説明

フォトマスクブランクの製造方法及びフォトマスクの製造方法、並びに半導体装置の製造方法

【課題】遮光膜のパターニング時に良好な平坦度を有することで、良好なマスクパターン精度及びパターン転写精度が得られるフォトマスクブランクの製造方法を提供する。
【解決手段】透光性基板1上に少なくともクロムと窒素を含む遮光膜2を有するフォトマスクブランクの製造方法である。遮光膜2を形成した後、該遮光膜2に加わる熱処理によって生じる膜応力変化により得られるフォトマスクブランクの平坦度が所定値以下になるように、上記膜応力変化とは逆方向の所望の膜応力を有する遮光膜2となるように、スパッタリング成膜中に含まれる窒素ガス、窒素化合物ガス、ヘリウムガスのうち少なくとも一のガスの流量を調整して遮光膜2を形成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、遮光膜パターン形成のためのドライエッチング処理用に遮光膜のドライエッチング速度を最適化させたフォトマスクブランク及びフォトマスクの製造方法、並びに半導体装置の製造方法に関する。
【背景技術】
【0002】
一般に、半導体装置の製造工程では、フォトリソグラフィー法を用いて微細パターンの形成が行われている。また、この微細パターンの形成には通常何枚ものフォトマスクと呼ばれている基板が使用される。このフォトマスクは、一般に透光性のガラス基板上に、金属薄膜等からなる遮光性の微細パターンを設けたものであり、このフォトマスクの製造においてもフォトリソグラフィー法が用いられている。
【0003】
フォトリソグラフィー法によるフォトマスクの製造には、ガラス基板等の透光性基板上に遮光膜を有するフォトマスクブランクが用いられる。このフォトマスクブランクを用いたフォトマスクの製造は、フォトマスクブランク上に形成されたレジスト膜に対し、所望のパターン露光を施す露光工程と、所望のパターン露光に従って前記レジスト膜を現像してレジストパターンを形成する現像工程と、レジストパターンに沿って前記遮光膜をエッチングするエッチング工程と、残存したレジストパターンを剥離除去する工程とを有して行われている。上記現像工程では、フォトマスクブランク上に形成されたレジスト膜に対し所望のパターン露光を施した後に現像液を供給して、現像液に可溶なレジスト膜の部位を溶解し、レジストパターンを形成する。また、上記エッチング工程では、このレジストパターンをマスクとして、たとえばウェットエッチングによって、レジストパターンの形成されていない遮光膜が露出した部位を溶解し、これにより所望のマスクパターンを透光性基板上に形成する。こうして、フォトマスクが出来上がる。
【0004】
特許文献1には、ウェットエッチングに適したマスクブランクとして、透明基板上に、クロム炭化物を含有するクロム膜を遮光膜として備えたフォトマスクブランクが記載されている。また、特許文献2には、同じくウェットエッチングに適したマスクブランクとして、透明基板上に、ハーフトーン材料膜と金属膜との積層膜を有し、この金属膜は、表面側から透明基板側に向かってエッチングレートが異なる材料で構成される領域が存在しており、例えばCrN/CrCの金属膜とCrONの反射防止膜からなるハーフトーン型位相シフトマスクブランクが記載されている。
【0005】
ところで、特許文献1,2に記載されているようなクロム系遮光膜の場合、成膜時に結晶粒同士が引っ張り合うために、引っ張り方向の膜応力が発生することが知られている。特に、クロムに炭素を含む炭化クロム膜や、クロムに酸素を含む酸化クロム膜の場合に、膜応力の発生の問題が顕著になることも知られている。このように膜応力を持った遮光膜を有するフォトマスクブランクは、基板の反りが発生している。この基板の反りのために平坦度の悪いフォトマスクブランクを用いてフォトマスクを作製すると、パターニング精度が設計通りにならず、このようなフォトマスクを使用して半導体基板(シリコンウェハ)上にパターン転写を行なうと、設計通りのパターンが半導体基板上に形成されず、動作不良の原因となる。この問題は、近年のパターンの微細化に伴って深刻化している。
従って、クロム系遮光膜の膜応力は限りなく零(0)に近いことが理想的である。クロム系遮光膜の膜応力の低減については、例えば特許文献3に提案されている。
即ち、特許文献3には、成膜時の雰囲気ガス中にヘリウムを導入することで、低膜応力の遮光膜を形成したフォトマスクブランクの製造方法が開示されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特公昭62−32782号公報
【特許文献2】特許第2983020号公報
【特許文献3】特許第3276954号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、本発明者の検討によると、クロム系遮光膜に対して加熱処理を行うと、引っ張り方向に応力を生じることが判明した。基板上に遮光膜を形成したフォトマスクブランクを用いてフォトマスクを製造する場合、遮光膜上に形成するレジスト膜に対し、レジスト膜の付着力向上等を目的にベーク処理(加熱処理)が行われる。従って、たとえば上述の特許文献3に開示された方法により、基板上に引っ張り方向の膜応力を出来るだけ低減させたクロム系遮光膜を形成できたとしても、その後のベーク処理によって、クロム系遮光膜には更に引っ張り方向の応力が生じてしまい、結局フォトマスクブランクとして平坦度の良好なものが得られないという問題があった。
【0008】
そこで本発明は、従来の問題点を解決するべくなされたものであり、その目的とするところは、遮光膜のパターニング時に良好な平坦度を有することで、良好なマスクパターン精度及びパターン転写精度が得られるフォトマスクブランク及びその製造方法、フォトマスクの製造方法、並びに半導体装置の製造方法を提供することである。
【課題を解決するための手段】
【0009】
上記課題を解決するため、本発明は以下の構成を有する。
(構成1)透光性基板上に少なくともクロムを含む遮光膜を有するフォトマスクブランクであって、前記遮光膜上に形成されるレジスト膜に応じた加熱処理による前記遮光膜の膜応力変化を見込んで、この膜応力変化とは反対方向の所望の膜応力を生じる遮光膜を形成してなることを特徴とするフォトマスクブランク。
(構成2)前記遮光膜中に含まれる窒素の含有量を制御して所望の膜応力となるようにしたことを特徴とする構成1記載のフォトマスクブランク。
(構成3)透光性基板上に、窒素を含む雰囲気中で、クロムからなるターゲットを用いたスパッタリング成膜により、クロムと窒素を含む遮光膜を形成する工程を有するフォトマスクブランクの製造方法であって、前記遮光膜に加わる熱処理により生じる膜応力変化に対して相殺するように、前記遮光膜中に含まれる窒素の含有量を調整することを特徴とするフォトマスクブランクの製造方法。
【0010】
(構成4)透光性基板上に、窒素を含む雰囲気中で、クロムからなるターゲットを用いたスパッタリング成膜により、クロムと窒素を含む遮光膜を形成する工程を有するフォトマスクブランクの製造方法であって、前記遮光膜を形成した後、該遮光膜に加わる熱処理によって生じる膜応力変化により得られるフォトマスクブランクの平坦度が所定値以下になるように、前記膜応力変化とは逆方向の所望の膜応力を有する遮光膜となるように、前記遮光膜中に含まれる窒素の含有量を調整することを特徴とするフォトマスクブランクの製造方法。
(構成5)前記熱処理は、前記遮光膜上に形成するレジスト膜形成前、又はレジスト膜形成後の加熱処理であることを特徴とする構成3又は4記載のフォトマスクブランクの製造方法。
(構成6)前記遮光膜を形成する前の基板の平坦度と、前記遮光膜を形成した後、前記熱処理を施した遮光膜付き基板の平坦度との差が、0.10μm以下であることを特徴とする構成3乃至5の何れか一に記載のフォトマスクブランクの製造方法。
【0011】
(構成7)前記遮光膜は、圧縮応力をもつように窒素の含有量を調整することを特徴とする構成3乃至6の何れか一に記載のフォトマスクブランクの製造方法。
(構成8)前記透光性基板と前記遮光膜との間に、ハーフトーン型位相シフター膜を形成することを特徴とする構成3乃至7の何れか一に記載のフォトマスクブランクの製造方法。
(構成9)前記ハーフトーン型位相シフター膜の露光波長における透過率が10%以上40%以下であることを特徴とする構成3乃至8の何れか一に記載のフォトマスクブランクの製造方法。
(構成10)前記遮光膜は、前記ハーフトーン型位相シフター膜との組み合わせで、光学濃度で2.5以上となる膜厚であることを特徴とする構成8又は9記載のフォトマスクブランクの製造方法。
【0012】
(構成11)前記フォトマスクブランクは、前記遮光膜上に形成されるレジストパターンをマスクにしてドライエッチング処理により、前記遮光膜をパターニングするフォトマスクの作製方法に対応するドライエッチング処理用のフォトマスクブランクであることを特徴とする構成3乃至10の何れか一に記載のフォトマスクブランクの製造方法。
(構成12)構成3乃至11の何れか一に記載の製造方法により得られるフォトマスクブランクにおける前記遮光膜を、ドライエッチング処理によりパターニングする工程を有することを特徴とするフォトマスクの製造方法。
(構成13)構成8乃至10の何れか一に記載の製造方法により得られるフォトマスクブランクにおける前記遮光膜を、ドライエッチング処理によりパターニングし、前記ハーフトーン型位相シフター膜上に遮光膜パターンを形成した後、該遮光膜パターンをマスクにして、前記ハーフトーン型位相シフター膜をドライエッチング処理によりパターニングし、前記透光性基板上にハーフトーン型位相シフター膜パターンを形成することを特徴とするフォトマスクの製造方法。
