説明

コンバインドサイクル発電設備及びその給水加熱方法

【課題】排熱回収ボイラ内配管の腐食を防止できると共に、排熱回収ボイラの煙突からの白煙の発生を抑制できること。
【解決手段】ガスタービン11、排熱回収ボイラ12及び蒸気タービン13を有し、ガスタービンからの排ガスを排熱回収ボイラに導き給水を加熱して蒸気とし、この蒸気を蒸気タービンに導いて発電を行うコンバインドサイクル発電設備10において、蒸気タービンからの抽気を導いて給水を加熱する給水加熱器15を備え、この加熱された給水を排熱回収ボイラ12へ供給する給水系16と、この給水系に接続されて給水加熱器をバイパスする給水加熱器バイパスライン17と、この給水加熱器バイパスラインに設けられ、この給水加熱器バイパスラインを流れるバイパス流量を調節することで、給水加熱器の出口の給水温度を制御する流量調節弁18と、を有するものである。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ガスタービン、排熱回収ボイラ及び蒸気タービンを有し、ガスタービンにて発電を行い、このガスタービンからの排ガスを排熱回収ボイラに導き給水を加熱して蒸気とし、この蒸気をガスタービンに導いて発電を行うコンバインドサイクル発電設備及びその給水加熱方法に関する。
【背景技術】
【0002】
一般的なコンバインドサイクル発電設備では、ガスタービンからの排ガスが排熱回収ボイラの最下段における低圧節炭器の配管外側を通過する際に、排ガス中に含まれる水分が、この配管内を流れる給水との温度差によって結露して、配管が腐食する恐れがある。特に硫黄分を含む燃料を使用した場合には、低圧節炭器の配管外表面に硫酸が生成されてしまい、この配管の腐食が甚だしくなる。
【0003】
これを防止するため、従来のコンバインドサイクル発電設備では、低圧節炭器の配管内を流れる給水温度を排ガスの露点よりも高く設定することを目的に、蒸気タービンへ流入する低圧蒸気の一部、または蒸気タービンからの抽気の一部を給水加熱用の蒸気として使用する機能(例えば、特許文献1または2参照)、又は排熱回収ボイラの低圧節炭器からの給水を再循環させる機能(例えば、特許文献3参照)を有するものが開示されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開昭55−109708号公報
【特許文献2】特開昭59−101512号公報
【特許文献3】特開平11−200889号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
一般的なコンバインドサイクル発電設備では、特に大気温度が低い状態において、排ガスが煙突から大気中へ放出されるときに、この排ガス中に含まれる水分が凝縮して白煙が発生することがある。特に、特許文献1〜3に記載のように、コンバインドサイクル発電設備において給水を加熱する機能を有する場合には、排ガス温度が低くならないため、白煙が発生しやすい状況になりやすく、この白煙発生をどのように抑えるかが課題であった。
【0006】
本発明の目的は、上述の事情を考慮してなされたものであり、排熱回収ボイラ内配管の腐食を防止できると共に、排熱回収ボイラの煙突からの白煙の発生を抑制できるコンバインドサイクル発電設備及びその給水加熱方法を提供することにある。
【課題を解決するための手段】
【0007】
本発明に係るコンバインドサイクル発電設備は、ガスタービン、排熱回収ボイラ及び蒸気タービンを有し、前記ガスタービンからの排ガスを前記排熱回収ボイラに導き給水を加熱して蒸気とし、この蒸気を前記蒸気タービンに導いて発電を行うコンバインドサイクル発電設備において、前記蒸気タービンからの抽気を導いて前記給水を加熱する給水加熱器を備え、この加熱された給水を前記排熱回収ボイラへ供給する給水系と、この給水系に接続されて前記給水加熱器をバイパスする給水加熱器バイパスラインと、この給水加熱器バイパスラインに設けられ、この給水加熱器バイパスラインを流れるバイパス流量を調節することで、前記給水加熱器の出口の給水温度を制御する流量調節弁と、有することを特徴とするものである。
