説明

レーザ計測方法及びレーザ計測システム

【課題】レーザ吸収法による燃焼ガス等の温度及び濃度の測定に際し、ノイズ成分を除去して高精度の検出を可能にするレーザ計測方法、システムを提供する。
【解決手段】光路上のガス等により測定用レーザ光が吸収され、この吸収量が上記ガス等の濃度と関連することを利用してその濃度等を検出する場合において、ガス等を透過した測定用レーザ光を処理する際、この測定用レーザ光の波長に対する強度を表すデータから、検出するガス等に固有の所定の周波数帯域のデータである信号成分Aを削除し、この削除したデータが、残りの他の部分のデータと連続するように多項式のデータで補完してノイズ成分Cを生成するとともに、上記測定用レーザ光のデータからノイズ成分Cを差し引くことによりノイズ成分Cを除去して検出する分子又は原子に対応する信号成分Aのデータのみを抽出することによりS/N比の向上をはかったものである。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はレーザ計測方法及びレーザ計測システムに関し、特にごみ焼却炉、ボイラ等(以下、燃焼炉という。)の低公害化(低NOx化、低ダイオキシン化)に資するべく、燃焼炉内の温度や、CO,O2等の各種ガス濃度等を監視する場合に適用して有用なものである。
【背景技術】
【0002】
燃焼炉の低公害化(低NOx化、低ダイオキシン化)には、燃焼炉内の温度、CO,O2等の各種ガス濃度を監視し、燃焼空気比等の制御を行う必要がある。レーザ光を燃焼雰囲気に照射して、燃焼炉内の温度、CO,O2等の各種ガス濃度等を検出する好適な手法としてレーザ吸収法が知られている。これは、レーザ光の光路に存在する分子・原子によりレーザ光が吸収されることを利用するものである。かかるレーザ吸収法を実現するレーザ計測システムとして、燃焼炉の内部に向けて測定用レーザ光を照射するレーザ光源と、燃焼炉の内部を透過した測定用レーザ光を検出するレーザ光検出器と、このレーザ光検出器の出力信号を処理する演算処理装置とを有するシステムが提案されている。かかるシステムにおいては、波長を連続的に変化させながら(変調をかけながら)測定用レーザ光を燃焼炉内に照射しており、この結果得るレーザ光検出器の出力信号を演算処理装置で分析・演算することにより検出対象である分子・原子の平均濃度及び平均温度のデータを得る。
【0003】
また、上記システムでは、測定用レーザ光の処理に当たり、主に2種類の方法が用いられている。一つは、測定用レーザ光を高速にFM変調し、その出力信号の二次微分値により炉内ガスにおける測定用レーザ光3の吸収量を求めるものである。他の一つは、測定用レーザ光3を「計測分子の吸収を受ける信号光」と「吸収を受けない参照光」とに二分し、両者の信号強度のバランスを保ちながらその差分を計測して吸収量を求めるもの(以下、オートバランス光検出法という。)である。
【0004】
この種のレーザ計測システムにより得られる測定用レーザ光は、理想的には図6に示すようになる。同図は、横軸に測定用レーザ光の波長、縦軸に測定用レーザ光の強度を採ったものであり、当該測定用レーザ光の強度(吸収度)の波長依存性を示すとともに、(a)乃至(f)でその温度依存性をそれぞれ示している。ここで、特定の分子又は原子(本例はCO分子)では、吸収される測定用レーザ光の波長が理論計算により一義的に定まり、特定の波長で測定用レーザ光の光強度の落ち込みが検出される。この落ち込みは分子又は原子による測定用レーザ光の吸収に起因する。また、この落ち込みパターンは、測定用レーザ光の光路上の温度(例えば燃焼炉内の温度)により固有の形状となる。すなわち、測定用レーザ光の吸収波長で特定される分子又は原子の濃度をその測定用レーザ光の落ち込み量(吸収量)で検出するとともに、そのパターンで温度を検出し得る。なお、図6(a)〜図6(f)は順に300°K、500°K、700°K、900°K、1100°K、1300°Kの場合の特性図である。
【0005】
【特許文献1】特開平10−142148号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
