説明

ブレーキシステム

【課題】回生協調制御における制動力変動や減速度変動を抑制する。
【解決手段】各ブレーキのブレーキキャリパ21a〜dを動作させるマスタ圧発生装置200、ホイール圧発生装置300、回生制動装置18と、これらのアクチュエータ200、300、18を制御するブレーキ制御装置100とを備え、ブレーキ制御装置100は、ブレーキキャリパ21a〜dで出力する摩擦制動力と、回生制動装置18が出力する回生制動力を求める制動力算出部111、各制動力に応じた制動力信号を各アクチュエータ200、300、18に出力する通信制御部112と、を備え、ペダル反力とマスタシリンダを加圧するピストンの変位量とに基づいて総制動力を調整することにより、車速の低下に応じて回生制動から摩擦制動に移行する際に、総制動力が略一定となるようにしたブレーキシステム。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マスタシリンダを倍力するアクチュエータの動作を制御することにより、車両の減速度を制御するブレーキシステムに関する。
【背景技術】
【0002】
液圧ブレーキと回生ブレーキとの協調制御を行うブレーキシステムとしては、例えば、特許文献1に記載されているように、ブレーキペダルとアクチュエータが電気的に接続されたBBW(Brake-By-Wire)を備えたものが知られている。
【0003】
このようなブレーキシステムは、例えば、作動油を加圧して制動力を発生する摩擦制動アクチュエータと、回生によって制動力を発生させる回生制動アクチュエータを制御する制御装置を備え、その制御装置は、ブレーキペダルのストローク量や車速などに応じて、摩擦制動アクチュエータと回生制動アクチュエータで発生させる制動力配分を決定し、各アクチュエータへ制御信号を出力するものである。
【0004】
また、特許文献2には、電動アクチュエータを倍力源として利用する自動車のブレーキ機構に用いられる電動倍力装置が記載されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2005−329740号公報
【特許文献2】特開2007−191133号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1に記載されたブレーキシステムは、ブレーキペダルとアクチュエータが電気的に接続されているため、余計な反力などをブレーキペダルへ出力しないことが可能である。しかしながら、特許文献1のブレーキシステムは、負圧ブースタを用いたコンベンショナルなブレーキシステムと比較して製造コストが高く、またブレーキペダルと油圧を発生する機構が電気的に接続されているので信頼性が低い。
【0007】
特許文献2に記載されたブレーキシステムは、ブレーキペダルと摩擦制動アクチュエータが機械的に接続されており、負圧ブースタを用いたコンベンショナルなブレーキシステムの構造を踏襲しているため、特許文献1のブレーキシステムと比較して製造コストが低く、信頼性が高い。しかし、特許文献2のブレーキシステムは、ブレーキペダルと摩擦制動アクチュエータが機械的に接続されているため、回生協調制御時に摩擦制動アクチュエータの液圧変化の影響を受け易く、ブレーキペダルの反力が変化し易い。ドライバの多くはペダル踏力でブレーキペダルの操作を行っているため、ペダル反力が変化するとそれに伴ってペダルストローク量が変動する。特許文献2では、ペダル踏力やインプットロッドの変位量に基づいて摩擦制動アクチュエータの出力を決定しているために、減速度が変動する。このペダル反力や減速度の変動はドライバの意思とは異なるものであるため、各変動を低減もしくは抑制する必要がある。
【0008】
本発明は、ドライバの意図しない減速度の変動を抑制することができるブレーキ制御技術を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記目的を解決するため、本発明のブレーキシステムは、ペダルとマスタ圧発生装置とホイール圧発生装置とを備えた液圧制動装置と、回生制動装置と、を備えたブレーキシステムにおいて、ペダル反力と、マスタシリンダを加圧するピストンの変位量と、に基づいて総制動力を調整することにより、車速の低下に応じて回生制動から摩擦制動に移行する際に、前記総制動力が略一定となるようにしたことを特徴とする。
【発明の効果】
【0010】
本発明によれば、回生ブレーキから液圧ブレーキへの移行期における制動力変動や減速度変動を抑制することができるので、その結果、液圧ブレーキと回生ブレーキを搭載したハイブリッド車、電気自動車等の車両のブレーキ操作を安定して容易に操作することができる。
【図面の簡単な説明】
【0011】
【図1】本発明を適用した車両の構成を示す説明図である。
【図2】本発明に係るブレーキシステムの機能構成を示す説明図である。
【図3】本発明に係るマスタ圧発生装置とホイール圧発生装置の構成を示す説明図である。
【図4】本発明に係るブレーキシステムの基本動作を示すフローチャートである。
【図5】本発明に係るブレーキシステムにおいて、車速とギアポジションに基づいて回生制動装置が出力する最大の回生制動力を示すグラフである。
【図6】本発明に係るブレーキシステムにおいて、車速に基づいて回生制動装置が出力する回生制動力の制限を示すグラフである。
【図7】本発明に係るブレーキシステムにおいて、インプットロッド変位量に基づいてマスタ圧発生装置が出力する摩擦制動力を示すグラフである。
【図8】本発明に係るブレーキシステムにおいて、摩擦制動力と回生制動力が略等しい場合に、図4のフローチャートを実行した時の理想出力を示すグラフである。