【0013】
(構成14)透光性基板上に、窒素ガス、窒素化合物ガスのうち少なくとも一のガス及びヘリウムガスを含む雰囲気中で、クロム又はクロムを主成分とするターゲットを用いたスパッタリング成膜により、クロムと窒素を含む遮光膜を形成する工程を有するフォトマスクブランクの製造方法であって、前記前記遮光膜を形成した後、該遮光膜に加わる熱処理によって生じる膜応力変化により得られるフォトマスクブランクの平坦度が所定値以下になるように、前記膜応力変化とは逆方向の所望の膜応力を有する遮光膜となるように、前記スパッタリング成膜中に含まれる前記窒素ガス、窒素化合物ガス、ヘリウムガスのうち少なくとも一のガスの流量を調整することを特徴とするフォトマスクブランクの製造方法。
(構成15)前記熱処理は、前記遮光膜上に形成するレジスト膜形成前、又はレジスト膜形成後の加熱処理であることを特徴とする構成14記載のフォトマスクブランクの製造方法。
(構成16)前記遮光膜は、圧縮応力をもつように前記窒素ガス、窒素化合物ガス、ヘリウムガスのうち少なくとも一のガスの流量を調整することを特徴とする構成14又は15に記載のフォトマスクブランクの製造方法。
【0014】
(構成17)前記遮光膜は、該遮光膜上に形成するレジストとの選択比が1を超えるように、前記窒素ガス、窒素化合物ガス、ヘリウムガスのうち少なくとも一のガスの流量を調整することを特徴とする構成14乃至16の何れか一に記載のフォトマスクブランクの製造方法。
(構成18)前記透光性基板と前記遮光膜との間に、ハーフトーン型位相シフター膜を形成することを特徴とする構成14乃至17の何れか一に記載のフォトマスクブランクの製造方法。
(構成19)前記ハーフトーン型位相シフター膜の露光波長における透過率が10%以上40%以下であることを特徴とする構成14乃至18の何れか一に記載のフォトマスクブランクの製造方法。
(構成20)前記遮光膜は、前記ハーフトーン型位相シフター膜との組み合わせで、光学濃度で2.5以上となる膜厚であることを特徴とする構成18又は19記載のフォトマスクブランクの製造方法。
【0015】
(構成21) 前記フォトマスクブランクは、前記遮光膜上に形成されるレジストパターンをマスクにしてドライエッチング処理により、前記遮光膜をパターニングするフォトマスクの作製方法に対応するドライエッチング処理用のフォトマスクブランクであることを特徴とする構成14乃至20の何れか一に記載のフォトマスクブランクの製造方法。
(構成22)構成14乃至21の何れか一に記載の製造方法により得られるフォトマスクブランクにおける前記遮光膜を、ドライエッチング処理によりパターニングする工程を有することを特徴とするフォトマスクの製造方法。
(構成23)構成18乃至20の何れか一に記載の製造方法により得られるフォトマスクブランクにおける前記遮光膜を、ドライエッチング処理によりパターニングし、前記ハーフトーン型位相シフター膜上に遮光膜パターンを形成した後、該遮光膜パターンをマスクにして、前記ハーフトーン型位相シフター膜をドライエッチング処理によりパターニングし、前記透光性基板上にハーフトーン型位相シフター膜パターンを形成することを特徴とするフォトマスクの製造方法。
(構成24)構成12、13、22、23のうち何れか一に記載のフォトマスクにおける前記遮光膜パターン又は前記ハーフトーン型位相シフター膜パターンをフォトリソグラフィー法により、半導体基板上にパターンを転写することを特徴とする半導体装置の製造方法。
【0016】
構成1にあるように、本発明のフォトマスクブランクは、透光性基板上に少なくともクロムを含む遮光膜を有するフォトマスクブランクであって、前記遮光膜上に形成されるレジスト膜に応じた加熱処理による遮光膜の膜応力変化を見込んで、この膜応力変化とは反対方向の所望の膜応力を生じる遮光膜を形成したものである。
このように、あらかじめ加熱処理による遮光膜の膜応力変化を見込んで、この膜応力変化とは反対方向の所望の膜応力を生じるクロム系遮光膜を形成することにより、その後の加熱処理により生じる遮光膜の膜応力変化によって遮光膜の膜応力を実質的に相殺できる。その結果、クロム系遮光膜を形成しても遮光膜上に形成されるレジスト膜に応じた加熱処理により、遮光膜のパターニング時に平坦度の良好なフォトマスクブランクが得られる。要するに、本発明によるフォトマスクブランクは、遮光膜上にレジスト膜を形成し、必要な加熱処理を施した時点で遮光膜には実質的に膜応力がなく、平坦度の良好な状態となるため、続いて遮光膜のパターニングを行なうので、良好なマスクパターン精度が得られる。
【0017】
上記レジスト膜に応じた加熱処理は、遮光膜上に形成されるレジスト膜のベーク処理である。フォトマスクブランクを用いてフォトマスクを作製する場合、通常、遮光膜上にレジスト膜を形成する前と後、或いは、レジスト膜を形成した後に、それぞれベーク処理を行っている。ベーク処理の加熱条件は、レジストの種類によって決定されるが、概ね120℃以上の高温で処理される。このような高温度での加熱処理によって、クロム系遮光膜は応力変化を生じ、遮光膜を備えた基板の平坦度が悪化する方向に大きく変化するため、本発明は好適である。
【0018】
構成2にあるように、遮光膜中に含まれる窒素の含有量を制御することで遮光膜の膜応力を調整し、所望の膜応力を持たせることができる。つまり、クロムを含む遮光膜の場合、通常は加熱処理による引っ張り方向の膜応力変化を生じるため、予め遮光膜にこれとは反対の圧縮方向に所望の膜応力を持たせるために、遮光膜中に含まれる窒素の含有量を制御することで成膜時の遮光膜の膜応力を調整する。通常、遮光膜形成後の加熱処理(ベーク処理)条件において最も高い温度での加熱処理による膜応力変化を考慮して、窒素の含有量を制御することが好適である。
構成3にあるように、本発明のフォトマスクブランクの製造方法は、透光性基板上に、窒素を含む雰囲気中で、クロムからなるターゲットを用いたスパッタリング成膜により、クロムと窒素を含む遮光膜を形成する工程を有するフォトマスクブランクの製造方法であって、前記遮光膜に加わる熱処理により生じる膜応力変化に対して相殺するように、前記遮光膜中に含まれる窒素の含有量を調整することを特徴とする。
【0019】
また、構成4にあるように、本発明のフォトマスクブランクの製造方法は、透光性基板上に、窒素を含む雰囲気中で、クロムからなるターゲットを用いたスパッタリング成膜により、クロムと窒素を含む遮光膜を形成する工程を有するフォトマスクブランクの製造方法であって、前記遮光膜を形成した後、該遮光膜に加わる熱処理によって生じる膜応力変化により得られるフォトマスクブランクの平坦度が所定値以下になるように、前記膜応力変化とは逆方向の所望の膜応力を有する遮光膜となるように、前記遮光膜中に含まれる窒素の含有量を調整することを特徴とする。
これにより、遮光膜上にレジスト膜を形成し、必要な加熱処理を施した時点で遮光膜には実質的に膜応力がなく、平坦度の良好なフォトマスクブランクが得られる。
【0020】
また、構成5にあるように、遮光膜に対する熱処理は、遮光膜上に形成するレジスト膜形成前、又はレジスト膜形成後に行われる加熱処理とする。一般に、フォトマスクブランクの製造工程において、遮光膜形成後に行われる高温度での加熱処理は、レジスト膜形成前に行われる付着力向上を目的としたベーク処理、又はレジスト膜形成後のプリベーク処理であり、それらの加熱処理により遮光膜の膜応力変化が大きいので、その加熱処理に合わせて遮光膜に含まれる窒素の含有量を調整することが好適である。
具体的には、構成6にあるように、本発明のフォトマスクブランクは、前記遮光膜を形成する前の基板の平坦度と、前記遮光膜を形成した後、前記熱処理(ベーク処理)を施した遮光膜付き基板の平坦度との差が、0.10μm以下であることが好ましい。これにより、遮光膜を形成する前の基板の平坦度に対して、遮光膜を形成し、前記加熱処理(ベーク処理)を施した後に、基板(遮光膜付き基板)の平坦度の変化量が、0.10μm以下という非常に小さくなるため、遮光膜のパターニング時に良好な平坦度が得られるフォトマスクブランク、フォトマスクとすることができる。良好な平坦度を有するフォトマスクは、半導体基板上に形成されたレジスト膜にパターンを転写する露光装置のマスクを保持するマスクホルダーに真空チャックなどの方法でセットした際、フォトマスクの平坦度の変化が抑えられるので、パターン転写の位置精度が良好となるので好ましい。
【0021】
また、構成7にあるように、クロムを含む遮光膜は、加熱処理により引張応力の方向に応力が生じるので、予め、圧縮応力を持つように窒素の含有量を調整することが好適である。
また、構成8にあるように、透光性基板と遮光膜との間に、ハーフトーン型位相シフター膜を形成しても良い、このようなハーフトーン型位相シフター膜を備えたハーフトーン型位相シフトマスクは、特に解像度を向上させることができるので、マスクパターンの微細化にとっても好適である。その場合、構成9にあるように、上記ハーフトーン型位相シフター膜の露光光に対する透過率が10%以上40%以下である場合、本発明は特に好適である。即ち、露光光に対する高透過率の位相シフター膜を備えるハーフトーン型位相シフトマスクにおいては、位相シフター膜のマスクパターンが形成されている領域にあって、マスクパターンにおける光透過部(マスクパターンが形成されておらず透光性基板が露出している部分)との境界部を除く部分に遮光膜を形成させておくことによって、本来は完全に遮光されることが望ましい部分の遮光をより完全にするようにした構造としているため、フォトマスクブランクの平坦度の優劣がパターン精度等に及ぼす影響が大きいからである。そして、この場合の遮光膜の膜厚は、構成10にあるように、ハーフトーン型位相シフター膜との組み合わせで、光学濃度で2.5以上となる膜厚とする。
