説明

コンバインドサイクル発電システムを始動させるための方法及び装置

【課題】コンバインドサイクル発電システム(10)を提供する。
【解決手段】本コンバインドサイクル発電システム(10)は、第1の発電機(16)と接続したガスタービン(12)と、第2の発電機(18)と接続した蒸気タービン(14)と、蒸気タービン及びガスタービンに結合されかつ該蒸気タービンに蒸気を供給する排熱回収ボイラ(20)と、排熱回収ボイラと流体連通して接続した1以上の圧力制御装置(40,42)とを含み、1以上の圧力制御装置は、バイパス圧力設定点に関して第1の所定の値に設定されかつ該第1の所定の値を所定の割合で第2の所定の値まで増加させるように変更される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明の分野は、広義にはコンバインドサイクル発電システムに関し、具体的には、かかるシステムの迅速な始動及び負荷運転を促進する方法及び装置に関する。
【背景技術】
【0002】
当技術分野で公知の通り、コンバインドサイクル発電システムは、1以上のガスタービンと、排熱回収ボイラ(HRSG)と、蒸気タービンとを備える。公知の複合サイクルシステムの始動手順では、ガスタービンを低負荷に保持しかつガスタービン負荷速度に制限を設けて蒸気温度の上昇率を制御することが必要とされる。かかる保持及び制限は、始動時の大気放出の一因となり、始動及び負荷運転時間を増加させるおそれがあり、また始動及び負荷運転時の燃料消費量を増加させるおそれもある。
【0003】
具体的には、公知の複合サイクルシステムの場合には、ガスタービンが全負荷に達する前の始動及び負荷運転時に、HRSGで生じる蒸気の温度が蒸気タービン高圧及び中圧ボウル金属温度に実質的に一致するまで、HRSGが所定の速度で暖まるまで、及び/又はHRSGが燃料加熱を行える温度に暖まるまで、ガスタービンは保持状態におかれる。ガスタービンを低負荷に保持すると、ガスタービンは一般に低効率でしかも高い排ガス量で運転される。さらに、公知のシステムでは、蒸気バイパス圧力設定点は伝統的に、どちらか高い方である基準圧力すなわちHRSG製造業者パラメータ或いは現在の圧力に設定される。この圧力設定点は一般に、蒸気タービン内への蒸気流入時に一定値に維持される。
【発明の開示】
【発明が解決しようとする課題】
【0004】
かかる伝統的な始動手順は、過去には始動が頻繁ではなかったので、少なくとも部分的には許容されてきた。しかしながら、日中から夜間までの電力価格の変動によって、かかる始動がより頻繁になってきた。さらに、需要の周期的な変動及び天然ガス価格の故に、日常のピーキングユニットとしてコンバインドサイクル発電プラントを使用する傾向が、増大してきている。上述のように、始動頻度の増加により、コンバインドサイクル発電システムをより迅速に、より高効率にかつより低排出量で始動させる要望の高まりが生じた。加えて、ピーキングユニットには瞬動/非瞬動予備力許容量が与えられ、この許容量は、急送電ランキングによって押し進められる。従って、より迅速な始動が、好ましい。
【課題を解決するための手段】
【0005】
1つの態様では、コンバインドサイクル発電システムを始動させる方法を提供する。システムは、ガスタービンと蒸気タービンとを含む。本方法は、増加した負荷速度状態になるのを可能にする負荷速度でガスタービンを負荷運転するステップと、高圧蒸気のバイパス圧力設定点に関して第1の所定の値を設定するステップと、第1の所定の値を所定の割合で第2の所定の値まで増加させるステップとを含む。
【0006】
別の態様では、コンバインドサイクル発電システムを提供する。本システムは、第1の発電機と接続したガスタービンと、第2の発電機と接続した蒸気タービンと、蒸気タービン及びガスタービンと接続した排熱回収ボイラとを含む。排熱回収ボイラは、蒸気タービンに蒸気を供給する。本システムはまた、排熱回収ボイラと流体連通して接続した1以上の圧力制御装置を含む。圧力制御装置は、バイパス圧力設定点に関して第1の所定の値に設定されかつ該第1の所定の値を所定の割合で第2の所定の値まで増加させるように変更される。
【0007】