【図9】本発明に係るブレーキシステムにおいて、摩擦制動力と回生制動力が略等しい場合に、図4のフローチャートに従ってマスタ圧発生装置200と回生制動装置18を制御した時の実際の出力を示すグラフである。
【図10】本発明に係るブレーキシステムにおいて、摩擦制動力と回生制動力が略等しい場合に、図4のフローチャートに従ってホイール圧発生装置300と回生制動装置18を制御した時の実際の出力を示すグラフである。
【図11】本発明に係るブレーキシステムに用いられる、ペダル反力とピストン変位量に基づいてブレーキシステムが出力する総制動力特性を示すグラフである。
【図12】本発明に係るブレーキシステムの動作を示すフローチャートである。
【図13】本発明に係るブレーキシステムにおいて、摩擦制動力と回生制動力が略等しい場合に、図11の総制動力特性と図12のフローチャートに従ってマスタ圧発生装置200と回生制動装置18を制御した時の実際の出力を示すグラフである。
【図14】本発明に係るブレーキシステムに用いられる、ペダル反力とホイール圧発生装置300が増減する液圧に基づいてブレーキシステムが出力する総制動力特性を示すグラフである。
【図15】本発明に係るブレーキシステムにおける、摩擦制動力と回生制動力が略等しい場合に、図14の総制動力特性と図12のフローチャートに従ってホイール圧発生装置300と回生制動装置18を制御した時の実際の出力を示すグラフである。
【発明を実施するための形態】
【0012】
以下、本発明に係る実施形態について、図1〜図15を用いて説明する。
【0013】
本実施形態は、本発明をFF(エンジン前置き前輪駆動方式)車両に適用した例であるが、これに限られるものではなく、本発明は、4WD車両(4輪駆動方式)やFR車両(エンジン前置き後輪駆動方式)等の車両にも適用可能である。
【0014】
第一の実施形態に係る車両10は、図1に示すように、エンジン11と、トルクコンバータ12と、トランスミッション13と、ドライブシャフト14,19と、車輪15a〜dと、ブレーキペダル16と、ディクスロータ20a〜dと、ブレーキキャリパ21a〜dと、ブレーキ制御装置100と、ブレーキキャリパ21a〜dを動作させるための油圧を発生するマスタ圧発生装置200と、同じくブレーキキャリパ21a〜dを動作させるための油圧を発生するホイール圧発生装置300と、蓄電装置17と、後輪15c,15dに制動力を加える回生制動装置18と、を備えている。
【0015】
エンジン11は、燃焼室内の混合気を爆発させて、動力を発生させる内燃機関である。爆発により得られるピストンの運動は、コンロッドを介してクランクシャフトの回転運動に変換される。クランクシャフトは、トルクコンバータ12、トランスミッション13、ドライブシャフト14を介して、前輪15a,15bに動力を伝達する。
【0016】
トルクコンバータ12は、エンジン11とトランスミッション13との間に設けられている。このトルクコンバータ12は、油などの作動流体を利用することにより、エンジン11から出力される回転トルクを断続的にトランスミッション13へ伝達するクラッチとしての機能と、その回転トルクを増大させてトランスミッション13へ伝達する機能とを有する。
【0017】
トランスミッション13は、トルクコンバータ12とドライブシャフト14との間に設けられ、例えば、前進5段(第1速〜第5速)、後進1段の各変速段に対応する複数のギアなどを有する。
【0018】
ドライブシャフト14は、トランスミッション13と前輪15a,15bとを連結する回転軸で、エンジン11の回転駆動力を前輪15a及び15bへ伝達する。
【0019】
ブレーキペダル16は、ドライバが車両10を減速させるときに操作するものである。ドライバの踏力は、このブレーキペダル16を介してマスタ圧発生装置200へ伝達される。マスタ圧発生装置200で発生した油圧は、ホイール圧発生装置300を介して、ブレーキキャリパ21a〜dへ伝わり、このブレーキキャリパ21a〜dを動作させる。ホイール圧発生装置300は、マスタ圧発生装置200で発生した油圧をそのままブレーキキャリパ21a〜dへ伝えるか、又は、さらに増圧してからブレーキキャリパ21a〜dへ伝える。
【0020】
ブレーキは、ディクスロータ20a〜dと、ブレーキキャリパ21a〜dと、を有して構成される。各ディクスロータ20a〜dは、各車輪15a〜dに対して固定され、各車輪15a〜dと一体的に回転する。各ブレーキキャリパ21a〜dは、図示しないが、シリンダ、ピストン、パッド等から構成されている。シリンダ内のピストンは、マスタ圧及びホイール圧発生装置200、300からの作動油によって移動し、このピストンに連結されたパッドをディスクロータ20a〜dに押圧する。このパッドがディクスロータ20a〜dを押圧することにより、ディクスロータ20a〜dとの間に摩擦力を発生する。この摩擦力は、各車輪15a〜dに対して制動力として働き、更に各車輪15a〜dと路面との間に制動力が発生する。
【0021】
回生制動装置18は、左右の後輪15c,15dのそれぞれから伸びるドライブシャフト19に接続され、制動過程においてドライブシャフト19の回転により発電し、発生した電力を蓄電装置17に供給するが、これと同時に、発電時の回転抵抗は、左右の後輪15c,15dに制動力を与える。
【0022】
蓄電装置17には、図2に示すように、蓄電装置の電圧を検出するための電圧計36が設けられており、この電圧計36は、他のセンサと同様に、ブレーキ制御装置100のインタフェース101と接続されている。
【0023】
本実施形態では、以上で説明した車両の構成要素のうち、ブレーキペダル16と、ディクスロータ20a〜dと、ブレーキキャリパ21a〜dと、マスタ圧発生装置200と、ホイール圧発生装置300と、ブレーキ制御装置100と、後述のブレーキセンサと、回生制動装置18とで、ブレーキシステムを構成している。