ところが、従来技術に係るレーザ計測システムのレーザ光検出手段において得られる現実の測定用レーザ光では、光路上のH2O等の吸収により、これがノイズの原因となって測定用レーザ光に影響を与える。この結果、実測特性は、例えば図7に示すようなものとなる。同図中のA部が測定対象の分子(原子)による測定用レーザ光の落ち込みであり、それ以外の部分Bの落ち込みはノイズ成分によるものである。したがって、かかるノイズ成分Bを含む測定用レーザ光に基づく場合は十分なS/N比が得られず、高精度の検出を行うことが困難になる。
【0007】
また、近年、燃焼器内の多点において、しかも可及的にシステムのコストを高騰させることなくガス等の濃度及び温度を計測したいという要望が強まっている。
【0008】
本発明は、上記従来技術に鑑み、レーザ吸収法による燃焼ガス等の温度及び濃度の測定に際し、ノイズ成分を除去して高精度の検出を可能にするとともに、一個のレーザ光源及びレーザ光検出手段で複数本のレーザ光による複数点の計測を行い得る低廉なレーザ計測方法及びレーザ計測システムを提供することを目的とする。
【課題を解決するための手段】
【0009】
上記目的を達成する本発明の構成は次の点を特徴とする。
【0010】
1)レーザ光源から対象空間に向けて、測定用レーザ光を、波長を連続的に変化させながら照射し、上記対象空間を透過した測定用レーザ光をレーザ光検出手段で検出して所定の処理をすることにより光路上の特定の分子又は原子の濃度等を検出するレーザ計測方法において、
測定用レーザ光の処理の際、この測定用レーザ光の波長に対する強度を表すデータから、検出する分子又は原子に固有の所定の周波数帯域のデータを削除し、
この削除したデータが残りの他の部分のデータと連続するように、分子又は原子に応じて次数を決定した多項式のデータで上記削除したデータを補完して、ノイズ成分を含むベースラインを求め、
前記ベースライン及び検出する分子又は原子に対応する部分のデータの和と、上記測定用レーザ光のデータとに最小自乗法を適用して、該結果を最小とする、検出する分子又は原子に対応する部分のデータを求めることにより、
ノイズ成分を除去して、検出する分子又は原子に対応する部分のデータのみを抽出すること。
【0011】
2) 〔請求項1〕に記載するレーザ計測方法において、
前記ノイズ成分となる分子はH2Oであり、該H2Oに応じて、多項式の次数を決定すること。
【0012】
3) 〔請求項1〕又は〔請求項2〕に記載するレーザ計測方法において、
対象空間に臨んで、複数対のレーザ光源及びレーザ光検出手段を配設して、対象空間の複数箇所の光路上の分子又は原子の濃度等を検出すること。
【0013】
4) 〔請求項1〕又は〔請求項2〕に記載するレーザ計測方法において、
一個のレーザ光源から光路数に応じて分割した複数本の測定用レーザ光を対象空間内に照射するとともに、或る時間に特定の一本の測定用レーザ光のみが検出されるよう、各レーザ光を受光する時間を時分割して、一個のレーザ光検出手段で順次取り込むようにすること。
【0014】
5) 〔請求項4〕に記載するレーザ計測方法において、
レーザ光源から出射する測定用レーザ光を、ファイバスプリッタを用いた分岐手段で所定の本数に分岐するとともに、相対向する接続部の端面を斜めに切断したシングルモードの光ファイバを用いて、分岐した各測定用レーザ光をそれぞれ対象空間の所定位置に導くこと。
【0015】
6) 対象空間に向けて、測定用レーザ光を、波長を連続的に変化させながら照射するレーザ光源と、
上記対象空間の内部を透過した上記測定用レーザ光を検出するレーザ光検出手段と、
このレーザ光検出手段の出力信号を処理することにより光路上の特定の分子又は原子の濃度等を検出する演算処理手段とを有するレーザ計測システムにおいて、
前記演算処理手段は、測定用レーザ光の処理の際、この測定用レーザ光の波長に対する強度を表すデータから、検出する分子又は原子に固有の所定の周波数帯域のデータを削除し、この削除したデータが残りの他の部分のデータと連続するように、分子又は原子に応じて次数を決定した多項式のデータで上記削除したデータを補完して、ノイズ成分を含むベースラインを求め、前記ベースライン及び検出する分子又は原子に対応する部分のデータの和と、上記測定用レーザ光のデータとに最小自乗法を適用して、該結果を最小とする、検出する分子又は原子に対応する部分のデータを求めることにより、ノイズ成分を除去して、検出する分子又は原子に対応する部分のデータのみを抽出すること。