さらに別の態様では、コンバインドサイクル発電システムを始動させる方法を提供する。システムは、ガスタービンと蒸気タービンとを含む。複合サイクルシステムはまた、排熱回収ボイラと、蒸気タービンに連結された復水器と、排熱回収ボイラから復水器まで及び高圧蒸気配管から高温再熱蒸気配管まで延びる複数のバイパス経路とを含む。さらに、システムはまた、1以上の蒸気バイパス経路と流体連通して接続した1以上の圧力制御装置を含む。本方法は、増加した負荷速度でガスタービンを負荷運転するステップと、可変圧力蒸気を使用して蒸気タービンを負荷運転するステップとを含む。蒸気タービンは、1以上の圧力制御装置を使用して高圧蒸気のバイパス圧力設定点を第1の所定の値に設定しまた1以上の圧力制御装置を使用してバイパス圧力設定点を所定の割合で第2の所定の値まで増加させることによって、可変圧力蒸気を使用して負荷運転される。
【発明を実施するための最良の形態】
【0008】
本明細書では、電気事業発電環境において使用されるコンバインドサイクル発電システムとの関連で、本方法及び装置を説明しているが、本明細書に説明した本方法及び装置は、他の用途において有用性を見出すことができることを意図している。加えて、本明細書に記載した原理及び教示は、それに限定されないが、天然ガス、ガソリン、ケロシン、ディーゼル燃料及び/又はジェット燃料のような種々の可燃性燃料を使用するタービンに適用可能である。加えて、本明細書に説明した本方法及び装置は、多軸形及び一軸形複合サイクルシステムの両方に関連して利用することができる。従って、これ以降の説明は、限定ではなく例示の目的のみとして記載する。
【0009】
図1は、例示的なコンバインドサイクル発電システム10の概略図である。図2は、コンバインドサイクル発電システム10を運転する例示的な方法100のフローチャートである。システム10は、それぞれの発電機16及び18と接続したガスタービン12と蒸気タービン14とを含む。蒸気タービン14は、複数の導管を介して排熱回収ボイラ(HRSG)20に結合され、またその排出口において復水器22に結合される。この実施形態では、システム10はまた、高圧過熱器/再熱器25の吐出端において過熱低減器24を含む。HRSG20は、標準的寿命かつ標準的又は期待保守で、最適な割合でガスタービン12の毎日の始動及び負荷運転を許容することができる貫流型又はドラム型蒸発器を含むことができる。
【0010】
システム10はさらに、HRSG20から復水器22まで延びるバイパス経路26、28及び30を含み、また高圧蒸気ライン31から低温再熱蒸気配管33まで延びる高圧(HP)カスケードバイパス経路32を含む。より具体的には、HP並列バイパス経路26は、過熱器/再熱器25及び復水器22と流体連通しており、低圧(LP)蒸気バイパス経路28は、HRSG20の低圧セクション29及び復水器22と流体連通しており、また高温再熱(HRH)蒸気バイパス経路30は、過熱器/再熱器25及び復水器22と流体連通している。この例示的な実施形態では、バイパス経路26、28、30及び/又は32は、この例示的な実施形態ではタービン14の定格速度の約100%であるその最速の許容速度で蒸気タービン14を負荷運転するのを可能にするように蒸気タービン流入バルブを調整した時に、代わりの高圧蒸気流経路を形成する。
【0011】
この例示的な実施形態では、バイパス経路26及び32は、それぞれバルブ34及び36を含み、これらバルブ34及び36は、高圧蒸気の圧力及び高圧蒸気圧力の増加率を制御するのを可能にするように調整される。バイパス経路30は、バルブ38を含み、このバルブ38は、蒸気タービン負荷運転の間に蒸気タービン中圧制御バルブが調整された時に再熱蒸気圧力を制御するのを可能にするように調整される。蒸気バイパス経路28は、蒸気タービン負荷運転の間に蒸気タービン低圧流入バルブが調整された時に、低圧蒸気の代わりの経路を形成する。
【0012】