【0024】
ブレーキ制御装置100は、図2に示すように、コンピュータであり、各種演算処理を行うCPUと、外部と信号の受送信を行うインタフェース101と、CPUが実行する各種プログラムやデータ等が予め記憶されているROM102と、CPUのワークエリアとなるRAM103と、を有している。
【0025】
CPUは、機能的には各種センサからの情報に基づいて目標の減速度を求める制動力算出手段111と、制動力算出手段111が算出した目標減速度や各種センサからの情報に基づいて、摩擦制動と回生制動の制動力配分を定める通信制御手段112と、外部との間での通信を制御する通信制御部と、を有している。これらの各機能部111,112は、いずれもROM102に記憶されているプログラムをCPU110が実行することで機能する。
【0026】
各種センサとしては、ブレーキセンサ31と、車両10の車速を検出する車速センサ32と、車両10の前後方向に発生している加速度を検出する前後加速度センサ33と、各車輪15a〜dの速度を検出する車輪速センサ34と、トランスミッション13のギアポジションを検出するギアポジションセンサ35と、がある。以上の各センサは、いずれも、ブレーキ制御装置100のインタフェース101に接続されている。
【0027】
ブレーキセンサ31は、ドライバの要求ブレーキ力を検出するセンサであり、図3に示すように、ブレーキペダル16に連結されているインプットロッド214の変位量を検出するストロークセンサである。なお、ブレーキセンサ31としては、ストロークセンサを複数個組み合わせてもよい。これにより、一つのセンサからの信号が途絶えた場合にも、残りのセンサによってドライバのブレーキ要求が検出され認知されるため、フェールセーフを確保することができる。また、ブレーキセンサ31としては、ブレーキペダル16に加わる踏力を検出する踏力センサや、この踏力センサとストロークセンサとを組み合わせたものとしてもよい。
【0028】
マスタ圧発生装置200は、ブレーキ制御装置100から駆動制御信号を受信するマスタ圧制御器201と、このマスタ圧制御器201により制御されるマスタ圧発生機構210と、を有している。
【0029】
また、ホイール圧発生装置300は、ブレーキ制御装置100から駆動制御信号を受信するホイール圧制御器301と、このホイール圧制御器301により制御されるホイール圧発生機構310と、を有している。
【0030】
マスタ圧発生機構210は、図3に示すように、戻しバネ収納シリンダ211と、内部が作動油で満たされるマスタシリンダ212と、マスタシリンダ212内に供給する作動油が溜められているリザーバタンク213と、一方の端部がブレーキペダル16に連結され他方の端部がマスタシリンダ212内に臨んでいる第一の加圧手段としてのインプットロッド214と、第二の加圧手段としてのモータ加圧機構220と、を備えている。
【0031】
リザーバタンク213は、図示しない隔壁によって内部が仕切られて、二つの液室を有する。各液室は、マスタシリンダ212内の後述の各液室215、216と接続されている。
【0032】
モータ加圧機構220は、マスタ圧制御器201からの駆動信号で駆動する加圧モータ221と、加圧モータ221の回転トルクを増幅する減速機構230と、回転力を並進力に変える回転−並進変換機構240と、回転−並進変換機構240に接して直線移動する可動部材250と、この可動部材250に押されてマスタシリンダ212内にプライマリ液室215を形成するプライマリピストン251と、マスタシリンダ212内にセカンダリ液室216を形成するセカダリピストン252と、戻しバネ収納シリンダ211内に配され、回転−並進変換機構240に押された可動部材250を元の位置の方向に戻そうとする戻しバネ255と、を有する。
【0033】
減速機構230は、加圧モータ221の回転トルクをその減速比分だけ増幅させるものである。減速の方式としては、歯車減速やプーリ減速等が適当であるが、本実施形態では、加圧モータ221の回転軸に取り付けられている駆動側プーリ231と、従動側プーリ232と、これらの間に掛け渡されているベルト233と、を備えるプーリ減速方式を採用している。なお、加圧モータ221の回転トルクが十分に大きく、減速によるトルクの増幅が必要でない場合には、減速機構230を設けずに、加圧モータ221と回転−並進変換機構240とを直結してもよい。これにより、減速機構230の介在に起因して発生する、信頼性、静粛性、搭載性等に係る諸問題を回避することができる。
【0034】
回転−並進変換機構240は、加圧モータ221の回転動力を並進動力に変換して、可動部材250を介してプライマリピストン251を押圧するものである。変換機構としては、ラックピニオン、ボールネジ等が適当であるが、本実施形態では、従動側プーリ232により回転するボールネジナット241と、このボールネジナット241の回転運動により並進運動するボールネジ軸242と、を備えるボールネジ方式を採用している。
【0035】
インプットロッド214は、その一方の端部がブレーキペダル16に連結され、他方の端部がマスタシリンダ212内のプライマリ液室215内に臨んでいる。ブレーキペダル16が踏み込まれてインプットロッド214が直進移動すると、プライマリ液室215内の作動油圧が上がって、セカンダリピストン252が押圧され、セカンダリ液室216内の作動油圧も上昇する。この結果、プライマリ液室215とホイール圧発生機構310とをつなぐ第一マスタ配管261、及びセカンダリ液室216とホイール圧発生機構310とをつなぐ第二マスタ配管262に作動油が供給され、この作動油は、ホイール圧発生装置300を介して、各ブレーキキャリパ21a〜dへ送られる。このため、モータ加圧機構220が故障等により正常に作動しない場合でも、所定のブレーキ力を確保することができる。