【0016】
7) 〔請求項6〕に記載するレーザ計測システムにおいて、
前記演算処理手段は、前記ノイズ成分となる分子をH2Oとして、該H2Oに応じて、多項式の次数を決定すること。
【0017】
8) 〔請求項6〕又は〔請求項7〕に記載するレーザ計測システムにおいて、
前記レーザ光源及び前記レーザ光検出手段を複数対備えて、対象空間の複数箇所の光路上の分子又は原子の濃度等を検出するようにしたこと。
【0018】
9) 〔請求項6〕又は〔請求項7〕に記載するレーザ計測システムにおいて、
レーザ光源及びレーザ光検出手段は一個で形成し、一個のレーザ光源から光路数に応じて分割した複数本の測定用レーザ光を対象空間内に照射するとともに、レーザ光検出手段では、或る時間に特定の一本の測定用レーザ光のみが検出されるよう、各レーザ光を受光する時間を時分割して順次取り込むようにしたこと。
【0019】
10) 〔請求項9〕に記載するレーザ計測システムにおいて、
レーザ光源から出射する測定用レーザ光は、ファイバスプリッタを用いた分岐手段で所定の本数に分岐するとともに、分岐した各測定用レーザ光はシングルモードの光ファイバを用いてそれぞれ対象空間の所定位置に導き、さらに上記光ファイバ自体の接続部では相対向する光ファイバの端面を斜めに切断したこと。
【発明の効果】
【0020】
〔請求項1〕、〔請求項6〕に記載する発明によれば、S/N比を十分大きなものとすることができ、その分検出精度の向上を図り得る。又、測定用レーザ光におけるノイズ成分のデータを容易且つ忠実に再現し得る。
【0021】
〔請求項2〕、〔請求項7〕に記載する発明によれば、測定用レーザ光におけるノイズ成分のデータを容易且つ忠実に再現し得る。
【0022】
〔請求項3〕、〔請求項8〕に記載する発明によれば、対象空間の複数の領域におけるガスの濃度等を一度に検出することができる。
【0023】
〔請求項4〕、〔請求項9〕に記載する発明によれば、〔請求項3〕、〔請求項8〕に記載する発明の効果を一個のレーザ光源及び一個のレーザ光検出手段で奏することができる。この結果、システム構成が簡単になり、コストの可及的な低減を図ることもできる。ちなみに、測定用レーザ光を照射するレーザ光源及びレーザ光検出手段が当該システム中で最も高価な構成要素となっている。
【0024】
〔請求項5〕、〔請求項10〕に記載する発明によれば、狭帯域の単一モードレーザ光である測定用レーザ光を散乱させることなく良好に対象空間内に照射することができる。
【発明を実施するための最良の形態】
【0025】
以下本発明の実施の形態を図面に基づき詳細に説明する。なお、各実施の形態において、同一部分には同一番号を付し、重複する説明は省略する。
【0026】
<第1の実施の形態>
図1は本発明の第1の実施の形態を概念的に示す説明図である。同図に示すように、燃焼炉1はその炉壁1aにおける両側(図中の左右両側)で相対向する部分に窓部1b,1cを有している。レーザ光源2は、この燃焼炉1の内部に向けて測定用レーザ光3(図中に太線の実線で示す。以下、同じ。)を照射するものであり、本形態の場合には垂直上方に向けて照射した測定用レーザ光3をミラー4で水平方向に反射するとともに、ハーフミラー5を透過させ、窓部1bを介して炉内に照射している。ここで、レーザ光源2は、測定用レーザ光3を発生するレーザ装置自体のみならず、遠隔のレーザ装置で発生した測定用レーザ光3を導く光ファイバと一体となり、この光ファイバの端面から測定用レーザ光3を照射するものも含む。このときの測定用レーザ光3は、検出対象であるガスに応じて決まる特定の波長であることが厳密に要求されるため、これを照射するレーザ光源2としては、狭帯域の単一モードのレーザ光を発生し得る半導体レーザ装置が最適である。また、同様の理由で、この際用いる光ファイバは単一モードのものとする必要がある。また、測定用レーザ光3は、照射の際、その波長を連続的に変化させている。すなわち、変調をかけている。
【0027】