【0022】
また、構成11にあるように、本発明のフォトマスクブランクは、遮光膜上に形成されるレジストパターンをマスクにしてドライエッチング処理により、遮光膜をパターニングするフォトマスクの作製方法に対応するドライエッチング処理用のフォトマスクブランクとする。
また、構成12にあるように、構成3乃至11の何れかのフォトマスクブランクにおける遮光膜をドライエッチング処理を用いてパターニングする工程を有するフォトマスクの製造方法によれば、遮光膜が実質的に膜応力がなく、平坦度が良好なフォトマスクブランクを用いることにより、良好なマスクパターンが精度良く形成され、これによって良好なパターン転写精度が得られるフォトマスクを得ることができる。
また、構成13にあるように、構成8乃至10の何れかのフォトマスクブランクにおける遮光膜を、ドライエッチング処理によりパターニングし、ハーフトーン型位相シフター膜上に遮光膜パターンを形成した後、遮光膜パターンをマスクにして、ハーフトーン型位相シフター膜をドライエッチング処理によりパターニングし、透光性基板上にハーフトーン型位相シフター膜パターンを形成するフォトマスクの製造方法によれば、パターンの微細化に対応した、良好なパターン転写精度が得られるフォトマスクを得ることができる。
【0023】
また、構成14にあるように、本発明のフォトマスクブランクの製造方法は、透光性基板上に、窒素ガス、窒素化合物ガスのうち少なくとも一のガス及びヘリウムガスを含む雰囲気中で、クロム又はクロムを主成分とするターゲットを用いたスパッタリング成膜により、クロムと窒素を含む遮光膜を形成する工程を有するフォトマスクブランクの製造方法であって、前記遮光膜を形成した後、該遮光膜に加わる熱処理によって生じる膜応力変化により得られるフォトマスクブランクの平坦度が所定値以下になるように、前記膜応力変化とは逆方向の所望の膜応力を有する遮光膜となるように、前記スパッタリング成膜中に含まれる前記窒素ガス、窒素化合物ガス、ヘリウムガスのうち少なくとも一のガスの流量を調整することを特徴とする。
これにより、遮光膜上にレジスト膜を形成し、必要な加熱処理を施した時点で遮光膜には実質的に膜応力がなく、平坦度の良好なフォトマスクブランクが得られる。
ここで、窒素化合物ガスとは、一酸化窒素ガス(NOガス)や一酸化二窒素ガス(N2Oガス)などを言う。
【0024】
また、構成15にあるように、遮光膜に対する熱処理は、遮光膜上に形成するレジスト膜形成前、又はレジスト膜形成後に行われる加熱処理とする。一般に、フォトマスクブランクの製造工程において、遮光膜形成後に行われる高温度での加熱処理は、レジスト膜形成前に行われる付着力向上を目的としたベーク処理、又はレジスト膜形成後のプリベーク処理であり、それらの加熱処理により遮光膜の膜応力変化が大きいので、その加熱処理に合わせてスパッタリング成膜中に含まれる窒素ガス、窒素化合物ガス、ヘリウムガスのうちの一のガスの流量を調整することが好適である。
また、構成16にあるように、クロムを含む遮光膜は、加熱処理により引張応力の方向に応力が生じるので、予め、圧縮応力を持つように窒素の含有量を調整することが好適である。
また、構成17にあるように、遮光膜は、該遮光膜上に形成するレジストとの選択比が1を超えるように、前記窒素ガス、窒素化合物ガス、ヘリウムガスのうち少なくとも一のガスの流量を調整することにより、遮光膜パターンの断面形状の悪化防止や、グローバルローディング現象を抑えることができる。
【0025】
また、構成18にあるように、透光性基板と遮光膜との間に、ハーフトーン型位相シフター膜を形成しても良い、このようなハーフトーン型位相シフター膜を備えたハーフトーン型位相シフトマスクは、特に解像度を向上させることができるので、マスクパターンの微細化にとっても好適である。その場合、構成19にあるように、上記ハーフトーン型位相シフター膜の露光光に対する透過率が10%以上40%以下である場合、本発明は特に好適である。即ち、露光光に対する高透過率の位相シフター膜を備えるハーフトーン型位相シフトマスクにおいては、位相シフター膜のマスクパターンが形成されている領域にあって、マスクパターンにおける光透過部(マスクパターンが形成されておらず透光性基板が露出している部分)との境界部を除く部分に遮光膜を形成させておくことによって、本来は完全に遮光されることが望ましい部分の遮光をより完全にするようにした構造としているため、フォトマスクブランクの平坦度の優劣がパターン精度等に及ぼす影響が大きいからである。そして、この場合の遮光膜の膜厚は、構成20にあるように、ハーフトーン型位相シフター膜との組み合わせで、光学濃度で2.5以上となる膜厚とする。
【0026】
また、構成21にあるように、本発明のフォトマスクブランクは、遮光膜上に形成されるレジストパターンをマスクにしてドライエッチング処理により、遮光膜をパターニングするフォトマスクの作製方法に対応するドライエッチング処理用のフォトマスクブランクとする。
また、構成22にあるように、構成14乃至21の何れかのフォトマスクブランクにおける遮光膜をドライエッチング処理を用いてパターニングする工程を有するフォトマスクの製造方法によれば、遮光膜が実質的に膜応力がなく、平坦度が良好なフォトマスクブランクを用いることにより、良好なマスクパターンが精度良く形成され、これによって良好なパターン転写精度が得られるフォトマスクを得ることができる。
また、構成23にあるように、構成18乃至20の何れかのフォトマスクブランクにおける遮光膜を、ドライエッチング処理によりパターニングし、ハーフトーン型位相シフター膜上に遮光膜パターンを形成した後、遮光膜パターンをマスクにして、ハーフトーン型位相シフター膜をドライエッチング処理によりパターニングし、透光性基板上にハーフトーン型位相シフター膜パターンを形成するフォトマスクの製造方法によれば、パターンの微細化に対応した、良好なパターン転写精度が得られるフォトマスクを得ることができる。
また、構成24にあるように、構成12、13、22、23のうち何れか一に記載のフォトマスクにおける前記遮光膜パターン又は前記ハーフトーン型位相シフター膜パターンをフォトリソグラフィー法により、半導体基板上に転写するので、半導体基板上に形成される回路パターンに欠陥のない半導体装置を製造することができる。
【発明の効果】
【0027】
本発明によれば、遮光膜のパターニング時に良好な平坦度が得られるフォトマスクブランクを提供することができる。また、このような平坦度の良好なフォトマスクブランクを用いてフォトマスクを製造することにより、良好なマスクパターン精度が得られ、更にパターン転写時には良好なパターン転写精度が得られるフォトマスクを提供することができる。
また、本発明のフォトマスクを使用して半導体基板上へのパターン転写を行なうことにより、回路パターンの欠陥もなく、良好な半導体装置が得られる。
【図面の簡単な説明】
【0028】
【図1】本発明により得られるフォトマスクブランクの一実施の形態を示す断面図である。
【図2】フォトマスクブランクを用いたフォトマスクの製造工程を示す断面図である。
【図3】本発明の第二の実施の形態に係るフォトマスクブランク及びこのフォトマスクブランクを用いたフォトマスクの製造工程を示す断面図である。
【図4】本発明により得られるハーフトーン型位相シフトマスクの断面図である。
【図5】実施例1の遮光膜のオージェ分光分析による結果を示す図である。
【図6】ベーク温度と遮光膜付き基板の平坦度変化量との関係を示す図である。
【図7】遮光膜の成膜雰囲気における窒素流量比と膜応力との関係を示す図である。
【図8】フォトマスクブランク製造プロセスにおける基板平坦度の変化を示す図である。
【図9】遮光層の成膜雰囲気におけるヘリウムガス流量と膜応力との関係を示す図である。
【発明を実施するための形態】
【0029】
以下、図面を参照して、本発明の実施の形態を詳述する。
図1は本発明により得られるフォトマスクブランクの第一の実施の形態を示す断面図である。
図1のフォトマスクブランク10は、透光性基板1上に遮光膜2を有するバイナリマスク用フォトマスクブランクの形態のものである。
【0030】
本実施の形態の上記フォトマスクブランク10は、前記遮光膜2上に形成されるレジストパターンをマスクにしてドライエッチング処理により、前記遮光膜2をパターニングするフォトマスクの作製方法に対応するドライエッチング処理用のマスクブランクである。
ここで、透光性基板1としては、ガラス基板が一般的である。ガラス基板は、平坦度及び平滑度に優れるため、フォトマスクを使用して半導体基板上へのパターン転写を行う場合、転写パターンの歪み等が生じないで高精度のパターン転写を行える。
【0031】
上記フォトマスクブランク10において、前記遮光膜2は、その上に形成されるレジスト膜に応じた加熱処理による遮光膜の膜応力変化を見込んで、この膜応力変化とは反対方向の所望の膜応力を生じるように形成したものである。
このように、あらかじめ加熱処理による遮光膜の膜応力変化を見込んで、この膜応力変化とは反対方向の所望の膜応力を生じる遮光膜を形成することにより、その後の加熱処理により生じる遮光膜の膜応力変化によって遮光膜の膜応力を実質的に相殺でき、その結果、遮光膜のパターニング時にはフォトマスクブランクの平坦度を良好のものとすることができる。即ち、本実施の形態によるフォトマスクブランク10は、遮光膜2上にレジスト膜を形成し、必要な加熱処理を施した時点で遮光膜2に実質的に膜応力がなく、平坦度の良好な状態となるため、続いて遮光膜のパターニングを行なうことにより、良好なマスクパターン精度が得られる。