【0036】
また、上述したように、ブレーキペダル16が踏み込まれると、プライマリ液室215内の作動油圧が上がるため、この液圧がブレーキペダル反力として作用する。したがって、本実施形態の構造を採用することにより、ブレーキペダル反力を生成するバネ等の機構が不要となる。これにより、ブレーキシステムの小型・軽量化に寄与することができる。
【0037】
加圧モータ221は、マスタ圧制御器201からの駆動信号に基づいて動作し、所望の回転トルクを発生する。加圧モータ221としては、DCモータ、DCブラシレスモータ、ACモータ等が可能であるが、制御性、静粛性、耐久性の点において、DCブラシレスモータが最も望ましい。この加圧モータ221は、位置センサを備え、この位置センサからの位置信号がマスタ圧制御器201に入力されるように構成されている。これにより、マスタ圧制御器201は、位置センサから位置信号に基づいて加圧モータ221の回転角を算出し、更に、回転−並進変換機構240の並進量、すなわちプライマリピストン251の変位量を算出することができる。
【0038】
この加圧モータ221の回転トルクは、減速機構230により増幅されて回転−並進変換機構240のボールネジナット241を回転させ、このボールネジナット241の回転によりボールネジ軸242が並進運動し、可動部材250を介してプライマリピストン251を押圧する。
【0039】
また、可動部材250において、ボールネジ軸242とは反対側に、戻しバネ255の一端が接しており、この戻しバネ255の他端は、戻しバネ収納シリンダ211の内壁と接触している。そのため、ボールネジ軸242の推力とは逆方向の力が、可動部材250を介してボールネジ軸242に作用する。これにより、加圧モータ221が駆動し、プライマリピストン251が押圧されて、マスタ圧(マスタシリンダ212内の圧力)が加圧されている状態において、この加圧モータ221が故障等により停止し、ボールネジ軸242の戻し制御が不能になった場合でも、戻しバネ255の弾性力によってボールネジ軸242が初期位置に戻され、マスタシリンダ圧を概ね零付近まで低下させることができる。その結果、加圧モータ221の故障によるブレーキ力の引きずりを回避することができる。
【0040】
プライマリピストン251が押圧されると、プライマリ液室215内の作動油圧が上昇し、これにより、セカンダリピストン252が押圧され、セカンダリ液室216内の作動油圧も上昇する。この結果、プライマリ液室215とホイール圧発生機構310とをつなぐ第一マスタ配管261、及びセカンダリ液室216とホイール圧発生機構310とをつなぐ第二マスタ配管262に、作動油が供給され、この作動油がホイール圧発生装置300を介して、各ブレーキキャリパ21a〜dへ送られる。すなわち、ドライバの踏力によりインプットロッド214が押圧された場合でも、加圧モータ221の駆動でプライマリピストン251が押圧された場合でも、マスタ配管261,262及びホイール圧発生装置300を介して、作動油が各ブレーキキャリパ21a〜dへ送られる。
【0041】
本実施形態では、プライマリピストン251とセカンダリピストン252を設けるタンデム方式を採用している。その理由は、マスタシリンダ212からの油漏れがあった場合でも、ある程度のマスタ圧を確保するためである。例えば、仮にプライマリ液室215で油漏れがあった場合には、プライマリピストン251が、図3に示す構成により、セカンダリピストン252を直接に押圧することにより、セカンダリ液室216の作動油圧の上昇を確保することができる。
【0042】
本実施形態では、ドライバのブレーキ操作によるインプットロッド214の変位量に応じて、プライマリピストン251を変位させることで、インプットロッド214によるプライマリ液室215の作動油圧の加圧を更に増幅することができる。その増幅比(以下「倍力比」という。)は、インプットロッド214とプライマリピストン251の変位量の比、インプットロッド214の断面積(以下「AIR」という。)とプライマリピストン251の断面積(以下「APP」という。)の比等によって決定される。特に、インプットロッド214の変位量と同量だけプライマリピストン251を変位させる場合、倍力比は、(AIR+APP)/AIRとして、一意に定まる。すなわち、必要な倍力比に基づいて、AIRとAPPを設定し、インプットロッド214の変位量に等しくなるようにプライマリピストン60の変位量を制御することにより、常に一定の倍力比を得ることができる。なお、インプットロッド214の変位量は、ブレーキセンサ31によって検出され、プライマリピストン251の変位量は、加圧モータ221の位置センサの信号に基づいてマスタ圧制御器201によって算出される。
【0043】
ホイール圧発生機構310は、マスタ圧発生機構210から各ブレーキキャリパ21a〜dへの作動油の供給を制御するゲートOUT弁310a,310bと、マスタ圧発生機構210から後述のポンプへの作動油の供給を制御するゲートIN弁311a,311bと、ゲートOUT弁310a,310bを通過した作動油及びポンプからの作動油の各ブレーキキャリパ21a〜dへの供給を制御するIN弁312a〜dと、ブレーキキャリパ21a〜dにかかる作動油圧を減圧制御するOUT弁313a〜dと、マスタ圧発生機構210からゲートIN弁311a,311bを介して供給された作動油を昇圧するポンプ314a,314bと、ポンプ314a,314bを駆動するポンプモータ315と、マスタ圧を検出するマスタ圧センサ316と、リザーバタンク317a,317bと、を備えている。
【0044】
上記のホイール圧発生機構310として、アンチロックブレーキ制御用の液圧制御ユニット、車両挙動安定化制御用の液圧制御ユニット、ブレーキバイワイヤ用の液圧制御ユニット等を採用することができる。