さらに、この例示的な実施形態では、システム10は、バイパス経路32及び26と流体連通して接続した第1の圧力制御装置40と、バイパス経路30と流体連通して接続した第2の圧力制御装置42とを含む。より具体的には、第1の圧力制御装置40は、バルブ34及び36と流れ連通状態で結合されており、また第2の圧力制御装置42は、バルブ38と流れ連通状態で結合されている。初期運転条件において、第1の圧力制御装置40の設定点は、時間に関して一定にする及び/又は変化させるのいずれかとすることができる。所定の時間の後に、第1の圧力制御装置40の第1の所定の設定点値Aは、高圧ドラム内の現在の作動圧力、金属温度並びに/或いはバイパスライン26及び/又は32のパイプ長さを使用することによって決定される。この例示的な実施形態では、第1の圧力制御装置40は、最小圧力設定点に設定される。第1の圧力制御装置40の圧力設定点は、以下により詳細に説明するように、好ましい割合のもとで目標値又は第2の所定の値Bまで増加する。第2の圧力制御装置42は、以下により詳細に説明するように、高温再熱蒸気の流れを制御するように構成される。
【0013】
この例示的な実施形態では、方法100は、システム10を迅速に始動させかつ負荷運転するのを可能にし、また増加した負荷速度のような所定の割合でガスタービン12を負荷運転するステップ102を含む。例えば、この例示的な実施形態では、増加した負荷速度は、公知の複合サイクルシステムにおける毎分当たり約8%(約8%/分)又はそれ以下の負荷速度と比較すると、約13%/分〜約25%/分である。従って、本明細書に使用する場合には、「増加した負荷速度」という用語は、約8.5%/分よりも大きい負荷速度を意味する。この例示的な実施形態では、ガスタービン12は、HRSG20並びに/或いは蒸気バイパス経路26、28、30及び/又は32の蒸気圧力管理を使用して負荷運転される102。ガスタービン12は、所定の条件を満たす場合には、増加した負荷速度のような所定の負荷速度で負荷運転される102。
【0014】
この例示的な実施形態では、ガスタービンの負荷運転102の間に、蒸気タービン14は、初期バイパス圧力設定点を含む初期条件の状態にある。ガスタービン12が負荷運転される102と、蒸気タービン14は、初期条件で始動され104かつ負荷運転を開始する。蒸気タービンが始動する104と、初期条件から第1の所定の値Aまでの蒸気タービン14の高圧蒸気バイパス経路の圧力設定点は、時間に関して一定にする及び/又は変化させることができる。より具体的には、設定点の増加率は、システム10の運転に基づいて選択することができる。この例示的な実施形態では、高圧蒸気のバイパス圧力設定点は、初期には第1の所定の値Aに設定されている。より具体的には、この例示的な実施形態では、第1の所定の値Aは、現在の高圧蒸気圧力が基準圧力よりも低い場合には、基準圧力よりも低い圧力に設定することができる。蒸気タービン14は、第1の所定の値Aを有するバイパス圧力設定点で負荷運転される106。次に、バイパス圧力設定点は、所定の割合で第2の所定の値Bまで増加させる108。
【0015】
この始動方法は、パージが始動シーケンス内に含まれる場合には、HRSGのパージの後に、高圧蒸気バイパスラインを使用して始動の初期から作動開始した高圧ドラム及び過熱器内の条件を制御する。それに代えて、始動シーケンス内にパージが含まれていない場合には、始動の初期から高圧ドラム及び蒸気条件を制御する。始動の初期からの高圧蒸気制御は、所定の値及び好ましい変化率により高圧蒸気バイパス圧力設定点を管理することによって達成される。本明細書に説明した方法は、始動時に高圧ドラム応力及び過熱器応力を最小にして繰り返し作用を低減するのを可能にする。さらに、かかる所定の設定点において、高圧ドラムの膨張作用を低減することが可能になる。
【0016】
バイパス圧力設定点の増加108の割合(増加率)は、高圧ドラム応力制御並びにバイパスライン26及び/又は32内の流れ要件下での許容最大定格値によって制限される。所定の目標値Bは、モデル予測、実験データ、及び/又はシステム10が本明細書内で説明したように機能するのを可能にするあらゆる適切な方法によって、決定される。システム10の構成及び該システム10の温度状態条件(高温、温暖、冷間始動)を考慮すると、第1及び第2の蒸気バイパス圧力設定点A及びB並びに所定の増加率は、システム10の条件に基づいて最適化することが可能になる。加えて、高圧蒸気が蒸気タービン14に流入している時には、第2の圧力制御装置42の設定点は、高温再熱蒸気の蒸気タービン14内へのより迅速な流入を許して発生電力を増加させるのを可能にするような制御した所定の割合で増加させることができる。一実施形態では、第2の所定の値Bにおけるスライド高圧蒸気バイパス圧力設定点は、定格圧力の約60%〜約100%、好ましくは定格圧力の約75%〜約90%に設定されて、一定状態に維持した従来の圧力設定点と比較して、蒸気過熱が増加しかつ蒸気タービンがより短い始動時間でより多くの電力を生成する。蒸気タービン14は、第2の所定の値Bを有するバイパス圧力設定点で負荷運転される110。従って、蒸気タービン14は、第1の所定の値Aを有するバイパス圧力設定点で蒸気タービン14を負荷運転し106、次に第2の所定の値Bを有する増加したバイパス圧力設定点で蒸気タービン14を負荷運転する110ことによって、最終値まで負荷運転をされる112。
