディーゼル粒子フィルタ(DPF)
32 定量供給サブシステム
34 還元剤(例えば尿素水溶液)貯蔵タンク
36 定量供給ユニット
38 選択的触媒還元(SCR)触媒
39 DOC入口温度センサ
40 NOセンサ
42 NO信号
44 第1の排気ガス温度センサ
46 第1の温度信号
48 第2の排気ガス温度センサ
50 第2の温度信号
52 第1の圧力センサ
54 第1の圧力信号
56 第2の圧力センサ
58 第2の圧力信号
60 アンモニア(NH)濃度センサ
62 アンモニア濃度信号
64 NOセンサ
66 第2のNO信号
68 注入点
70 供与量
80 供与量制御装置

【特許請求の範囲】
【請求項1】
ガス混合物にさらされるガスセンサの故障を判定するための方法であって、
前記ガス混合物中の第1のガス種の濃度と前記ガス混合物中の第2のガス種の濃度との両方に従って変化する出力を有する第1のガスセンサから第1の出力信号を受信するステップと、
前記ガス混合物中の前記第1のガス種の濃度と前記ガス混合物中の前記第2のガス種の濃度との両方に従って変化する出力を有する第2のガスセンサから第2の出力信号を受信するステップと、
前記第1のガスセンサまたは前記第2のガスセンサの故障を判定するように、前記第1の出力信号および前記第2の出力信号を、前記第1のガスセンサのモデルおよび前記第2のガスセンサのモデルを実装する診断制御装置内で処理するステップと、
判定された故障を示すステップと
を含む方法。
【請求項2】
前記ガス混合物が、前記ガス混合物中にアンモニアを制御可能に導入するための手段を備える排気システムを有する内燃機関からの排気ガスを含み、前記第1のガス種がNHであり、前記第2のガス種がNOである請求項1に記載の方法。
【請求項3】
前記第1の出力信号および前記第2の出力信号の処理が、
前記ガス混合物中の前記第1のガス種の濃度を計算するように、前記第1の出力信号および前記第2の出力信号を前記モデルへの入力として使用するステップと、
前記第2のガスセンサから予測信号レベルを計算するように、計算された前記第1のガス種の前記濃度を前記第2のガスセンサの前記モデルへの入力として使用するステップと、
前記第2の出力信号が第1の所定の範囲内にない場合に、第1の故障状態を示すステップと、
前記予測信号レベルが第2の所定範囲内にない場合に、第2の故障状態を示すステップと、
前記第2の出力信号と前記予測信号レベルの差が第3の所定の範囲内にない場合に、第3の故障状態を示すステップと
を含む請求項2に記載の方法。
【請求項4】
前記ガス混合物中にアンモニアを制御可能に導入するための手段が前記ガス混合物中にアンモニアを導入するように制御される時に、前記第1の出力信号および前記第2の出力信号が測定される請求項3に記載の方法。
【請求項5】
前記第1の所定の範囲、前記第2の所定の範囲、および前記第3の所定の範囲のうち少なくとも1つが、前記内燃機関の動作状態の関数である請求項4に記載の方法。
【請求項6】
前記第1の出力信号および前記第2の出力信号の処理が、
前記第1の出力信号が第1の所定の範囲内にない場合に、第1の故障状態を示すステップと、
前記第2の出力信号が第2の所定の範囲内にない場合に、第2の故障状態を示すステップと、
を含む請求項2に記載の方法。
【請求項7】
前記ガス混合物中にアンモニアを制御可能に導入するための手段が前記ガス混合物中へのアンモニアの導入を妨げるように制御される時に、前記第1の出力信号および前記第2の出力信号が測定される請求項6に記載の方法。
【請求項8】
前記第1の所定の範囲および前記第2の所定の範囲のうちの少なくとも一方が、前記内燃機関の動作状態の関数である請求項7に記載の方法。
【請求項9】
判定された故障を示す前記ステップが、出力装置を制御するように動作可能な信号を発生するステップを含む請求項1に記載の方法。
【請求項10】
前記出力装置が、視覚表示装置またはメモリ記憶デバイスである請求項9に記載の方法。
【請求項11】
ガス混合物にさらされたガスセンサのための故障判定装置であって、
前記ガス混合物中の第1のガス種の濃度と前記ガス混合物中の第2のガス種の濃度との両方に従って変化する出力を提供する第1のガスセンサと、
前記ガス混合物中の前記第1のガス種の濃度と前記ガス混合物中の前記第2のガス種の濃度との両方に従って変化する出力を提供する第2のガスセンサと、
前記第1のガスセンサおよび前記第2のガスセンサに結合された診断制御装置であって、前記第1のガスセンサまたは前記第2のガスセンサの故障を判定するように前記第1のガスセンサのモデルおよび前記第2のガスセンサのモデルを実装する診断制御装置と
を備える故障判定装置。
【請求項12】
前記第1のガス種がNHであり、前記第2のガス種がNOである請求項11に記載の装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2012−193729(P2012−193729A)
【公開日】平成24年10月11日(2012.10.11)
【国際特許分類】
【外国語出願】
【出願番号】特願2011−274457(P2011−274457)
【出願日】平成23年12月15日(2011.12.15)
【出願人】(599023978)デルファイ・テクノロジーズ・インコーポレーテッド (281)
【Fターム(参考)】