【0045】
このホイール圧発生機構310は、FL(前左)輪用ブレーキキャリパ21aとRR(後右)輪用ブレーキキャリパ21dへ供給する作動油圧を制御する第一ブレーキ系統と、FR(前右)輪用ブレーキキャリパ21bとRL(後左)輪用ブレーキキャリパ21cへ供給する作動油圧を制御する第二ブレーキ系統とを有する。
【0046】
第一ブレーキ系統には、ゲートOUT弁310aと、ゲートIN弁311aと、IN弁312a,312dと、OUT弁313a,313dと、リザーバタンク317aが属している。また、第二ブレーキ系統には、ゲートOUT弁310bと、ゲートIN弁311bと、IN弁312b,312cと、OUT弁313b,313cと、リザーバタンク317bが属している。第一ブレーキ系統のゲートOUT弁310a及びゲートIN弁311aには、マスタ圧発生器210のプライマリ液室215に接続されている第一マスタ配管261が接続され、第二ブレーキ系統のゲートOUT弁310b及びゲートIN弁311bには、マスタ圧発生器210のセカンダリ液室216に接続されている第二マスタ配管262が接続されている。
【0047】
このように、二つのブレーキ系統を設けることにより、一方のブレーキ系統が失陥した場合にも、正常なもう一方のブレーキ系統によって、対角二輪分のブレーキ力が確保されるため、車両の挙動が安定に保たれる。
【0048】
ゲートOUT弁310a,310b、ゲートIN弁311a,311b、IN弁312a〜d、OUT弁313a〜dは、いずれもソレノイドを有し、そのソレノイドへの通電によって弁の開閉を行う電磁式のものである。各弁の開閉制御は、ホイール圧制御器301により制御される。ゲートOUT弁310a,310bとIN弁312a〜dは、これらの弁への電流断で開状態となり、電流入で閉状態となる弁であり、ゲートIN弁311a,311bとOUT弁313a〜dは、これらの弁への電流断で閉状態となり、電流入で開状態となる弁である。
【0049】
ポンプ314a,314bとしては、プランジャポンプ、トロコイドポンプ、ギヤポンプ等が適当であるが、静粛性の点においては、ギヤポンプが最も望ましい。ポンプモータ315は、ホイール圧制御器301からの駆動信号に基づいて動作し、ポンプモータ315に連結されたポンプ314a,314bを駆動する。ポンプモータ315としては、DCモータ、DCブラシレスモータ、ACモータ等が適当であるが、制御性、静粛性、耐久性の点においては、DCブラシレスモータが最も望ましい。
【0050】
マスタ圧センサ316は、マスタ圧発生機構210のセカンダリ液室216に接続されている第二マスタ配管262に接続されている。このマスタ圧センサ316で検出されたマスタ圧は、ホイール圧制御器301に送られる。なお、このマスタ圧センサ316の個数とその設置位置は、制御性やフェールセーフ等の見地から、適宜、決定するのがよい。
【0051】
次に、ホイール圧発生機構310の動作について説明する。なお、以下では、第一ブレーキ系統のみの動作について説明し、第二ブレーキ系統の動作については、第一ブレーキ系統の動作と同じであるため、その説明を省略する。
【0052】
まず、マスタ圧発生機構210で昇圧された作動油圧を、更に昇圧することなく、そのままFL輪用ブレーキキャリパ21aとRR輪用ブレーキキャリパ21dへ送る場合について説明する。この場合、ゲートIN弁311aとOUT弁313a,313dが閉状態で、ゲートOUT弁310aとIN弁312a,312dが開状態である。
【0053】
マスタ圧発生機構210から第一マスタ配管261を経て送られてきた作動油は、ゲートOUT弁310aとIN弁312a,312dを経て、ブレーキキャリパ21a,21dへ送られる。すなわち、マスタ圧発生機構210からの作動油は、ポンプ314aで昇圧されることなく、ブレーキキャリパ21a、21dへ供給される。
【0054】
本実施形態では、前記したとおり、ゲートOUT弁310a,310bとIN弁312a〜dとが、これらの弁への電流断で開状態となり、ゲートIN弁311a,311bとOUT弁313a〜dとが、これらの弁への電流断で閉状態となる。この電流断時の各弁の状態は、マスタ圧発生機構210からの作動油がポンプ314aで昇圧されることなく、ブレーキキャリパ21a,21dへそのまま供給されるときの各弁の状態と同じである。このため、電源系統が故障して各弁に電流を供給できなくなっても、マスタ圧発生機構210から作動油をブレーキキャリパ21a,21dへ送ることができる。すなわち、ホイール圧発生機構310が故障しても、マスタ圧発生機構210によりブレーキキャリパ21a,21dへ送る作動油の圧力を制御することができる。
【0055】
次に、マスタ圧発生機構210で昇圧された作動油圧を、ポンプ314aで更に昇圧してから、FL輪用ブレーキキャリパ21aとRR輪用ブレーキキャリパ21dへ送る場合について説明する。この場合、ゲートIN弁311aとIN弁312a、312dが開状態で、ゲートOUT弁310aとOUT弁313a,313dが閉状態である。
【0056】
マスタ圧発生機構210から第一マスタ配管261を経て供給される作動油は、ゲートIN弁311aを経てポンプ314aに送られ、ここで昇圧される。ポンプ314aで昇圧された作動油は、IN弁312a,312dを経て、ブレーキキャリパ21a,21dへ送られる。なお、マスタ圧発生機構210が故障してマスタ圧発生機構210から作動油が供給されない場合でも、作動油をポンプ314aからブレーキキャリパ21a,21dへ送ることができる。この場合、ゲートIN弁311aとゲートOUT弁310aは閉状態となる。
【0057】