【0017】
加えて、上述のように、高圧蒸気が蒸気タービン14に流入する時には、高温再熱蒸気のバイパスラインに関する第2の圧力制御装置42の設定点は、高温再熱蒸気の蒸気タービン14内へのより迅速な流入を可能にするように制御した割合で増加させることができる。従って、発生電力を増加させることが可能になる。
【0018】
さらに、始動104、106、108及び/又は110の間に、バイパス経路26、28、30及び/又は32を通る蒸気の流れは、高圧蒸気、再熱蒸気及び/又は低圧蒸気を制御するのを可能にし、かつその負荷運転プロセスの間に蒸気タービン14に流入しない排熱回収ボイラ20からの蒸気のための代わりの経路を形成するのを可能にするように調整される。より具体的には、始動時に、ガスタービン12は、最大その最速までの割合で負荷運転され102、蒸気タービン14に供給される蒸気の圧力は、圧力制御装置40及び42を使用して始動の間に変更される。
【0019】
上述の方法及び装置は、公知の複合サイクルシステムで発生する排出量と比較して、始動及び負荷運転時の排出量の低減を可能にする。かかる方法及び装置はまた、公知の複合サイクルシステムと比較して、始動及び負荷運転事象の間におる始動及び負荷運転時間の短縮並びに燃料消費量の低減を可能にする。より具体的には、上述の方法は、その他の公知の始動方法と比較して、コンバインドサイクル発電プラントをより迅速に始動させかつより短時間でより高い蒸気タービン負荷に到達させることを可能にする。従って、本明細書で説明した方法は、燃料消費量を減少させかつ排出量を低減しながら、発電プラントの収益を増大させることを可能にする。さらに、本方法は、HRSGから高圧蒸気流を早期に誘導することによってコンバインドサイクル発電プラントの始動時間を短縮するのを可能にする。従って、公知の複合サイクルシステムと比較して、蒸気は、蒸気タービン内により迅速に流入させることができる。さらに、上述の方法はまた、ガスタービン及び蒸気タービンの保持時間を短縮するのを可能にし、従って始動時間を短縮するのを可能にする。始動時間の短縮により、上述のシステムは、その他の公知のシステムと比較して、より短い時間でより高いプラント発電出力を達成することが可能になる。さらに、始動時間の短縮は、公知の複合サイクルシステムと比較して、より早期により高い全体プラント効率に達するのを可能し、顧客がより大きな収益を生み出すのを可能にし、また温室効果ガス排出量全体を低減するのを可能にする。さらに、上述のシステム及び方法は、瞬動/非瞬動における急送電ランキングにおいて利点を得るのを可能にする。
【0020】
本明細書では、システム及び方法の例示的な実施形態について詳細に説明しかつ/又は例示している。本システム及び方法は、本明細書に説明した特定の実施形態には限定されるものではなく、むしろ、各システムの構成要素並びに各方法のステップは、本明細書に記載した他の構成要素及びステップから独立してかつ別個に利用することができる。各構成要素及び各方法ステップはまた、他の構成要素及び/又は方法ステップと組合せて使用することができる。
【0021】
様々な特定の実施形態に関して本発明を説明してきたが、本発明が特許請求の範囲の技術思想及び技術的範囲内の変更で実施することができることは、当業者には分かるであろう。
【図面の簡単な説明】
【0022】
【図1】例示的なコンバインドサイクル発電システムの概略図。
【図2】図1に示すコンバインドサイクル発電システムを運転する例示的な方法のフローチャート。
【符号の説明】
【0023】
10 コンバインドサイクル発電システム
12 蒸気タービン
14 ガスタービン
16 第1の発電機