レーザ光検出器6は、燃焼炉1の炉内のガスを透過した上記測定用レーザ光3を検出する。さらに詳言すると、炉内のガスを透過した測定用レーザ光3は窓部1cを介して炉外に至り、ハーフミラー7で垂直下方に反射された後、レーザ光検出器6に入射する。
【0028】
演算処理装置8はレーザ光検出器6の出力信号を処理して上記燃焼炉1内のガスの濃度及び温度等を検出する。かかる検出は、レーザ吸収法として既知の手法を用いて行う。なお、本形態では、測定用レーザ光3を高速にFM変調し、その出力信号の二次微分値により炉内ガスにおける測定用レーザ光3の吸収量を求める方式を採用しているが、オートバランス光検出法であっても勿論良い。
【0029】
また、演算処理装置8は、測定用レーザ光3の処理の際、次のようにレーザ光検出器6の出力信号を処理してノイズ成分を除去している。すなわち、先ずレーザ光検出器6の出力信号である測定用レーザ光3の波長に対する強度を表すデータ(図7の特性図に示すデータ)から、検出する分子又は原子に固有の所定の周波数帯域のデータを削除する。次に、削除したデータが、残りの他の部分のデータと連続するように、多項式のデータで削除したデータを補完する。この結果、上述の如く削除したデータが補完されたデータとして図2に示すようにノイズ成分Cを表すデータが得られる。最後に、レーザ光検出器6の出力信号である測定用レーザ光3のデータから上記補完したデータを差し引く。このことにより、ノイズ成分Cを除去することができ、検出する分子又は原子に対応する部分のデータ、すなわち信号成分Aのみを抽出する。
【0030】
ここで、多項式は検出する分子又は原子に固有のものとして与え、当該分子又は原子に応じて多項式の次数を決定することにより、上述の如き削除部分を最小自乗法により補完する。また、この場合の補完式としては、一般に多項式が最適であるが、これに限定するものではない。検出する分子又は原子に対応する特定の式であれば良い。
【0031】
パルスレーザ光源9は、上記測定用レーザ光3の光軸と一致する光軸ロック用のパルスレーザ光10(図中に太線の点線で示す。以下、同じ。)を照射するものであり、本形態の場合は垂直下方に向けて照射したパルスレーザ光10をハーフミラー5で水平方向に反射し、窓部1bを介して炉内に照射している。このパルスレーザ光10は測定用レーザ光3とは異なり、特定の波長のレーザ光である必要はないが、このパルスレーザ光10の光強度が光軸位置の測定精度に直接影響するので、この点を考慮して選定する。すなわち、光強度は、レーザ光源2を構成する単一モードの半導体レーザ装置よりも相対的に大きいが、廉価である通常の半導体レーザレーザ装置で好適に構成することができる。位置検出センサ11は、燃焼炉1に対してパルスレーザ光源9の反対側でハーフミラー7を透過したパルスレーザ光10を受光してその光軸の位置を検出するものであり、本形態の場合には受光したパルスレーザ光10の光強度に応じた電圧信号に変換する光電変換素子を2次元に配列して構成している。すなわち、パルスレーザ光10の光軸の2次元的な位置を検出するようになっている。
【0032】
なお、測定用レーザ光3の光軸及びパルスレーザ光10の光軸は完全に一致しており、したがってこれらを表す図中の実線及び点線も実際は重なり合っているが、説明の便宜のため両者を若干離して図示している(以下、同じ。)。
【0033】
光軸調節部12は、位置検出センサ11の出力信号である上記パルスレーザ光10の光軸の位置情報に基づき測定用レーザ光3(パルスレーザ光10)の光軸とレーザ光検出器6との相対的な位置関係が常に一定になるように両者の位置関係を調整するものである。本形態では、位置検出センサ11の出力信号を演算処理装置8で処理することにより所定位置に対する偏位量を表す偏位信号を得、この偏位信号が零になるように、光軸調節部12を、ミラー4、ハーフミラー5及びパルスレーザ光10と一体的に移動して燃焼炉1に対する相対的な位置及び姿勢を調節する。ここで、光軸調節部12は、燃焼炉1に対し、垂直面内を2次元的に移動するとともに水平軸回りに回動し得るように構成してあり、演算処理装置8の制御部の制御により上述の如き所定位置へ移動制御される。
【0034】