【0008】
また、本発明に係るコンバインドサイクル発電設備の給水加熱方法は、ガスタービン、排熱回収ボイラ及び蒸気タービンを有し、前記ガスタービンからの排ガスを前記排熱回収ボイラに導き給水を加熱して蒸気とし、この蒸気を前記蒸気タービンに導いて発電を行うコンバインドサイクル発電設備の給水加熱方法において、前記蒸気タービンからの抽気を導いて前記給水を加熱する給水加熱器を備え、この加熱された給水を前記排熱回収ボイラへ供給する給水系を有し、前記給水系に接続されて前記給水加熱器をバイパスする給水加熱器バイパスラインを流れるバイパス流量を調節することで、前記給水加熱器の出口の給水温度を、大気の露点と排ガスの露点とから求めた給水温度の目標値に制御することを特徴とするものである。
【0009】
更に、本発明に係るコンバインドサイクル発電設備は、ガスタービン、排熱回収ボイラ及び蒸気タービンを有し、前記ガスタービンからの排ガスを前記排熱回収ボイラに導き給水を加熱して蒸気とし、この蒸気を前記蒸気タービンに導いて発電を行うコンバインドサイクル発電設備において、前記排熱回収ボイラへ給水を供給する給水系に接続されて、前記排熱回収ボイラにて加熱された給水の一部を再循環させる給水再循環ラインと、この給水再循環ラインに設けられ、この給水再循環ラインを流れる給水再循環流量を調節することで、前記給水系から前記排熱回収ボイラへ供給される給水温度を制御する流量調節弁と、前記給水系における前記給水再循環ラインの接続点の下流側に設けられて給水温度を計測する給水温度計と、大気温度を計測する大気温度計と、大気湿度を計測する大気湿度計と、前記排熱回収ボイラから排出される排ガスの露点を計測する排ガス露点計と、前記大気温度及び前記大気湿度から求めた大気の露点と前記排ガスの露点とから給水温度の目標値を演算し、前記給水温度計にて計測される給水温度を前記給水温度の目標値に制御すべく前記流量調節弁の開度を調節する制御装置と、を有することを特徴とするものである。
【0010】
また、本発明に係るコンバインドサイクル発電設備の給水加熱方法は、ガスタービン、排熱回収ボイラ及び蒸気タービンを有し、前記ガスタービンからの排ガスを前記排熱回収ボイラに導き給水を加熱して蒸気とし、この蒸気を前記蒸気タービンに導いて発電を行うコンバインドサイクル発電設備の給水加熱方法において、前記排熱回収ボイラへ給水を供給する給水系に接続されて、前記排熱回収ボイラにて加熱された給水の一部を再循環させる給水再循環ラインを有し、この給水再循環ラインを流れる給水再循環流量を調節することで、前記給水系から前記排熱回収ボイラへ供給される給水温度を、大気の露点と排ガスの露点とから求めた給水温度の目標値に制御することを特徴とするものである。
【発明の効果】
【0011】
本発明に係るコンバインドサイクル発電設備及びその給水加熱方法によれば、給水加熱器により加熱された給水を排熱回収ボイラへ供給することから、排熱回収ボイラ内配管の内外をそれぞれ流れる給水と排ガスの温度差を低減でき、上記配管の外表面における結露の発生を防止して、この配管の腐食を防止できる。また、給水加熱器バイパスラインを流れる給水の流量を調節することで給水加熱器の出口の給水温度を制御するので、排熱回収ボイラから排出される排ガスの温度低下が促進されて、排熱回収ボイラの煙突からの白煙の発生を抑制できる。
【0012】
更に、本発明に係るコンバインドサイクル発電設備及びその給水加熱方法によれば、給水再循環ラインからの加熱された給水を排熱回収ボイラへ供給することから、排熱回収ボイラ内配管の内外をそれぞれ流れる給水と排ガスの温度差を低減でき、上記配管の外表面における結露の発生を防止して、この配管の腐食を防止できる。また、給水再循環ラインを流れる給水再循環流量を調節することで排熱回収ボイラへ供給される給水温度を制御するので、排熱回収ボイラから排出される排ガスの温度低下が促進されて、排熱回収ボイラの煙突からの白煙の発生を抑制できる。