以上説明したように、本実施形態では、マスタ圧発生装置200とホイール圧発生装置300とのうち、一方が欠陥しても、他方の出力を妨げない構成となっている。
【0058】
次に、ブレーキキャリパ21a,21dにかかる作動油圧を減圧する場合について説明する。この場合、OUT弁313a,313dが開状態で、他の弁は状況に応じて開又は閉状態であるが、IN弁312a,312dは基本的に閉状態である。
【0059】
ブレーキキャリパ21a,21d内に溜まっている作動油は、それぞれOUT弁313a,313dを経て、リザーバタンク317aに流入する。なお、リザーバタンク317a内の作動油は、マスタ圧発生機構210からの作動油をポンプ314aで昇圧する際に利用される。
【0060】
次に、図4に示すフローチャートに従って、ブレーキ制御装置100の動作について説明する。
【0061】
ステップS1において、ブレーキ制御装置100の通信制御部112は、所定時間毎に、各センサ等から各種車両環境情報を取得し、これをRAM103に格納する。ここで、所定時間は、ミリセコンド単位である。各センサ等としては、前述したブレーキセンサ31、車速センサ32、前後加速度センサ33、車輪速センサ34、ギアポジションセンサ35、電圧計36に加えて、マスタ圧制御器201、ホイール圧制御器301がある。各センサ31〜36は、基本的に、イグニッションオンの際には、常時、検出値を出力しており、インタフェース101は、各センサ31〜36からの出力を所定時間毎に受信する。また、マスタ圧制御器201は、基本的にイグニッションオンの際には、常時、マスタシリンダ内の液圧とプライマリピストン251の変位量を検出しており、インタフェース101はこれを受信する。なお、各センサ31〜36からの各種車両環境情報は、車両環境情報の変化を把握するために、予め定められた回数分をRAM103に保持する。
【0062】
次に、ステップS2において、制動力算出部111がステップS1で取得した車速やギアポジションに基づいて、最大回生制動力Fr_maxを算出する。最大回生制動力は、回生制動装置18で発生することができる最大の回生制動力であり、車速やギアポジションに基づいて決まる。最大回生制動力を求める方法としては、例えば、図5に示すテーブルデータを予めROM102に記憶させておき、これを参照することで求めることができる。
【0063】
次に、ステップS3において、ステップS1で取得した車速に基づいて、回生制動力制限Fr_limitを算出する。回生制動装置18は、車輪15c,15dの速度の低下に伴って発電効率が著しく低下する。そのため、発電効率が低下する車速以下では回生制動力を制限する。
【0064】
回生制動力制限Fr_limitを求める方法としては、例えば、図6に示すテーブルデータを予めROM102に記憶させておき、これに参照することで求めることができる。図6は車速Vsから車速Veにかけて徐々に回生制動力制限を小さくし、車速Veにおいて回生制動力制限を0にするものである。この車速Vsから車速Veまでの期間は、回生制動力と以下で説明する摩擦制動力とが切替わる期間である。なお、車速Vsおよび車速Veは回生制動装置18の性能に基づいて決まる。
【0065】
また、回生制動力Fr_limitは、電圧計36が示す電圧値が所定の電圧値に達した場合、すなわち蓄電装置17の蓄電量が所定量に達した場合には回生制動装置18が発電する電力を蓄電することができなくなるため、車速Vの大きさに関わらず、回生制動力Fr_limitを0にする。ただし、蓄電装置17の種類によっては、前記方法では蓄電装置17の寿命低下が生じる可能性があるため、所定の蓄電量から回生制動力Fr_limitを徐々に0に減少させる方法を採用してもよい。
【0066】
次に、ステップS4において、最大回生制動力Fr_maxと回生制動力制限Fr_limitの大きさを比較する。最大回生制動力Fr_maxが、回生制動力制限Fr_limit以上である場合、ステップS5において、回生制動力制限以下の制動力を出力するために回生制動力FrにFr_limitを代入する。最大回生制動力Fr_maxが、回生制動力制限Fr_limitより小さい場合には、ステップS6において、最大回生制動力が回生制動力制限以下であるため、回生制動力FrにFr_maxを代入する。
【0067】
次に、ステップS7において、ステップS1で取得したインプットロッド214の変位量に基づいて、摩擦制動力Ffを算出する。摩擦制動力は、マスタ圧発生装置200とホイール圧発生装置300が動作することにより、各車輪15a〜dに働く制動力である。摩擦制動力を求める方法としては、例えば、図7に示すテーブルデータを予めROM102に記憶させておき、これを参照することで求めることができる。なお、図7は、乾いたアスファルト路(路面μ=0.9)で計測した特性である。
【0068】
次に、ステップS8において、摩擦制動力Ffと回生制動力Frの大きさを比較する。摩擦制動力Ffが回生制動力Frより大きい場合、ドライバの要求する制動力(摩擦制動力)が回生制動力を超えているため、ステップS9において、マスタ圧制御器201とホイール圧制御器301へ送信する摩擦制動力の出力指令値FfoにはFf−Frを、他方、回生制動装置18へ送信する回生制動力の出力値FroにはFrを代入する。
【0069】
摩擦制動力Ffが回生制動力Fr以下である場合、回生制動力Frのみで摩擦制動力Ff分の制動力を出力可能であるため、ステップS10において、摩擦制動力の出力指令値Ffoには0を、回生制動力の出力値FroにはFfを代入する。そして、ステップS11において、通信制御部112が、マスタ圧発生装置200、ホイール圧発生装置300、回生制動装置18に対して、現時点の制動力に応じた制動力信号を出力する。摩擦制動力Ffoは、マスタ圧発生装置200またはホイール圧発生装置300へ出力され、基本的にはマスタ圧発生装置200へ出力される。回生制動力Froは、回生制動装置18へ出力される。