【0032】
上記レジスト膜に応じた加熱処理とは、遮光膜上に形成されるレジスト膜のベーク処理のことである。フォトマスクブランクを用いてフォトマスクを作製する場合、通常、遮光膜上にレジスト膜を形成する前と後(通常プリベークと呼ばれている)、或いは、レジスト膜を形成した後に、それぞれベーク処理を行っている。ベーク処理の加熱条件は、レジストの種類によって決定されるが、概ね120℃以上の高温で処理される。このような高温度での加熱処理によって、クロム系遮光膜は応力変化を生じ、遮光膜を備えた基板の平坦度が悪化する方向に大きく変化する。例えば後述の実施例に関わる図6を参照するとわかるように、クロム系遮光膜上に形成されるレジスト膜のベーク温度が高温になるにつれて、その遮光膜の膜応力が大きくなり、その遮光膜を備えた基板の平坦度変化量は大きくなる。尚、ここで平坦度変化量は、ベーク処理前の基板(遮光膜を備えた基板であり、以下同様である。)の平坦度を初期値とし、ベーク処理後の基板の平坦度との差とした。また、平坦度変化量の符号は、−(マイナス)の場合に引っ張り方向の応力変化を、+(プラス)の場合に圧縮方向の応力変化を示すものとする。このようなベーク温度と平坦度変化量との相関関係から、あらかじめレジスト膜に応じた加熱処理(ベーク処理)による遮光膜の膜応力変化を見込んでおく。ここで、遮光膜の膜応力が最も大きく変化する時点の膜応力変化、つまり遮光膜形成後の加熱処理(ベーク処理)条件において最も高い温度での加熱処理による膜応力変化を考慮することが望ましい。
【0033】
遮光膜2は、その上に形成されるレジスト膜に応じた加熱処理による遮光膜の膜応力変化を見込んで、この膜応力変化とは反対方向の所望の膜応力を生じるように形成されるが、そのためには例えば遮光膜中に含まれる窒素の含有量を制御することで遮光膜の膜応力を調整し、所望の膜応力を持たせることができる。つまり、クロムを含む遮光膜の場合、通常は加熱処理による引っ張り方向の膜応力変化を生じるため、予め遮光膜にこれとは反対の圧縮方向に所望の膜応力を持たせるために、遮光膜中に含まれる窒素の含有量を制御することで成膜時の遮光膜の膜応力を調整する。例えば後述の実施例に関わる図7に示したように、クロム系遮光膜のスパッタリング成膜時における雰囲気中のアルゴンガスに対する窒素ガス流量比を増加させると、成膜時の遮光膜の膜応力(圧縮応力)を調整することができる。ここで膜応力の符号は、−(マイナス)の場合に圧縮方向の膜応力を、+(プラス)の場合に引っ張り方向の膜応力を示すものとする。
【0034】
このように、遮光膜に加わる熱処理により生じる膜応力変化に対して相殺するように、遮光膜中に含まれる窒素の含有量を調整する、より具体的には、遮光膜に加わる熱処理によって生じる膜応力変化により得られるフォトマスクブランクの平坦度が所定値以下になるように、膜応力変化とは逆方向の所望の膜応力を有する遮光膜となるように、遮光膜注に含まれる窒素の含有量を調整することが好適である。窒素の含有量が調整された遮光膜と、該遮光膜に加わる熱処理によって得られるフォトマスクブランクの平坦度は、0.5μm以下となるように、窒素の含有量を調整することが好ましい。さらに好ましくは、フォトマスクブランクの平坦度が、0.25μm以下とすることが望ましい。
【0035】
また、遮光膜成膜時の雰囲気中における窒素含有量(窒素ガス流量比)と、成膜された遮光膜の膜応力との相関関係を求めておき、遮光膜上に形成されるレジスト膜に応じた加熱処理による遮光膜の膜応力変化を見込んで、この膜応力変化とは反対方向の所望の膜応力となるような、窒素の含有量を上記相関関係から求め、この窒素の含有量を含む雰囲気中で、遮光膜をスパッタリング成膜により形成する。尚、遮光膜形成後の加熱処理(ベーク処理)条件において最も高い温度での加熱処理による膜応力変化を考慮して、窒素の含有量を制御することが好適である。
上記フォトマスクブランクは、遮光膜を形成する前の基板の平坦度と、遮光膜を形成した後、前記加熱処理(ベーク処理)を施した基板の平坦度との差が、0.10μm以下であることが好ましい。これにより、遮光膜を形成する前の基板の平坦度に対して、遮光膜を形成し、前記加熱処理(ベーク処理)を施した後に、基板の平坦度の変化量が、0.10μm以下という非常に小さくなるため、遮光膜のパターニング時に良好な平坦度が得られるフォトマスクブランクとすることができる。
【0036】
また、遮光膜2は、その上に形成されるレジスト膜に応じた加熱処理による遮光膜の膜応力変化を見込んで、この膜応力変化とは反対方向の所望の膜応力を生じるように形成されるが、そのためには例えば遮光膜を形成する際の雰囲気ガスを窒素ガス、窒素化合物ガスのうち少なくとも一のガス及びヘリウムガスを含む混合ガスとし、スパッタリング成膜中に含まれる前記窒素ガス、窒素化合物ガス、ヘリウムガスのうち少なくとも一のガスの流量を制御することで遮光膜の膜応力を調整し、所望の膜応力を持たせることができる。つまり、クロムを含む遮光膜の場合、通常は加熱処理による引っ張り方向の膜応力変化を生じるため、予め遮光膜にこれとは反対の圧縮方向に所望の膜応力を持たせるために、スパッタリング成膜中に含まれる窒素ガス、窒素化合物ガス、ヘリウムガスのうち少なくとも一のガスの流量を制御することで成膜時の遮光膜の膜応力を調整する。例えば後述の実施例に関わる図9に示したように、クロム系遮光膜のスパッタリング成膜時における雰囲気中のヘリウムガス流量比を増加させると、成膜時の遮光膜の膜応力(圧縮応力)を調整することができる。ここで縦軸の平坦度変化量における符号は、−(マイナス)の場合に引張方向の膜応力を、+(プラス)の場合に圧縮方向の膜応力を示すものとする。
【0037】
このように、遮光膜に加わる熱処理により生じる膜応力変化に対して相殺するように、スパッタリング成膜中に含まれる窒素ガス、窒素化合物ガス、ヘリウムガスのうち少なくとも一のガスの流量を調整する、より具体的には、遮光膜に加わる熱処理によって生じる膜応力変化により得られるフォトマスクブランクの平坦度が所定値以下になるように、膜応力変化とは逆方向の所望の膜応力を有する遮光膜となるように、スパッタリング成膜中に含まれる窒素ガス、窒素化合物ガス、ヘリウムガスのうち少なくとも一のガスの流量を調整することが好適である。スパッタリング中に含まれる窒素ガス、窒素化合物ガス、ヘリウムガスのうち少なくとも一のガスの流量を調整してスパッタリング成膜された遮光膜と、該遮光膜に加わる熱処理によって得られるフォトマスクブランクの平坦度は、0.5μm以下となるように、ガスの流量を調整することが好ましい。さらに好ましくは、フォトマスクブランクの平坦度が、0.25μm以下とすることが望ましい。
【0038】
また、遮光膜スパッタリング成膜時の雰囲気中における窒素ガス流量比や窒素化合物ガス流量比やヘリウムガス流量比と、成膜された遮光膜の膜応力との相関関係を求めておき、遮光膜上に形成されるレジスト膜に応じた加熱処理による遮光膜の膜応力変化を見込んで、この膜応力変化とは反対方向の所望の膜応力となるような、窒素ガス流量や窒素化合物ガス流量やヘリウムガス流量を上記相関関係から求め、これらのガス流量を含む雰囲気中で、遮光膜をスパッタリング成膜により形成する。尚、遮光膜形成後の加熱処理(ベーク処理)条件において最も高い温度での加熱処理による膜応力変化を考慮して、窒素ガス流量比や窒素化合物ガス流量比やヘリウムガス流量比を制御することが好適である。
上記フォトマスクブランクは、遮光膜を形成する前の基板の平坦度と、遮光膜を形成した後、前記加熱処理(ベーク処理)を施した基板の平坦度との差が、0.10μm以下であることが好ましい。これにより、遮光膜を形成する前の基板の平坦度に対して、遮光膜を形成し、前記加熱処理(ベーク処理)を施した後に、基板の平坦度の変化量が、0.10μm以下という非常に小さくなるため、遮光膜のパターニング時に良好な平坦度が得られるフォトマスクブランクとすることができる。
【0039】
上記遮光膜2は、その上に形成されるレジストパターンをマスクにしてドライエッチングによってパターニングする際にレジスト膜の膜減りが起こっても、遮光膜のパターニング終了時点でレジスト膜が残存するように、ドライエッチング処理において、レジストとの選択比が1を超える材料とすることが好ましい。選択比は、ドライエッチング処理に対するレジストの膜減り量と遮光膜の膜減り量の比(=遮光膜の膜減り量/レジストの膜減り量)で表される。好ましくは、遮光膜パターンの断面形状の悪化防止や、グローバルローディング現象を抑える点から、遮光膜は、レジストとの選択比が1を超え10以下、更に好ましくは、1を超え5以下とすることが望ましい。
具体的な遮光膜2の材料としては、クロムと、クロム単体よりもドライエッチング速度が速くなる添加元素とを含む材料が挙げられ、このようなクロム単体よりもドライエッチング速度が速くなる添加元素としては、酸素と窒素の少なくとも一方の元素を含むことが好ましい。このうち窒素は上述のように遮光膜の膜応力を調整することにも寄与している。
【0040】