【図面の簡単な説明】
【0013】
【図1】本発明に係るコンバインドサイクル発電設備における第1の実施の形態を示す系統図。
【図2】本発明に係るコンバインドサイクル発電設備における第2の実施の形態を示す系統図。
【発明を実施するための形態】
【0014】
以下、本発明を実施するための最良の形態を、図面に基づき説明する。
【0015】
[A]第1の実施の形態(図1)
図1に示すコンバインドサイクル発電設備10は、ガスタービン11、排熱回収ボイラ12、蒸気タービン13及び給水加熱システム14を有して構成される。後に詳説するが、このコンバインドサイクル発電設備10は、ガスタービン11にて発電を行い、このガスタービン11からの排ガスを排熱回収ボイラ12に導き給水を加熱して蒸気とし、この蒸気を蒸気タービン13へ導いて発電を行う。
【0016】
給水加熱システム14は、給水加熱器15を備えた給水系16、給水加熱器15をバイパスする給水加熱器バイパスライン17、この給水加熱器バイパスライン17に設けられた流量調節弁18、更に給水温度計19、大気温度計20a、大気湿度計20b、排ガス露点計21及び制御装置22を有して構成される。
【0017】
前記ガスタービン11は、吸気室23、圧縮機24、燃焼器25及びタービン26を有して構成され、発電機27を駆動する。このガスタービン11において、燃焼器25へ供給される燃料ガスは、吸気室23を経て圧縮機24により圧縮される空気と燃焼器25にて混合されて燃焼し、高温高圧ガスとなってタービン26へ導入され、このタービン26で膨張して仕事をし、発電機27を駆動する。
【0018】
前記排熱回収ボイラ12は、ガスタービン11からの排ガスの流れの上流側から高圧過熱器28、再熱器29、高圧蒸発器30、高圧ドラム30a、中圧過熱器31、低圧過熱器32、中圧蒸発器33、中圧ドラム33a、高圧節炭器34、中圧節炭器35、低圧蒸発器36、低圧ドラム36a、低圧節炭器37、排ガス煙道38及び煙突39を有して構成される。また、前記蒸気タービン13は、高圧タービン40、中圧タービン41及び低圧タービン42を有して構成され、発電機43を駆動する。
【0019】
これらの排熱回収ボイラ12と蒸気タービン13との間では、高圧主蒸気管44により高圧過熱器28の出口と高圧タービン40の入口とが連結され、低圧主蒸気管45により低圧過熱器32の出口と低圧タービン42の入口とが連結され、低温再熱蒸気管46により高圧タービン40の出口と再熱器29の入口とが連結され、高温再熱蒸気管47により再熱器29の出口と中圧タービン41の入口とが連結されている。また、排熱回収ボイラ12の中圧過熱器31と低温再熱蒸気管46とが中圧主蒸気管48により連結されている。
【0020】
前記ガスタービン11から排出される高温の排ガスは、排ガスダクト49を経て排熱回収ボイラ12で給水と熱交換を行った後、排ガス煙道38を経て煙突39より大気に放出される。
【0021】
つまり、排熱回収ボイラ12において、給水系16の主給水管50から供給された給水は低圧節炭器37及び低圧蒸発器36にて順次加熱され、一部は低圧ドラム36aにより低圧過熱器32に流入して加熱されて低圧蒸気を発生し、低圧主蒸気管45を経て、中圧タービン41から排出された蒸気と共に低圧タービン42へ導入される。
【0022】
また、排熱回収ボイラ12の低圧蒸発器36にて加熱された給水の一部は給水ポンプ51を経て、更にその一部は中圧節炭器35及び中圧蒸発器33により順次加熱される。この中圧蒸発器33により加熱された蒸気は、中圧ドラム33aを経て中圧過熱器31により更に加熱されて中圧蒸気を発生し、中圧主蒸気管48を経て低温再熱蒸気管46に合流し、再熱器29へ導入される。低圧蒸発器36で加熱された残りの給水は、給水ポンプ51を経て高圧節炭器34及び高圧蒸発器30により順次加熱され、高圧ドラム30aを経て高圧過熱器28で更に加熱されて高圧蒸気となり、高圧主蒸気管44を経て高圧タービン40へ導入される。