かかる本形態においては、レーザ光源2から燃焼炉1の内部に向けて測定用レーザ光3を照射し、この内部のガスを透過した測定用レーザ光3をレーザ光検出器6で検出し、この出力信号を演算処理装置8で所定の処理をすることにより上記ガスの濃度及び温度を検出する。一方、測定用レーザ光3の光軸と一致する光軸ロック用のパルスレーザ光10を、測定用レーザ光3とは別に炉内に照射し、このパルスレーザ光10の光軸の位置を位置検出センサ11で検出する。その後、パルスレーザ光10(測定用レーザ光3)の光軸と上記レーザ光検出器6との相対的な位置関係が常に一定になるように両者の位置関係を調整する。かかる光軸調整は、演算処理装置8で、ガス濃度及び温度の検出のための所定の処理をしている間にパルスレーザ光10を炉内に照射して行う。パルスレーザ光10の照射が測定用レーザ光3による測定に影響を与えないようにするためである。
【0035】
また、演算処理部8では、レーザ光検出器6の出力信号から、上述の如きノイズ成分Cの除去処理を行うようになっているので、この処理の結果得られる検出対象による測定用レーザ光3の吸収量を正確に検出することができる。
【0036】
<第2の実施の形態>
図3は本発明の第2の実施の形態を概念的に示す説明図である。同図に示すように、本形態に係るレーザ計測システムは、燃焼炉1内に照射する測定用レーザ光3を当該燃焼炉1内で往復させ、燃焼炉1に対してレーザ光源2と同じ側でレーザ光検出器16により検出するように構成したものである。したがって、本形態においては、燃焼炉1内における測定用レーザ光3の光路長が、上記第1の実施の形態のそれに対して2倍になる。この結果、光路長が増加した分、測定用レーザ光3のガスによる吸収量も増加し、レーザ検出器16の出力信号に基づくガスの濃度及び温度の測定を容易且つ高精度に行うことができる。
【0037】
ここで、レーザ光源2から照射した測定用レーザ光3のうち、ハーフミラー23を透過した成分は、ミラー4で反射されて燃焼炉1内に至り、燃焼炉1の反対側に配設されたハーフミラー17で反射されることにより燃焼炉1内を往復した後、ハーフミラー24で反射された成分がレーザ光検出器16に入射する。一方、レーザ光源2から照射した測定用レーザ光3のうち、ハーフミラー23で反射された成分はミラー25で反射されてレーザ光検出器16に至る。そして、レーザ光検出器16では,燃焼炉1内を往復した信号光である測定用レーザ光3と、燃焼炉1内を往復することなく直接取り込んだ参照光である測定用レーザ光3とを比較して測定用レーザ光3の吸収量を検出するようになっている。すなわち、前述の「オートバランス光検出法」を利用した検出部である。ただ、このように構成することは必須ではない。第1の実施の形態と同様の方式でも、勿論良い。また、レーザ光検出器16の出力信号は演算処理装置18で処理して、燃焼炉1内のガスの濃度及び温度を求める。この際の処理手順は上記第1の実施の形態と全く同様である。すなわち、同様のノイズ除去処理を行っている。
【0038】
本形態においても、パルスレーザ光源9により測定用レーザ光3の光軸と一致する光軸ロック用のパルスレーザ光10を燃焼炉1内に照射しているが、測定用レーザ光3の光路が燃焼炉1内を往復しているので、これに対応させてパルスレーザ光10も燃焼炉1内を往復させている。このため、パルスレーザ光10のうちハーフミラー17を透過するパルスレーザ光10を受光してその光軸の位置を検出する位置検出センサ21とともに、位置検出センサ26も設けている。この位置検出センサ26は、パルスレーザ光10のうちハーフミラー17で反射された成分を、燃焼炉1のパルスレーザ光源9と同じ側(レーザ光源2と同じ側)でハーフミラー24を透過した成分として受光する。ここで、位置検出センサ21は測定用レーザ光3の往路における光軸の位置を調節するものであり、位置検出センサ26は測定用レーザ光3の復路における光軸の位置を調節するものである。
【0039】