遮光膜2中に酸素を含む場合の酸素の含有量は、5〜80原子%の範囲が好適である。酸素の含有量が5原子%未満であると、クロム単体よりもドライエッチング速度が速くなる効果が得られ難い。一方、酸素の含有量が80原子%を超えると、波長200nm以下の例えばArFエキシマレーザー(波長193nm)においての吸収係数が小さくなるため、所望の光学濃度(例えば2.5以上)を得るためには膜厚を厚くする必要が生じてしまう。また、ドライエッチングガス中の酸素の量を低減するという観点からは、遮光膜2中の酸素の含有量は特に60〜80原子%の範囲とするのが好ましい。
【0041】
また、遮光膜2中に、クロム単体よりもドライエッチング速度が速くなる添加元素として、窒素を含むことも好ましい。遮光膜2中に窒素を含む場合の窒素の含有量は、20〜80原子%の範囲が好適である。窒素の含有量が20原子%未満であると、クロム単体よりもドライエッチング速度が速くなる効果が得られ難い。また、窒素の含有量が80原子%を超えると、波長200nm以下の例えばArFエキシマレーザー(波長193nm)においての吸収係数が小さくなるため、所望の光学濃度(例えば2.5以上)を得るためには膜厚を厚くする必要が生じてしまう。
上記遮光膜2の膜応力調整と、ドライエッチング速度の点を考慮すると、遮光膜2中に含まれる窒素の含有量は、30〜60原子%が好ましく、さらに好ましくは35〜50原子%が望ましい。
また、遮光膜2中に酸素と窒素の両方を含んでもよい。その場合の含有量は、酸素と窒素の合計が10〜80原子%の範囲とするのが好適である。また、遮光膜2中に酸素と窒素の両方を含む場合の酸素と窒素の含有比は、特に制約はされず、吸収係数等の兼ね合いで適宜決定される。
【0042】
上記遮光膜2の形成方法は、特に制約する必要はないが、なかでもスパッタリング成膜法が好ましく挙げられる。スパッタリング成膜法によると、均一で膜厚の一定な膜を形成することが出来るので、本発明には好適である。透光性基板1上に、スパッタリング成膜法によって上記遮光膜2を成膜する場合、スパッタターゲットとしてクロム(Cr)ターゲットを用い、チャンバー内に導入するスパッタガスは、アルゴンガスやヘリウムガスなどの不活性ガスに酸素、窒素もしくは二酸化炭素、一酸化窒素等のガスを混合したものを用いる。アルゴンガス等の不活性ガスに酸素ガス或いは二酸化炭素ガスを混合したスパッタガスを用いると、クロムに酸素を含む遮光膜を形成することができ、アルゴンガス等の不活性ガスに窒素ガスを混合したスパッタガスを用いると、クロムに窒素を含む遮光膜を形成することができ、またアルゴンガス等の不活性ガスに一酸化窒素ガスを混合したスパッタガスを用いると、クロムに窒素と酸素を含む遮光膜を形成することができる。また、アルゴンガス等の不活性ガスにメタンガスを混合したスパッタガスを用いると、クロムに炭素を含む遮光膜を形成することができる。
【0043】
上記遮光膜2の膜厚は、露光光に対して光学濃度が2.5以上となるように設定される。具体的には、上記遮光膜2の膜厚は、90nm以下であることが好ましい。その理由は、近年におけるサブミクロンレベルのパターンサイズへのパターンの微細化に対応するためには、膜厚が90nmを超えると、ドライエッチング時のパターンのマイクロローディング現象等によって、微細パターンの形成が困難となる場合が考えられるためである。膜厚をある程度薄くすることによって、パターンのアスペクト比(パターン幅に対するパターン深さの比)の低減を図ることができ、グローバルローディング現象及びマイクロローディング現象による線幅エラーを低減することができる。さらに、膜厚をある程度薄くすることによって、特にサブミクロンレベルのパターンサイズのパターンに対し、パターンへのダメージ(倒壊等)を防止することが可能になる。本発明における遮光膜2は、200nm以下の露光波長においては、膜厚を90nm以下の薄膜としても所望の光学濃度(例えば2.5以上)を得ることができる。遮光膜2の膜厚の下限については、所望の光学濃度が得られる限りにおいては薄くすることができる。
【0044】
また、上記遮光膜2は、単層であることに限られず、多層でもよいが、何れの膜にも酸素及び/又は窒素を含むことが好ましい。例えば、遮光膜2は、表層部(上層部)に反射防止層を含むものであってもよい。その場合、反射防止層としては、例えばCrO,CrCO,CrNO,CrCON等の材質が好ましく挙げられる。反射防止層を設けることによって、露光波長における反射率を例えば20%以下、好ましくは15%以下に抑えることができるので、マスクパターンを被転写体に転写するときに、投影露光面との間での多重反射を抑制し、結像特性の低下を抑制することができる。さらに、フォトマスクブランクやフォトマスクの欠陥検査に用いる波長(例えば257nm、364nm、488nm等)に対する反射率を例えば30%以下とすることが、欠陥を高精度で検出する上で望ましい。特に、反射防止層として炭素を含む膜とすることにより、露光波長に対する反射率を低減させ、且つ、上記検査波長(特に257nm)に対する反射率が20%以下とすることができるので望ましい。具体的には、炭素の含有量は、5〜20原子%とすることが好ましい。炭素の含有量が5原子%未満の場合、反射率を低減させる効果が小さくなり、また、炭素の含有量が20原子%超の場合、ドライエッチング速度が低下し、遮光膜をドライエッチングによりパターニングする際に要するドライエッチング時間が長くなり、レジスト膜を薄膜化することが困難となるので好ましくない。
【0045】
尚、反射防止層は必要に応じて透光性基板側にも設けてもよい。
また、上記遮光膜2は、クロムと、酸素、窒素、炭素等の元素の含有量が深さ方向で異なり、表層部の反射防止層と、それ以外の層(遮光層)で段階的、又は連続的に組成傾斜した組成傾斜膜としても良い。このような遮光膜を組成傾斜膜とするためには、例えば前述のスパッタリング成膜時のスパッタガスの種類(組成)を成膜中に適宜切替える方法が好適である。
【0046】
また、フォトマスクブランクとしては、後述する図2(a)にあるように、上記遮光膜2の上に、レジスト膜3を形成した形態であっても構わない。レジスト膜3の膜厚は、遮光膜のパターン精度(CD精度)を良好にするためには、できるだけ薄い方が好ましい。本実施の形態のような所謂バイナリマスク用フォトマスクブランクの場合、具体的には、レジスト膜3の膜厚は、300nm以下が好ましい。さらに好ましくは、200nm以下、さらに好ましくは150nm以下とすることが望ましい。レジスト膜の膜厚の下限は、レジストパターンをマスクにして遮光膜をドライエッチングしたときに、レジスト膜が残存するように設定される。また、高い解像度を得るために、レジスト膜3の材料はレジスト感度の高い化学増幅型レジストが好ましい。
【0047】
次に、図1に示すフォトマスクブランク10を用いたフォトマスクの製造方法を説明する。
このフォトマスクブランク10を用いたフォトマスクの製造方法は、フォトマスクブランク10の遮光膜2を、ドライエッチングを用いてパターニングする工程を有し、具体的には、フォトマスクブランク10上に形成されたレジスト膜に対し、所望のパターン露光(パターン描画)を施す工程と、所望のパターン露光に従って前記レジスト膜を現像してレジストパターンを形成する工程と、レジストパターンに沿って前記遮光膜をエッチングする工程と、残存したレジストパターンを剥離除去する工程とを有する。
【0048】
図2は、フォトマスクブランク10を用いたフォトマスクの製造工程を順に示す断面図である。
図2(a)は、図1のフォトマスクブランク10の遮光膜2上にレジスト膜3を形成した状態を示している。尚、レジスト材料としては、ポジ型レジスト材料でも、ネガ型レジスト材料でも用いることができる。
次に、図2(b)は、フォトマスクブランク10上に形成されたレジスト膜3に対し、所望のパターン露光(パターン描画)を施す工程を示す。パターン露光は、電子線描画装置などを用いて行われる。上述のレジスト材料は、電子線又はレーザーに対応する感光性を有するものが使用される。
次に、図2(c)は、所望のパターン露光に従ってレジスト膜3を現像してレジストパターン3aを形成する工程を示す。該工程では、フォトマスクブランク10上に形成したレジスト膜3に対し所望のパターン露光を施した後に現像液を供給して、現像液に可溶なレジスト膜の部位を溶解し、レジストパターン3aを形成する。
【0049】
次いで、図2(d)は、上記レジストパターン3aに沿って遮光膜2をエッチングする工程を示す。本発明のフォトマスクブランクはドライエッチングに好適であるため、エッチングはドライエッチングを用いることが好適である。該エッチング工程では、上記レジストパターン3aをマスクとして、ドライエッチングによって、レジストパターン3aの形成されていない遮光膜2が露出した部位を除去し、これにより所望の遮光膜パターン2a(マスクパターン)を透光性基板1上に形成する。
このドライエッチングには、塩素系ガス、又は、塩素系ガスと酸素ガスとを含む混合ガスからなるドライエッチングガスを用いることが本発明にとって好適である。本発明におけるクロムと酸素、窒素等の元素とを含む材料からなる遮光膜2に対しては、上記のドライエッチングガスを用いてドライエッチングを行うことにより、ドライエッチング速度を高めることができ、ドライエッチング時間の短縮化を図ることができ、断面形状の良好な遮光膜パターンを形成することができる。ドライエッチングガスに用いる塩素系ガスとしては、例えば、Cl,SiCl,HCl、CCl、CHCl等が挙げられる。
【0050】