【0070】
以下では、摩擦制動力Ffoがマスタ圧発生装置200に、回生制動力Froが回生制動装置18に出力される場合について説明する。
【0071】
図4に示されたフローチャートを実行した場合、例えば図8に示す出力が得られる。図8は、摩擦制動力と回生制動力の大きさが等しく、インプットロッド変位量が変動しないとした場合の出力である。車速Vsから車速Veにかけて回生制動力制限の減少に伴って回生制動力が減少し、回生制動力の減少分を補うように摩擦制動力が増加する。図8に示す場合では、インプットロッド変位量が変動しない、すなわち指令値が変動しないため、摩擦制動力と回生制動力を合わせた総制動力は全領域で一定となる。
【0072】
しかしながら、図4のフローチャートに従って、マスタ圧発生装置200と回生制動装置18とを、又はホイール圧発生装置300と回生制動装置18とを制御すると、現実には、図9及び図10に示すような変動が生じる。図9は、図4のフローチャートに従って、マスタ圧発生装置200と回生制動装置18とを制御した結果を示し、図10は、図4のフローチャートに従って、ホイール圧発生装置300と回生制動装置18とを制御した結果を示す。このような変動が生じる原因は、摩擦制動力を発生させる際に生じるマスタシリンダ内の液圧やバネ反力、摺動抵抗などの変動に伴うブレーキペダルの反力変動である。
【0073】
図9及び図10に示す例は、いずれも一定の踏力でブレーキペダルを踏んでいる場合である。図9に示す例の場合、回生制動から摩擦制動へ切替わる期間においてペダル反力が減少し、ペダル変位量が増加し、インプットロッド変位量が増加して摩擦制動力の指令値が増加するので、総制動力と減速度に変動が生じる。
【0074】
また、図10に示す例の場合には、回生制動から摩擦制動へ切替わる期間において、ペダル反力が増加し、ペダル変位量が減少し、インプットロッド変位量が減少し、摩擦制動力の指令値が減少し、総制動力と減速度に変動が生じることとなる。
【0075】
上記の問題に対処する方法として、マスタ圧発生装置200と回生制動装置18の制御方法について、次に説明する。
【0076】
まず、例えば、図11に示されたペダル反力から、インプットロッド変位量Xirとプライマリピストン変位量Xppの関係に基づいて、摩擦制動力と回生制動力の和である総制動力を求める方法がある。この方法は、回生制動から摩擦制動へ切替わる期間におけるペダル反力とプライマリピストン変位量の変動を考慮したものであり、摩擦制動力を出力するためにプライマリピストンが変位すると総制動力が増加する特性へ変化するところ、プライマリピストンが変位するとペダル反力が減少するため、総制動力を減少させる。
【0077】
そうすると、例えば、回生制動時の回生制動力と総制動力が略等しい場合、回生制動から摩擦制動へ切替わる期間以降のプライマリピストンの変位やペダル反力の変動に対して、総制動力は変動しないため、結果的に減速度の変動を抑制することができる。なお、本実施例では、図11に示されたテーブルを用いて総制動力を求めているが、総制動力を求める方法として、これに限られるものではなく、例えば数式から求めるようにしてもよい。
【0078】
次に、図12に示されたフローチャートに従って、図11に示された総制動力特性を用いたブレーキ制御装置100の動作について説明する。
【0079】
図12のフローチャートにおいて、ステップS1からステップS6、ステップS11における動作は、図4のフローチャートと基本的に同一である。
【0080】
ステップS12において、摩擦制動力と回生制動力を合わせたブレーキシステム全体の制動力である総制動力Ftを求める。
【0081】
総制動力Ftを求める方法としては、例えば、図11に示されたテーブルデータを予めROM102に記憶させておき、これを参照することで求めることができる。
【0082】
図11は、ペダル反力に対して出力する総制動力を示したものであり、インプットロッド変位量Xirとプライマリピストン変位量Xppの関係によって複数の特性がある。ペダル反力は、第一の実施形態と同様に、マスタシリンダ内の液圧、バネ反力、摺動抵抗などによって変化するので、マスタシリンダ内の液圧P、インプットロッドの断面積Air、バネ反力Fk、摺動抵抗などの反力FoからF=P・Air+Fk+Foで求めることができる。インプットロッドの断面積Air、バネ反力Fk、摺動抵抗などの反力Foは、いずれもブレーキシステムの仕様によって決まる。また、回生制動を行わない摩擦制動の際には、インプットロッドとプライマリピストンの変位によって発生する液圧の倍力比は、常時一定となるように、インプットロッド変位量Xirとプライマリピストン変位量Xppの大きさが略等しいXir=Xppの特性を使用し、この特性を初期特性として使用する。なお、図11に示された関係は、乾いたアスファルト路(路面μ=0.9)で計測した特性である。
【0083】
次に、図12に示されたフローチャートのステップS13において、総制動力Ftと回生制動力Frの大きさを比較する。総制動力Ftが回生制動力Frより大きい場合、回生制動力では出力できない制動力を摩擦制動力で出力する必要があるため、ステップS14において、マスタ圧制御器201へ送信する摩擦制動力の出力指令値FfoにFt−Frを、回生制動装置18へ送信する回生制動力の出力値FroにはFrを代入する。
【0084】
これに対し、総制動力Ftが回生制動力Fr以下である場合、回生制動力Frのみで総制動力Ft分の制動力を出力可能であるため、ステップS15において、摩擦制動力の出力指令値Ffoには0を、回生制動力の出力値FroにはFtを代入する。
【0085】