【0023】
蒸気タービン13において、高圧タービン40から排出された蒸気は、低温再熱蒸気管46により、中圧主蒸気管48からの前記中圧蒸気と共に再熱器29へ導入されて加熱される。この再熱器29にて加熱された蒸気は、高温再熱蒸気管47により中圧タービン41へ導入される。中圧タービン41から排出された蒸気は低圧主蒸気管45に流入し、低圧過熱器32からの前記低圧蒸気と共に低圧タービン42へ導入される。低圧タービン42から排出された蒸気は、復水器52にて冷却されて復水となり、復水ポンプ53によりグランド蒸気復水器54及び給水加熱器15を順次経由して、主給水管50から排熱回収ボイラ12の低圧節炭器37へ導入される。
【0024】
前記給水加熱システム14のうちの前記給水系16は、主給水管50に復水器52、復水ポンプ53、グランド蒸気復水器54、給水加熱器15が上流側から順次配設されて構成され、給水加熱器15にて加熱された給水を排熱回収ボイラ12の低圧節炭器37へ供給する。給水加熱器15は、低圧タービン42の段落途中から抽出した蒸気(抽気)を抽気管55を用いて導入し、給水と熱交換を行って給水を加熱する。
【0025】
給水系16の主給水管50には、給水加熱器15をバイパスする前記給水加熱器バイパスライン17が接続され、この給水加熱器バイパスライン17に前記流量調節弁18が配設される。この流量調節弁18は、給水加熱器バイパスライン17を流れるバイパス流量を調節することで、給水加熱器15の出口からの給水温度を制御するものである。この流量調節弁18の開度は、前記給水温度計19、大気温度計20a、大気湿度計20b及び排ガス露点計21からの計測データに基づいて前記制御装置22により制御される。
【0026】
つまり、給水温度計19は、給水系16の主給水管50における給水加熱器15の下流側で、且つ給水加熱器バイパスライン17の主給水管50への接続点Aよりも下流側に設置され、給水加熱器バイパスライン17からのバイパス流が合流した後の給水の温度を計測する。また、大気温度計20a、大気湿度計20bは、排熱回収ボイラ12の煙突39の近傍に設置されて、大気温度、大気湿度をそれぞれ計測する。
【0027】
排ガス露点計21は、排熱回収ボイラ12の排ガス煙道38または煙突39内に設置されて、排熱回収ボイラ12から排出される排気ガスの露点を計測する。この排ガス露点計21は、実際には、上記排ガスの温度と湿度に基づいて排ガスの露点を算出して求める。ここで、排ガスの露点とは、排ガス中の水蒸気が凝縮するときの温度である。
【0028】
制御装置22は、大気温度計20a、大気湿度計20bにてそれぞれ計測された大気温度、大気湿度から大気の露点を算出する。この大気の露点は、大気中の水蒸気が凝縮する温度である。そして、制御装置22は、排ガス露点計21にて計測された排ガスの露点と、算出した上記大気の露点とから給水温度の目標値を演算する。制御装置22は、大気の露点が排ガスの露点よりも高い場合には、排ガスの露点から給水温度の下限値を定め、大気の露点から給水温度の上限値を定め、これらの給水温度の下限値と上限値との範囲内で給水温度の目標値を設定する。
【0029】
排ガスの露点から給水温度の下限値を設定する理由は、排熱回収ボイラ12の低圧節炭器37内における配管内を流れる給水の温度が上記配管外を流れる排ガスの露点よりも低下すると、排ガス中の水蒸気が凝縮して、上記配管の外表面に結露が発生するからである。
【0030】
また、大気の露点から給水温度の上限値を設定する理由は次の通りである。つまり、排熱回収ボイラ12の低圧節炭器37内における配管内を流れる給水の温度が上昇すると、上記配管外を流れる排ガスとの熱交換が低下して排ガス温度が低下せず、高温状態に維持される。この高温の排ガスが排熱回収ボイラ12の煙突39から大気中へ放出されたときには白煙が生じ易くなるため、給水温度を大気の露点以下にして白煙の発生を抑制する必要があるからである。
【0031】