尚、クロムに酸素を含む材料からなる遮光膜の場合、遮光膜中の酸素とクロムと塩素系ガスとの反応により塩化クロミルが生成されるため、ドライエッチングに塩素系ガスと酸素ガスの混合ガスからなるドライエッチングガスを用いる場合、遮光膜に含まれる酸素の含有量に応じ、ドライエッチングガス中の酸素の含有量を低減させることができる。このように酸素の量を低減させたドライエッチングガスを用いてドライエッチングを行うことにより、レジストパターンに悪影響を与える酸素の量を低減することができ、ドライエッチング時のレジストパターンへのダメージを防止できるため、遮光膜のパターン精度の向上したフォトマスクが得られる。なお、遮光膜に含まれる酸素の含有量によっては、ドライエッチングガス中の酸素の量をゼロとした酸素を含まないドライエッチングガスを用いることも可能である。
【0051】
図2(e)は、残存したレジストパターン3aを剥離除去することにより得られたフォトマスク20を示す。こうして、断面形状の良好な遮光膜パターンが精度良く形成されたフォトマスクが出来上がる。
尚、本発明は以上説明した実施の形態には限定されない。即ち、透光性基板上に遮光膜を形成した、所謂バイナリマスク用フォトマスクブランクに限らず、例えば、ハーフトーン型位相シフトマスクの製造に用いるためのフォトマスクブランクであってもよい。この場合、後述する第二の実施の形態に示すように、透光性基板上のハーフトーン位相シフター膜上に遮光膜が形成される構造となり、ハーフトーン位相シフター膜と遮光膜とを合わせて所望の光学濃度(例えば2.5以上)が得られればよいため、遮光膜自体の光学濃度は例えば2.5よりも小さい値とすることもできる。
【0052】
次に、図3(a)を用いて本発明のフォトマスクブランクの第二の実施の形態を説明する。
図3(a)のフォトマスクブランク30は、透光性基板1上に、ハーフトーン型位相シフター膜4とその上の遮光層5と反射防止層6とからなる遮光膜2を有する形態のものである。透光性基板1、遮光膜2については、上記第1の実施の形態で説明したので省略する。
上記ハーフトーン型位相シフター膜4は、実質的に露光に寄与しない強度の光(例えば、露光波長に対して1%〜30%)を透過させるものであって、所定の位相差を有するものである。このハーフトーン型位相シフター膜4は、該ハーフトーン型位相シフター膜4をパターニングした光半透過部と、ハーフトーン型位相シフター膜4が形成されていない実質的に露光に寄与する強度の光を透過させる光透過部とによって、光半透過部を透過して光の位相が光透過部を透過した光の位相に対して実質的に反転した関係になるようにすることによって、光半透過部と光透過部との境界部近傍を通過し回折現象によって互いに相手の領域に回りこんだ光が互いに打ち消しあうようにし、境界部における光強度をほぼゼロとし境界部のコントラスト即ち解像度を向上させるものである。
【0053】
このハーフトーン型位相シフター膜4は、その上に形成される遮光膜2とエッチング特性が異なる材料とすることが好ましい。例えば、ハーフトーン型位相シフター膜4としては、モリブデン、タングステン、タンタル、ハフニウムなどの金属、シリコン、酸素及び/又は窒素を主たる構成要素とする材料が挙げられる。また、ハーフトーン型位相シフター膜4は、単層でも複数層であっても構わない。
この第2の実施の形態における上記遮光膜2は、ハーフトーン型位相シフト膜と遮光膜とを合わせた積層構造において、露光光に対して光学濃度が2.5以上となるように設定する。そのように設定される遮光膜2の膜厚は、50nm以下であることが好ましい。その理由は、上記第1の実施の形態と同様であって、ドライエッチング時のパターンのマイクロローディング現象等によって、微細パターンの形成が困難となる場合が考えられるからである。また、本実施の形態において、上記反射防止層6上に形成するレジスト膜の膜厚は、250nm以下が好ましい。さらに好ましくは、200nm以下、さらに好ましくは150nm以下とすることが望ましい。レジスト膜の膜厚の下限は、レジストパターンをマスクにして遮光膜をドライエッチングしたときに、レジスト膜が残存するように設定される。また、前述の実施の形態の場合と同様、高い解像度を得るために、レジスト膜の材料はレジスト感度の高い化学増幅型レジストが好ましい。
【実施例】
【0054】
以下、実施例により、本発明の実施の形態を更に具体的に説明する。併せて、実施例に対する比較例についても説明する。
(実施例1)
図3は、本実施例に係るフォトマスクブランク及びこのフォトマスクブランクを用いたフォトマスクの製造工程を示す断面図である。本実施例のフォトマスクブランク30は、同図(a)に示すように、透光性基板1上に、ハーフトーン型位相シフター膜4とその上の遮光層5と反射防止層6とからなる遮光膜2からなる。
このフォトマスクブランク30は、次のような方法で製造することができる。
【0055】
主表面及び端面が精密研磨され、平坦度0.29μm、基板主表面の形状が凸形状に仕上げられた合成石英ガラスからなる透光性基板(大きさ152mm×152mm)上に、枚葉式スパッタ装置を用いて、スパッタターゲットにモリブデン(Mo)とシリコン(Si)との混合ターゲット(Mo:Si=8:92mol%)を用い、アルゴン(Ar)とヘリウム(He)と窒素(N)との混合ガス雰囲気(Ar:He:N=10体積%:40体積%:50体積%)で、反応性スパッタリング(DCスパッタリング)により、モリブデン、シリコン、及び窒素を主たる構成要素とする単層で構成されたArFエキシマレーザー(波長193nm)用ハーフトーン型位相シフター膜を膜厚69nmに形成した。その後、400℃で加熱処理を行なった。尚、このハーフトーン型位相シフター膜は、ArFエキシマレーザー(波長193nm)でおいて、透過率は5.5%、位相シフト量が略180°となっている。この位相シフター膜を形成した基板の平坦度は、0.29μm、基板主表面の形状が凸形状であった。なお、ここで平坦度とは、透光性基板主表面の表面側に任意に設けた基準面から主表面面内における表面形状の最大高さと最小高さの差(測定面から最小自乗法で算出される仮想絶対平面(焦平面)に対する測定面の最大値と最小値の差)をいう。平坦度の測定は、142mm×142mmの矩形領域を、平坦度測定機(トロペル社製)により行なった(以下同様である)。
【0056】
次に、インライン型スパッタ装置を用いて、スパッタターゲットにクロムターゲットを使用し、アルゴンと窒素とヘリウムの混合ガス(Ar:30体積%、N:30体積%、He:40体積%)雰囲気中で反応性スパッタリングを行うことによって、遮光層を形成した。尚、この遮光層成膜時、スパッタ装置のパワーは0.80kW、全ガス圧は0.17パスカル(Pa)に調整した。次に、スパッタ装置のパワーを0.33kW、全ガス圧を0.28パスカル(Pa)に調整して、アルゴンとメタンとヘリウムの混合ガス(Ar:54体積%、CH:6体積%、He:40体積%)雰囲気中で反応性スパッタリングを行い、引続き、アルゴンと一酸化窒素の混合ガス(Ar:90体積%、NO:10体積%)雰囲気中で反応性スパッタリングを行うことによって、反射防止層を形成した。このようにして、総膜厚が48nmの遮光層及び反射防止層からなる遮光膜が形成された。尚、図6に示すような、ベーク温度に対する基板(ガラス基板上に上記遮光膜を形成)のベーク処理前後の平坦度変化量の関係、及び、図7に示すような、上記遮光膜成膜時の混合ガス雰囲気中における窒素ガス流量比に対する遮光膜の膜応力の関係を予め求めておいた。そして、図6から、遮光膜に加わる最も高い加熱温度である遮光膜上に形成されるレジスト膜形成前のベーク温度(160℃)における基板平坦度変化量に基いて遮光膜の膜応力変化を見込んで、この膜応力変化とは反対方向の所望の膜応力となるような、窒素含有量(窒素ガス流量比)を図7の関係から求め、この窒素の含有量を含む雰囲気中で、上記遮光膜をスパッタリング成膜により形成した。遮光膜までを形成した基板の平坦度は、0.42μm、基板主表面の形状は凸形状となった。
【0057】
図5は本実施例の遮光膜のオージェ分光分析による結果を示す図である。この結果によると、遮光膜のうち遮光層は、クロム、窒素及び反射防止層の形成に用いた酸素、炭素が若干混入した組成傾斜膜となった。また反射防止層は、クロム、窒素、及び酸素、並びに、炭素が若干混入した組成傾斜膜となった。尚、図5は、ガラス基板上に直接形成した本実施例の遮光膜の分析結果を示している。
本実施例の遮光膜の総膜厚に占める反射防止層の膜厚の割合は、0.38であった。また、この遮光膜は、ハーフトーン型位相シフター膜との積層構造において光学濃度が3.0であった。また、この遮光膜の露光波長193nmにおける反射率は14.8%と低く抑えることができた。さらに、フォトマスクの欠陥検査波長である257nm又は364nmに対しては、それぞれ19.9%、19.7%となり、検査する上でも問題とならない反射率となった。
【0058】
次に、上記フォトマスクブランク30に対し、遮光膜上に形成するレジスト膜の付着力向上のため、レジストの種類を考慮して160℃でのベーク処理を行った。このベークを行なった時点で、基板の平坦度は、0.33μm、基板主表面の形状は凸形状となり、最初のガラス基板の平坦度に略近い良好な平坦度が得られた。次いで、上記フォトマスクブランク30上に、化学増幅型レジストである電子線レジスト膜(富士フィルムエレクトロニクスマテリアルズ社製CAR-FEP171)を形成した。レジスト膜の形成は、スピンナー(回転塗布装置)を用いて、回転塗布した。なお、上記レジスト膜を塗布後、130℃でのプリベーク処理を行った。この時点で、基板の平坦度は、0.33μm、基板主表面の形状は凸形状と変わらなかった。
尚、以上のフォトマスクブランク製造プロセスにおける基板平坦度の変化を図8に示した。Aは最初のガラス基板、Bは位相シフター膜形成後、Cは遮光膜形成後、Dはレジスト膜形成前のベーク処理後、Eはプリベーク処理後をそれぞれ表わす。