18 第2の発電機
20 排熱回収ボイラ(HRSG)
26 高圧並列蒸気バイパス経路
28 低圧蒸気バイパス経路
30 高温再熱蒸気バイパス経路
32 高圧カスケード蒸気バイパス経路
34 第1のバルブ
36 第2のバルブ
38 バルブ
40 第1の圧力制御装置
42 第2の圧力制御装置

【特許請求の範囲】
【請求項1】
コンバインドサイクル発電システム(10)であって、
第1の発電機(16)と接続したガスタービン(12)と、
第2の発電機(18)と接続した蒸気タービン(14)と、
上記蒸気タービン及びガスタービンと接続し蒸気タービンに蒸気を供給する排熱回収ボイラ(20)と、
前記排熱回収ボイラと流体連通して接続した1以上の圧力制御装置(40,42)であって、バイパス圧力設定点に関して第1の所定の値に設定されていて第1の所定の値が所定の割合で第2の所定の値まで増加するように変更される1以上の圧力制御装置と
を備えるコンバインドサイクル発電システム(10)。
【請求項2】
前記排熱回収ボイラと流体連通した1以上の蒸気バイパス経路(26,28,30,32)をさらに備えており、前記1以上の圧力制御装置(40,42)が、前記バイパス圧力設定点を制御するように上記1以上の蒸気バイパス経路と動作可能に結合している、請求項1記載のコンバインドサイクル発電システム(10)。
【請求項3】
前記1以上の蒸気バイパス経路(26,28,30,32)に沿って1以上のバルブ(34,36,38)をさらに備えており、前記1以上の圧力制御装置(40,42)が、前記バイパス圧力設定点を制御するように上記1以上のバルブと動作可能に結合している、請求項2記載のコンバインドサイクル発電システム(10)。
【請求項4】
前記1以上の蒸気バイパス経路が、
高圧カスケードバイパス経路(32)と、
高圧並列バイパス経路(26)と、
低圧蒸気バイパス経路(28)と、
高温再熱蒸気バイパス経路(30)と
をさらに含む、請求項2記載のコンバインドサイクル発電システム(10)。
【請求項5】
前記高圧カスケードバイパス経路(32)と流体連通した第1のバルブ(36)と、
前記高圧並列バイパス経路(26)と流体連通した第2のバルブ(34)と、
前記高温再熱蒸気バイパス経路(30)と流体連通した第3のバルブ(38)と
をさらに含む、請求項4記載のコンバインドサイクル発電システム(10)。
【請求項6】
第1のバイパス経路(26)に沿って結合した第1のバルブ(34)であって、前記バイパス圧力設定点を変更するため前記1以上の圧力制御装置(40,42)と作動可能に結合した第1のバルブ(34)と、
第2のバイパス経路(28)に沿って結合した第2のバルブ(36)であって、前記バイパス圧力設定点を変更するため前記1以上の圧力制御装置と作動可能に結合した第2のバルブ(36)と、
をさらに含む、請求項1記載のコンバインドサイクル発電システム。
【請求項7】
前記1以上の圧力制御装置が、
高圧蒸気の流れを制御するように構成された第1の圧力制御装置(40)と、
高温再熱蒸気の流れを制御するように構成された第2の圧力制御装置(42)と
をさらに含む、請求項1記載のコンバインドサイクル発電システム(10)。
【請求項8】
第1のバイパス経路(26)に沿って結合した第1のバルブ(34)であって、前記高圧蒸気圧力を変化させるため前記第1の圧力制御装置(40)と作動可能に結合した第1のバルブ(34)と、
第2のバイパス経路(28)に沿って結合した第2のバルブ(36)であって、前記高温再熱蒸気圧力を変化させるため前記第2の圧力制御装置と作動可能に結合した第2のバルブ(36)と
をさらに含む、請求項1記載のコンバインドサイクル発電システム(10)。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2009−150392(P2009−150392A)
【公開日】平成21年7月9日(2009.7.9)
【国際特許分類】
【出願番号】特願2008−323257(P2008−323257)
【出願日】平成20年12月19日(2008.12.19)
【出願人】(390041542)ゼネラル・エレクトリック・カンパニイ (6,332)
【氏名又は名称原語表記】GENERAL ELECTRIC COMPANY
【Fターム(参考)】