また、制御装置22は、大気温度が低下して大気の露点が排ガスの露点よりも低いかまたは等しくなった場合には、給水温度の目標値を排ガスの露点に基づいて、つまり排ガスの露点に対し所定の余裕温度を加味して設定する。この場合には、白煙の発生よりも低圧節炭器37内の配管外表面の結露防止が優先される。
【0032】
制御装置22は、上述のようにして給水温度の目標値を設定し、給水温度計19にて計測される、給水加熱器バイパスライン17からのバイパス流合流後の給水温度を上記給水温度の目標値に制御すべく、給水加熱器バイパスライン17の流量調節弁18の開度を調節して、給水加熱器15の出口の給水温度を制御する。尚、給水温度の目標値は、一定の値でもよいが、所定範囲の値であってもよい。
【0033】
以上のように構成されたことから、本実施の形態によれば、次の効果(1)及び(2)を奏する。
【0034】
(1)給水加熱器15により加熱された給水を主給水管50を経て排熱回収ボイラ12の低圧節炭器37へ供給することから、この低圧節炭器37内配管の内外をそれぞれ流れる給水と排ガスの温度差を低減でき、上記配管の外表面における結露の発生を防止して、この配管の腐食を防止できる。特に、排ガスが硫黄分を含む場合にも、結露の発生による硫酸の生成が抑制されるので、上記配管の腐食を確実に防止できる。
【0035】
(2)給水加熱器バイパスライン17の流量調節弁18が給水加熱器バイパスライン17を流れる給水(バイパス流)の流量を調節することで、給水加熱器15の出口の給水温度が、排ガスとの熱交換が促進される温度に制御される。この結果、排熱回収ボイラ12の排ガス煙道38及び煙突39を流れる排ガスの温度低下が促進されて、煙突39からの白煙の発生を抑制できる。
【0036】
[B]第2の実施の形態(図2)
図2は、本発明に係るコンバインドサイクル発電設備における第2の実施の形態を示す系統図である。この第2の実施の形態において、前記第1の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
【0037】
本実施の形態のコンバインドサイクル発電設備60が前記実施の形態のコンバインドサイクル発電設備10と異なる点は給水加熱システム61の構成であり、前記実施の形態の給水加熱システム14の給水加熱器バイパスライン17に代えて給水再循環ライン62を備え、この給水再循環ライン62に流量調節弁63が配設され、更に給水加熱器15が省略された点である。
【0038】
つまり、給水再循環ライン62は、給水系16の主給水管50に接続され、排熱回収ボイラ12の低圧節炭器37、低圧蒸発器36及び中圧節炭器35にて加熱された給水の一部を、中圧節炭器35から給水系16へ再循環させるものである。また、流量調節弁63は、給水再循環ライン62を流れる給水再循環流量を調節することで、給水系16の主給水管50から排熱回収ボイラ12の低圧節炭器37へ供給される給水の温度を制御する。
【0039】
この流量調節弁63の開度は、前記実施の形態の場合と同様にして、給水温度計19、外気温度計20a、大気湿度計20b及び排ガス露点計21からの計測データに基づいて制御装置22により制御される。但し、給水温度計19は、主給水管50における給水再循環ライン62の接続点Bの下流側に設置され、給水再循環ライン62からの給水再循環流が合流した後の給水の温度を計測する。
【0040】
制御装置22は、大気の露点が排ガスの露点よりも高い場合には、排ガスの露点から給水温度の下限値を定め、大気の露点から給水温度の上限値を定め、これらの給水温度の下限値と上限値との範囲内で給水温度の目標値を設定する。また、制御装置22は、大気の露点が排ガスの露点よりも低いかまたは等しい場合には、給水温度の目標値を排ガスの露点に基づいて、つまり排ガスの露点に対し所定の余裕温度を加味して設定する。
【0041】