【0059】
次にフォトマスクブランク30上に形成されたレジスト膜に対し、電子線描画装置を用いて所望のパターン描画を行った後、所定の現像液で現像してレジストパターン7を形成した(図3(b)参照)。
次に、上記レジストパターン7に沿って、遮光層5と反射防止層6とからなる遮光膜2のドライエッチングを行って遮光膜パターン2aを形成した(同図(c)参照)。ドライエッチングガスとして、ClとOの混合ガス(Cl:O=4:1)を用いた。このときのエッチング速度は、遮光膜の総膜厚/エッチング時間で3.6Å/秒であり、非常に速いものであった。また、レジストの膜減り速度は2.1Å/秒であり、遮光膜のレジストとの選択比は1.7であった。
このように、遮光膜2は膜厚が薄い上にエッチング速度が速く、エッチング時間も速いことから、遮光膜パターン2aの断面形状も垂直形状となり良好となった。また、フォトマスクブランクの平坦度が良好であることから、遮光膜2のパターン精度も良好であった。
【0060】
次に、上述の遮光膜パターン2a及びレジストパターン7をマスクに、ハーフトーン型位相シフター膜4のエッチングを行ってハーフトーン型位相シフター膜パターン4aを形成した(同図(d)参照)。このハーフトーン型位相シフター膜4のエッチングにおいては、前記遮光膜パターン2aの断面形状が影響するため、遮光膜パターン2aの断面形状が良好であるために、ハーフトーン型位相シフター膜パターン4aの断面形状も良好となった。
次に、残存するレジストパターン7を剥離後、再度レジスト膜8を塗布し、転写領域内の不要な遮光膜パターンを除去するためのパターン露光を行った後、該レジスト膜8を現像してレジストパターン8aを形成した(同図(e)、(f)参照)。次いで、ウェットエッチングを用いて不要な遮光膜パターンを除去し、残存するレジストパターンを剥離して、フォトマスク40を得た(同図(g)参照)。
【0061】
尚、図3(g)に示す例は、転写領域(マスクパターン形成領域)以外の領域である周辺領域において、位相シフター膜上に遮光膜を形成したものである。この遮光膜は、この周辺領域を露光光が通過できないようにするものである。すなわち、位相シフトマスクは、縮小投影露光装置(ステッパー)のマスクとして用いられるが、この縮小投影露光装置を用いてパターン転写を行うときは、該露光装置に備えられた被覆部材(アパーチャー)によって位相シフトマスクの転写領域のみを露出させるように周縁領域を被覆して露光を行う。しかしながら、この被覆部材を、精度良く転写領域のみを露出させるように設置することは難しく、多くの場合、露出部が転写領域の外周周辺の非転写領域にはみ出てしまう。通常、マスクの非転写領域にはこのはみ出してきた露光光を遮断するために遮光膜が設けられる。ハーフトーン型位相シフトマスクの場合は、位相シフター膜が遮光機能を有しているが、この位相シフター膜は露光光を完全に遮断するものではなく、1回の露光によっては実質的に露光に寄与できない程度の僅かな量ではあるが露光光を通過させる。それゆえ、繰り返しのステップ時にこのはみ出しによって位相シフター膜を通過した露光光がすでにパターン露光がなされた領域に達して重複露光がされたり、或いは他のショットの際に同様にはみ出しによる僅かな露光がなされた部分に重ねて露光する場合が生じる。この重複露光によって、それらが加算されて露光に寄与する量に達して、欠陥が発生する場合があった。マスクパターン形成領域以外の領域である周辺領域において位相シフター膜上に形成された上記遮光膜はこの問題を解消するものである。また、マスクの周辺領域に識別用の符号等を付す場合に、遮光膜があると、付された符号等を認識し易くなる。
【0062】
(実施例2)
実施例1と同じ平坦度0.29μm、基板主表面の形状が凸形状に仕上げられた合成石英ガラスからなる透光性基板上に、枚葉式スパッタ装置を用いて、スパッタターゲットにタンタル(Ta)とハフニウム(Hf)との混合ターゲット(Ta:Hf=90:10at%)を用い、アルゴン(Ar)ガス雰囲気中で、DCマグネトロンスパッタリングにより、膜厚75ÅのTaHf膜を形成し、次に、Siターゲットを用い、アルゴンと酸素と窒素の混合ガス雰囲気中で、反応性スパッタリングにより、膜厚740ÅのSiON膜(Si:O:N=40:27:33at%)を形成した。つまり、TaHf膜を下層とし、SiON膜を上層とする二層で構成されたArFエキシマレーザー(波長193nm)用ハーフトーン型位相シフター膜を形成した。その後、420℃で加熱処理を行った。尚、このハーフトーン型位相シフター膜は、ArFエキシマレーザー(波長193nm)でおいて、透過率は15.0%と高透過率を有し、位相シフト量が略180°となっている。
【0063】
次に、上記ハーフトーン型位相シフター膜上に、実施例1と全く同様にして総膜厚が48nmの遮光層及び反射防止層からなる遮光膜を形成した。遮光膜形成後、基板平坦度は0.38μm、基板主表面の形状が凸形状となった。
このようにして得られたハーフトーン型位相シフトマスク用のフォトマスクブランクを用いて、実施例1と同様に、ハーフトーン型位相シフトマスクを作製した。尚、プリベーク処理後の基板平坦度は0.35μm、基板主表面の形状が凸形状となり、良好な平坦度が得られた。また、本実施例では、図4に示すように、転写領域内の遮光膜パターンを除去せずに、マスクパターンにおける光透過部(マスクパターンが形成されておらず透明基板が露出している部分)との境界部を除く部分に遮光膜を形成させておいた。
【0064】
図4に示すハーフトーン型位相シフトマスクは、位相シフター膜のマスクパターンが形成されている領域にあって、マスクパターンにおける光透過部(マスクパターンが形成されておらず透明基板が露出している部分)との境界部を除く部分に遮光膜を形成させておくことによって、本来は完全に遮光されることが望ましい部分の遮光をより完全にするようにしたものである。すなわち、マスクパターンが形成されている領域内にあっては、マスクパターンである位相シフター膜に本来要求される機能は、光透過部との境界部のみで位相をシフトさせた光を通過させればよく、他の大部分(上記境界部を除く部分)は、むしろ完全に遮光することが望ましいからである。本実施例のフォトマスクの形態は、フォトマスクブランクの平坦度の優劣がパターン精度等に及ぼす影響が大きいため、本発明は特に好適である。
【0065】
(実施例3)
実施例1と同じ平坦度0.29μm、基板主表面の形状が凸形状に仕上げられた合成石英ガラスからなる透光性基板上に、実施例1と同様にして遮光膜を形成し、バイナリマスク用のフォトマスクブランクを作製した。但し、本実施例の遮光膜の総膜厚は68nmであった。また、この遮光膜は、光学濃度が3.0であった。また、この遮光膜の露光波長193nmにおける反射率は13.5%と低く抑えることができた。さらに、フォトマスクの欠陥検査波長である257nm又は364nmに対しては、それぞれ19.9%、19.7%となり、検査する上でも問題とならない反射率となった。尚、遮光膜形成後の基板平坦度は0.32μm、基板主表面の形状が凸形状であった。
【0066】
次に、得られたフォトマスクブランクを用いて前述の図2の工程に従い、フォトマスクを作製した。まず、160℃で遮光膜が形成されたフォトマスクブランク10に対してベークを行なった後、フォトマスクブランク10上に、化学増幅型レジストである電子線レジスト(富士フィルムエレクトロニクスマテリアルズ社製CAR-FEP171)を回転塗布した。その後、130℃でプリベークを行なった。プリベーク後の基板平坦度は0.29μm、基板主表面の形状が凸形状となり、良好な平坦度が得られた。
次にフォトマスクブランク10上に形成されたレジスト膜に対し、電子線描画装置を用いて所望のパターン描画を行った後、所定の現像液で現像してレジストパターン3aを形成した。
次に、上記レジストパターン3aに沿って、遮光膜2のドライエッチングを行って遮光膜パターン2aを形成した。ドライエッチングガスとして、ClとOの混合ガス(Cl:O=4:1)を用いた。このときのエッチング速度は、遮光膜の総膜厚/エッチング時間で3.6Å/秒であり、非常に速いものであった。このように、遮光膜2は膜厚が薄い上にエッチング速度が速く、エッチング時間も速いことから、遮光膜パターン2aの断面形状も垂直形状となり良好となった。また、遮光膜のパターニング時にフォトマスクブランクの平坦度が良好であったことから、形成した遮光膜のパターンのCDロス(CDエラー)(設計線幅に対する実測線幅のずれ)は20nmと小さく、遮光膜パターン2aのパターン精度も良好であった。
【0067】
(比較例)
実施例1と同じ平坦度0.29μm、基板主表面の形状が凸形状に仕上げられた合成石英ガラスからなる透光性基板上に、インライン型スパッタ装置を用いて、スパッタターゲットにクロムターゲットを使用し、アルゴンと窒素の混合ガス(Ar:50体積%、N:50体積%)雰囲気中で反応性スパッタリングを行い、次にアルゴンとメタンとヘリウムの混合ガス(Ar:54体積%、CH:6体積%、He:40体積%)雰囲気中で反応性スパッタリングを行うことによって、遮光層を形成した。引続き、アルゴンと一酸化窒素の混合ガス(Ar:90体積%、NO:10体積%)雰囲気中で反応性スパッタリングを行うことによって、反射防止層を形成した。このようにして、総膜厚が68nmの遮光層及び反射防止層からなる遮光膜が形成された。
本比較例の遮光膜の総膜厚に占める反射防止層の膜厚の割合は、0.15であった。また、この遮光膜は、光学濃度が3.0であった。また、この遮光膜の露光波長193nmにおける反射率は13.8%と低く抑えることができた。