図11に示された総制動力特性と、図12に示されたフローチャートに従ってマスタ圧発生装置200と回生制動装置18を制御した場合、例えば、回生制動中の回生制動力と総制動力が略等しい場合には、総制動力を求めるステップS12において、初期に選択される図11の特性は、前述のようにXir=Xppの特性であるが、回生制動力が総制動力より大きい場合には摩擦制動力を0にする必要があるため、必然的にXppはXirより小さくなり、本例のように回生制動中の回生制動力と総制動力が略等しい場合には、Xpp=0の特性が選択される。
【0086】
回生制動から摩擦制動へ切替わる期間に入ると、回生制動力が総制動力より小さくなり、摩擦制動力を発生する必要が生じるため、Xppは0より大きくなり、Xpp=0よりXir=Xppに近い特性を使用する。この時、ペダル反力が変化しない場合には総制動力が増加してしまうが、本ブレーキシステムではペダル反力が減少するため、総制動力が回生制動から摩擦制動へ切替わる期間の前後で変化せず、結果的に図13に示すように減速度の変動を抑制することができる。
【0087】
次に、図10に示した総制動力と減速度の変動を抑制する別の方法として、ホイール圧発生装置300と回生制動装置18の制御方法について説明する。
【0088】
ホイール圧発生装置300を制御する場合、例えば、図14に示されたペダル反力から、ホイール圧発生装置300が増減させる液圧Pxに基づいて、摩擦制動力と回生制動力の和である総制動力を求める方法がある。この方法では、回生制動から摩擦制動へ切替わる期間におけるペダル反力とホイール圧発生装置300が増減させる液圧Pxの変動を考慮したものであり、摩擦制動力を出力するためにホイール圧発生装置300が増圧すると総制動力が減少する特性へ変化するようにするが、ホイール圧発生装置300が増圧するとペダル反力が増加するため、総制動力が増加する。
【0089】
そのため、例えば、回生制動時の回生制動力と総制動力が略等しい場合、回生制動から摩擦制動へ切替わる期間以降のホイール圧発生装置300が増減させる液圧やペダル反力の変動に対して、総制動力は変動しないため、結果的に減速度の変動を抑制することができる。なお、本実施例では図14に示されたテーブルを用いて総制動力を求めているが、総制動力を求める方法としては、このようなテーブルに限定されるものではなく、例えば、数式から求めるようにしてもよい。
【0090】
なお、ホイール圧発生装置300の制御方法については、総制動力の求め方がマスタ圧発生装置200の制御方法の場合と異なるのみで、その他については図12に示されたフローチャートに基本的に従う。
【0091】
図14に示された総制動力特性を用いて、図12に示されたフローチャートに従ってホイール圧発生装置300と回生制動装置18を制御する場合、図15に示すように、ペダル反力が変動しても、総制動力と減速度の変動を抑制することができる。
【0092】
なお、本実施例では制動力を発生するする装置が、マスタ圧発生装置200と、ホイール圧発生装置300と、回生制動装置18と、から構成されているが、マスタ圧発生装置200は、エンジン11の負圧を利用した負圧ブースタであってもよく、またホイール圧発生装置300は、単なる液圧配管や車輪のロックを防ぐABS(Anti-lock Brake System)であってもよい。
【符号の説明】
【0093】
10:車両、15a、15b、15c、15d:車輪、16:ブレーキペダル、17:蓄電装置、18:回生制動装置、20a、20b、20c、20d:ディスクロータ、21a、21b、21c、21d:ブレーキキャリパ、31:ブレーキセンサ、100:ブレーキ制御装置、110:CPU、111:制動力算出部、112:通信制御部、200:マスタ圧発生装置、201:マスタ圧制御器、210:マスタ圧発生機構、300:ホイール圧発生装置、301:ホイール圧制御器、310:ホイール圧発生機構

【特許請求の範囲】
【請求項1】
ペダルとマスタ圧発生装置とホイール圧発生装置とを備えた液圧制動装置と、回生制動装置と、を備えたブレーキシステムにおいて、
ペダル反力と、マスタシリンダを加圧するピストンの変位量と、に基づいて総制動力を調整することにより、車速の低下に応じて回生制動から摩擦制動に移行する際に、前記総制動力が略一定となるようにしたことを特徴とするブレーキシステム。
【請求項2】
請求項1に記載されたブレーキシステムにおいて、
車速及び/又はギアポジションに基づいて最大回生制動力を算出する手段と、車速に基づいて回生制動力制限を算出する手段とを備えて、
前記最大回生制動力が前記回生制動力制限より大きい場合には、前記回生制動力制限を回生制動力とし、前記最大回生制動力が前記回生制動力制限より小さい場合には、前記最大回生制動力を回生制動力とし、
前記総制動力が前記回生制動力より大きい場合には、前記回生制動装置が前記回生制動力を出力し、前記総制動力と前記回生制動力の差分を前記摩擦制動装置が出力し、他方、前記総制動力が前記回生制動力より小さい場合には、前記回生制動装置のみで前記総制動力を出力することを特徴とするブレーキシステム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2012−214223(P2012−214223A)
【公開日】平成24年11月8日(2012.11.8)
【国際特許分類】
【出願番号】特願2012−136835(P2012−136835)
【出願日】平成24年6月18日(2012.6.18)
【分割の表示】特願2008−149686(P2008−149686)の分割
【原出願日】平成20年6月6日(2008.6.6)
【出願人】(509186579)日立オートモティブシステムズ株式会社 (2,205)
【Fターム(参考)】