制御装置22は、上述のようにして給水温度の目標値を設定し、給水温度計19にて計測される、給水再循環ライン62からの給水再循環流合流後の給水温度を上記給水温度の目標値に制御すべく、給水再循環ライン62の流量調節弁63の開度を調節して、給水系16の主給水管50から排熱回収ボイラ12の低圧節炭器37へ供給される給水の温度を制御する。尚、給水温度の目標値は、一定の値でもよいが所定範囲の値であってもよい。
【0042】
以上のことから、本実施の形態によれば、次の効果(3)及び(4)を奏する。
【0043】
(3)給水再循環ライン62からの加熱された給水を排熱回収ボイラ12の低圧節炭器37へ供給することから、この低圧節炭器37内配管の内外をそれぞれ流れる給水と排ガスの温度差を低減でき、上記配管の外表面における結露の発生を防止して、この配管の腐食を防止できる。特に、排ガスが硫黄分を含む場合にも、結露の発生による硫酸の生成が抑制されるので、上記配管の腐食を確実に防止できる。
【0044】
(4)給水再循環ライン62の流量調節弁63が給水再循環ライン62を流れる給水再循環流量を調節することで、排熱回収ボイラ12の低圧節炭器37へ供給される給水温度が、排ガスとの熱交換が促進される温度に制御される。この結果、排熱回収ボイラ12の排ガス煙道38及び煙突39を流れる排ガスの温度低下が促進されて、煙突39からの白煙の発生を抑制できる。
【0045】
以上、本発明を上記実施の形態に基づいて説明したが、本発明はこれに限定されるものではない。
【0046】
例えば、第2の実施の形態において、給水再循環ライン62の合流点Bの下流側に、第1の実施の形態の給水加熱器15を設置し、更にこの給水加熱器15をバイパスする、流量調節弁18を備えた給水加熱器バイパスライン17を配設し、この流量調節弁18の開度を前記第1の実施の形態と同様に制御してもよい。この場合には、第1及び第2の実施の形態の組み合わせにより、給水系16を流れる給水が給水再循環流と給水加熱器15により加熱されることになるので、給水加熱器15の容量を第1の実施の形態の場合よりも低減させることができる。
【符号の説明】
【0047】
10 コンバインドサイクル発電設備
11 ガスタービン
12 排熱回収ボイラ
13 蒸気タービン
15 給水加熱器
16 給水系
17 給水加熱器バイパスライン
18 流量調節弁
19 給水温度計
20a 大気温度計
20b 大気湿度計
21 排ガス露点計
22 制御装置
27 発電機
43 発電機
60 コンバインドサイクル発電設備
62 給水再循環ライン
63 流量調節弁

【特許請求の範囲】
【請求項1】
ガスタービン、排熱回収ボイラ及び蒸気タービンを有し、前記ガスタービンからの排ガスを前記排熱回収ボイラに導き給水を加熱して蒸気とし、この蒸気を前記蒸気タービンに導いて発電を行うコンバインドサイクル発電設備において、
前記蒸気タービンからの抽気を導いて前記給水を加熱する給水加熱器を備え、この加熱された給水を前記排熱回収ボイラへ供給する給水系と、
この給水系に接続されて前記給水加熱器をバイパスする給水加熱器バイパスラインと、
この給水加熱器バイパスラインに設けられ、この給水加熱器バイパスラインを流れるバイパス流量を調節することで、前記給水加熱器の出口の給水温度を制御する流量調節弁と、有することを特徴とするコンバインドサイクル発電設備。
【請求項2】
前記給水系における給水加熱器の下流側で、且つ給水加熱器バイパスラインの接続点の下流側に設けられて給水温度を計測する給水温度計と、
大気温度を計測する大気温度計と、
大気湿度を計測する大気湿度計と、
排熱回収ボイラから排出される排ガスの露点を計測する排ガス露点計と、
前記大気温度及び前記大気湿度から求めた大気の露点と前記排ガスの露点とから給水温度の目標値を演算し、前記給水温度計にて計測される給水温度を前記給水温度の目標値に制御すべく流量調節弁の開度を調節する制御装置と、を有することを特徴とする請求項1に記載のコンバインドサイクル発電設備。
【請求項3】