尚、上記遮光膜成膜時に雰囲気中にヘリウムガスを導入することにより、遮光膜の膜応力を低減させるようにした。その結果、遮光膜形成後のマスクブランクの平坦度は0.08μm、基板主表面の形状は凸形状とすることができた。
【0068】
次に、得られたフォトマスクブランクを用いて、前述の実施例3と同様にして、フォトマスクを作製した。尚、プリベーク後のマスクブランクの平坦度は0.15μm、基板主表面の形状は凹形状と悪化した。また、遮光膜のドライエッチング速度は、遮光膜の総膜厚/エッチング時間で1.8Å/秒であり、非常に遅いものであった。このように、本比較例の遮光膜はエッチング速度が速く、エッチング時間も長くなることから、形成された遮光膜パターンの断面形状も悪かった。また、レジスト膜のダメージも大きかった。また、遮光膜のパターニング時にフォトマスクブランクの平坦度が良好でなかったことから、形成した遮光膜のパターンのCDロス(CDエラー)(設計線幅に対する実測線幅のずれ)は50nmと大きく、遮光膜パターン2aのパターン精度は実施例に比べると悪かった。
【0069】
(実施例4)
平坦度0.25μm、基板主表面の形状が凹形状に仕上げられた合成石英ガラスからなる透光性基板上に、遮光膜を形成し、バイナリマスク用のフォトマスクブランクを作製した。尚、遮光膜の形成は、以下のようにして行った。
インライン型スパッタ装置を用いて、スパッタターゲットにクロムターゲットを使用し、アルゴンと窒素とヘリウムの混合ガス(Ar:30sccm、N:30sccm、He:80sccm)雰囲気中で反応性スパッタリングを行うことによって、遮光層を形成した。尚、この遮光層成膜時、スパッタ装置のパワーは1.5kW、全ガス圧は0.17パスカル(Pa)に調整した。次に、スパッタ装置のパワーを0.33kW、全ガス圧を0.28パスカル(Pa)に調整して、アルゴンとメタンとヘリウムの混合ガス(Ar:54sccm、CH:6sccm、He:40sccm)雰囲気中で反応性スパッタリングを行い、引き続き、アルゴンと一酸化窒素の混合ガス(Ar:90sccm、NO:10sccm)雰囲気中で反応性スパッタリングを行うことによって、反射防止層を形成した。このようにして、総膜厚が68nmの遮光層及び反射防止層からなる遮光膜が形成された。尚、図6に示すようなベーク温度に対する基板(ガラス基板上に上記遮光膜を形成)のベーク処理前後の平坦度変化量の関係、及び、図9に示すような、上記遮光層成膜時の混合ガス雰囲気中におけるヘリウムガス流量に対する遮光膜の応力の関係を予め求めておいた。そして、図6から、遮光膜に加わる最も高い加熱温度である遮光膜上に形成されるレジスト膜形成前のベーク温度(160℃)における基板平坦度変化量に基いて遮光膜の膜応力変化を見込んで、この膜応力変化とは反対方向の所望の膜応力となるような、ヘリウムガス流量を図9の関係から求め、このヘリウムガス流量を含む雰囲気中で、上記遮光層及び反射防止層からなる遮光膜をスパッタリング成膜により形成した。遮光膜までを形成した基板の平坦度は、0.25μm、基板主表面の形状は凸形状となった。
【0070】
次に、上記フォトマスクブランク30に対し、遮光膜上に形成するレジスト膜の付着力向上のため、レジストの種類を考慮して160℃でのベーク処理を行った。このベークを行なった時点で、基板の平坦度は、0.2μm、基板主表面の表面形状は凸形状であった。
次に、得られたフォトマスクブランクを用いて前述の図2の工程に従い、フォトマスクを作製した。まず、160℃で遮光膜が形成されたフォトマスクブランク10に対してベークを行った後、フォトマスクブランク10上に、化学増幅型レジストである電子線レジスト(富士フィルムエレクトロニクスマテリアルズ社製CAR-FEP171)を形成した。レジスト膜の形成は、スピンナー(回転塗布装置)を用いて、回転塗布した。なお、上記レジスト膜を塗布後、130℃でのプリベーク処理を行った。この時点で、基板の平坦度は、0.2μm、基板主表面の表面形状は凸形状と変わらなかった。
【0071】
次にフォトマスクブランク10上に形成されたレジスト膜に対し、電子線描画装置を用いて所望のパターン描画を行った後、所定の現像液で現像してレジストパターン3aを形成した。
次に、上記レジストパターン3aに沿って、遮光膜2のドライエッチングを行って遮光膜パターン2aを形成した。ドライエッチングガスとして、ClとOの混合ガス(Cl:O=4:1)を用いた。このときのエッチング速度は、遮光膜の総膜厚/エッチング時間で4.0Å/秒であり、非常に速いものであった。このように、遮光膜2は膜厚が薄い上にエッチング速度が速く、エッチング時間も速いことから、遮光膜パターン2aの断面形状も垂直形状となり良好となった。また、遮光膜のパターニング時にフォトマスクブランクの平坦度が良好であったことから、形成した遮光膜のパターンのCDロス(CDエラー)(設計線幅に対する実測線幅のずれ)は20nmと小さく、遮光膜パターン2aのパターン精度も良好であった。
【0072】
(半導体装置の製造方法)
実施例1〜4によって得られたフォトマスクを露光装置にセットし、半導体装置のレジスト膜にパターン転写を行って、半導体装置を作製したところ、半導体基板上に形成された回路パターンの欠陥もなく、良好な半導体装置を得ることができた。
【符号の説明】
【0073】
1 透光性基板
2 遮光膜
3 レジスト膜
4 ハーフトーン型位相シフター膜
5 遮光層
6 反射防止層
2a 遮光膜のパターン
3a レジストパターン
10、30 フォトマスクブランク
20、40 フォトマスク

【特許請求の範囲】
【請求項1】
透光性基板上に、窒素ガス、窒素化合物ガスのうち少なくとも一のガス及びヘリウムガスを含む雰囲気中で、クロム又はクロムを主成分とするターゲットを用いたスパッタリング成膜により、クロムと窒素を含む遮光膜を形成する工程を有するフォトマスクブランクの製造方法であって、
前記遮光膜を形成した後、該遮光膜に加わる熱処理によって生じる膜応力変化により得られるフォトマスクブランクの平坦度が所定値以下になるように、前記膜応力変化とは逆方向の所望の膜応力を有する遮光膜となるように、前記スパッタリング成膜中に含まれる前記窒素ガス、窒素化合物ガス、ヘリウムガスのうち少なくとも一のガスの流量を調整することを特徴とするフォトマスクブランクの製造方法。
【請求項2】
前記遮光膜は、圧縮応力をもつように前記窒素ガス、窒素化合物ガス、ヘリウムガスのうち少なくとも一のガスの流量を調整することを特徴とする請求項1記載のフォトマスクブランクの製造方法。
【請求項3】
前記遮光膜は、該遮光膜上に形成するレジストとの選択比が1を超えるように、前記窒素ガス、窒素化合物ガス、ヘリウムガスのうち少なくとも一のガスの流量を調整することを特徴とする請求項1又は2記載のフォトマスクブランクの製造方法。
【請求項4】
前記熱処理は、前記遮光膜上に形成するレジスト膜形成前、又はレジスト膜形成後の加熱処理であることを特徴とする請求項1乃至3の何れか一に記載のフォトマスクブランクの製造方法。
【請求項5】
前記透光性基板と前記遮光膜との間に、ハーフトーン型位相シフター膜を形成することを特徴とする請求項1乃至4の何れか一に記載のフォトマスクブランクの製造方法。
【請求項6】
前記ハーフトーン型位相シフター膜の露光波長における透過率が10%以上40%以下であることを特徴とする請求項5記載のフォトマスクブランクの製造方法。
【請求項7】
前記遮光膜は、前記ハーフトーン型位相シフター膜との組み合わせで、光学濃度で2.5以上となる膜厚であることを特徴とする請求項5又は6記載のフォトマスクブランクの製造方法。
【請求項8】
前記フォトマスクブランクは、前記遮光膜上に形成されるレジストパターンをマスクにしてドライエッチング処理により、前記遮光膜をパターニングするフォトマスクの作製方法に対応するドライエッチング処理用のフォトマスクブランクであることを特徴とする請求項1乃至7の何れか一に記載のフォトマスクブランクの製造方法。
【請求項9】
請求項1乃至8の何れか一に記載の製造方法により得られるフォトマスクブランクにおける前記遮光膜を、ドライエッチング処理によりパターニングする工程を有することを特徴とするフォトマスクの製造方法。
【請求項10】
請求項5乃至8の何れか一に記載の製造方法により得られるフォトマスクブランクにおける前記遮光膜を、ドライエッチング処理によりパターニングし、前記ハーフトーン型位相シフター膜上に遮光膜パターンを形成した後、該遮光膜パターンをマスクにして、前記ハーフトーン型位相シフター膜をドライエッチング処理によりパターニングし、前記透光性基板上にハーフトーン型位相シフター膜パターンを形成することを特徴とするフォトマスクの製造方法。
【請求項11】
請求項9又は10記載のフォトマスクにおける前記遮光膜パターン又は前記ハーフトーン型位相シフター膜パターンをフォトリソグラフィー法により、半導体基板上にパターンを転写することを特徴とする半導体装置の製造方法。



【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2012−185505(P2012−185505A)
【公開日】平成24年9月27日(2012.9.27)
【国際特許分類】
【出願番号】特願2012−98137(P2012−98137)
【出願日】平成24年4月23日(2012.4.23)
【分割の表示】特願2007−537709(P2007−537709)の分割
【原出願日】平成18年9月29日(2006.9.29)
【出願人】(000113263)HOYA株式会社 (3,820)
【Fターム(参考)】