ガスタービン、排熱回収ボイラ及び蒸気タービンを有し、前記ガスタービンからの排ガスを前記排熱回収ボイラに導き給水を加熱して蒸気とし、この蒸気を前記蒸気タービンに導いて発電を行うコンバインドサイクル発電設備において、
前記排熱回収ボイラへ給水を供給する給水系に接続されて、前記排熱回収ボイラにて加熱された給水の一部を再循環させる給水再循環ラインと、
この給水再循環ラインに設けられ、この給水再循環ラインを流れる給水再循環流量を調節することで、前記給水系から前記排熱回収ボイラへ供給される給水温度を制御する流量調節弁と、
前記給水系における前記給水再循環ラインの接続点の下流側に設けられて給水温度を計測する給水温度計と、
大気温度を計測する大気温度計と、
大気湿度を計測する大気湿度計と、
前記排熱回収ボイラから排出される排ガスの露点を計測する排ガス露点計と、
前記大気温度及び前記大気湿度から求めた大気の露点と前記排ガスの露点とから給水温度の目標値を演算し、前記給水温度計にて計測される給水温度を前記給水温度の目標値に制御すべく前記流量調節弁の開度を調節する制御装置と、を有することを特徴とするコンバインドサイクル発電設備。
【請求項4】
前記制御装置は、大気の露点が排ガスの露点よりも高い場合には、給水温度の目標値を前記大気の露点と前記排ガスの露点との間の値に設定することを特徴とする請求項2または3に記載のコンバインドサイクル発電設備。
【請求項5】
前記制御装置は、大気の露点が排ガスの露点よりも低いかまたは等しい場合には、給水温度の目標値を前記排ガスの露点に基づいて設定することを特徴とする請求項2または3に記載のコンバインドサイクル発電設備。
【請求項6】
ガスタービン、排熱回収ボイラ及び蒸気タービンを有し、前記ガスタービンからの排ガスを前記排熱回収ボイラに導き給水を加熱して蒸気とし、この蒸気を前記蒸気タービンに導いて発電を行うコンバインドサイクル発電設備の給水加熱方法において、
前記蒸気タービンからの抽気を導いて前記給水を加熱する給水加熱器を備え、この加熱された給水を前記排熱回収ボイラへ供給する給水系を有し、
前記給水系に接続されて前記給水加熱器をバイパスする給水加熱器バイパスラインを流れるバイパス流量を調節することで、前記給水加熱器の出口の給水温度を、大気の露点と排ガスの露点とから求めた給水温度の目標値に制御することを特徴とするコンバインドサイクル発電設備の給水加熱方法。
【請求項7】
ガスタービン、排熱回収ボイラ及び蒸気タービンを有し、前記ガスタービンからの排ガスを前記排熱回収ボイラに導き給水を加熱して蒸気とし、この蒸気を前記蒸気タービンに導いて発電を行うコンバインドサイクル発電設備の給水加熱方法において、
前記排熱回収ボイラへ給水を供給する給水系に接続されて、前記排熱回収ボイラにて加熱された給水の一部を再循環させる給水再循環ラインを有し、
この給水再循環ラインを流れる給水再循環流量を調節することで、前記給水系から前記排熱回収ボイラへ供給される給水温度を、大気の露点と排ガスの露点とから求めた給水温度の目標値に制御することを特徴とするコンバインドサイクル発電設備の給水加熱方法。
【請求項8】
前記給水温度の目標値は、大気の露点が排ガスの露点よりも高い場合には、前記大気の露点と前記排ガスの露点との間の値に設定することを特徴とする請求項6または7に記載のコンバインドサイクル発電設備の給水加熱方法。
【請求項9】
前記給水温度の目標値は、大気の露点が排ガスの露点よりも低いかまたは等しい場合には、前記排ガスの露点に基づいて設定することを特徴とする請求項6または7に記載のコンバインドサイクル発電設備の給水加熱方法。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2011−127786(P2011−127786A)
【公開日】平成23年6月30日(2011.6.30)
【国際特許分類】
【出願番号】特願2009−284043(P2009−284043)
【出願日】平成21年12月15日(2009.12.15)
【出願人】(000003078)株式会社東芝 (54,554)
【Fターム(参考)】