すなわち、先ず位置検出センサ21の出力信号を演算処理装置18で処理して光軸調節部12の位置及び姿勢を制御する。このことにより往路の光軸と位置検出センサ21との位置関係が所定通りになるように調節する。これは、図1に示す第1の実施の形態と全く同様の処理である。このように往路の光軸ロックが終了した後、上記位置検出センサ26の出力信号である上記ハーフミラー17で反射されたパルスレーザ光10の復路の光軸の位置情報に基づきこの光軸とレーザ光検出器26との相対的な位置関係が一定になるようにハーフミラー17の反射面の角度を調整する。かかる調節は演算処理部18の制御部で位置検出センサ26の出力信号を処理するとともにその出力信号でハーフミラー17を水平軸回りに回動制御することにより行う。
【0040】
かかる本形態においては、燃焼炉1内に照射されこの燃焼炉1内を往復した測定用レーザ光3を用いてオートバランス検出法により燃焼炉1内のガスの濃度及び温度を検出する。
【0041】
一方、光軸ロックは、先ず位置検出センサ21の出力信号を用いて往路の光軸に関して行い、この光軸ロックが終了した後位置検出センサ26の出力信号を用いて復路の光軸に関して行う。かかる光軸ロックのためのパルスレーザ光10の照射は、演算処理装置18で、ガス濃度及び温度の検出のための所定の処理をしている間に行う。その理由は、図1に示す第1の実施の形態の場合と全く同じである。
【0042】
<第3の実施の形態>
図4は本発明の第3の実施の形態を概念的に示す説明図である。同図に示すように、本形態は測定用レーザ光3の送受光系を複数組設けて燃焼炉1内の複数本の光路上におけるガスの濃度及び温度等を検出し得るようにしたものである。基本的には、第1の実施の形態に係るレーザ計測システムの送受光系を複数組(図では4組)、燃焼炉1の周囲に分散して配設した構造となっている。
【0043】
しかし、本形態に係るレーザ計測システムは、一台のレーザ光源2で発生した測定用レーザ光3を分岐して4本の測定用レーザ光3−1,3−2,3−3,3−4を形成するとともに、燃焼炉1内を透過した各測定用レーザ光3−1〜3−4を一台のレーザ光検出器36で処理するように構成している。レーザ光源2は厳密に単一モードのレーザ光を照射する必要があり、この結果高価なものとなり、またレーザ光検出器36も高価なものであり、当該システムのコストの低減のためにはこれらレーザ光源2及びレーザ光検出器36の数を可及的に低減することが最も効果的であるからである。このようにレーザ光源2及びレーザ光検出器36を一台としたままで燃焼炉1内の複数の光路上のガス濃度及び温度を検出するため、種々の工夫をしている。具体的には次の通りである。
【0044】
レーザ光源2が出射する測定用レーザ光3は分岐部43で4本に分岐され、光ファイバ44−1,44−2,44−3,44−4で導波され、各送光ヘッド部2−1,2−2,2−3,2−4を介して燃焼炉1の内部に向け照射される。ここで、各送光ヘッド部2−1〜2−4は炉壁1aの周囲に等間隔に配設してある。各送光ヘッド部2−1〜2−4を介して燃焼炉1内に照射された測定用レーザ光3−1,3−2,3−3,3−4は、燃焼炉1を挟んで各送光ヘッド部2−1〜2−4の反対側で受光ヘッド部6−1,6−2,6−3,6−4を介してそれぞれ光ファイバ45−1,45−2,45−3,45−4に導入される。各光ファイバ45−1〜45−4で導波された測定用レーザ光3−1〜3−4は、シグナル切替器47で、何れか一本が時分割された所定の間隔で選択され、順次レーザ光検出器36に導入される。演算処理装置38は、測定用レーザ光3−1〜3−4に基づくレーザ光検出器36の出力信号を処理して燃焼炉1内における各光路上のガスの濃度及び温度等を検出する。また、演算処理装置38は周波数変調器48を制御してレーザ光源2から照射する測定用レーザ光3の波長を変調する。さらに、各測定用レーザ光3−1,3−2,3−3,3−4の処理に当たっては、第1の実施の形態と全く同様に行う。すなわち、同様のノイズ除去処理を行っている。
【0045】
光軸ロック用のパルスレーザ光源9−1,9−2,9−3,9−4は、光軸調節部12−1,12−2,12−3,12−4の移動に伴い送光ヘッド部2−1〜2−4と一体的に移動して燃焼炉1に対する位置及び姿勢を制御し得るように構成してある。パルスレーザ光源9−1〜9−4から燃焼炉1の炉内に照射されるパルスレーザ光10−1,10−2,10−3,10−4は、その光軸が測定用レーザ光3−1〜3−4の光軸にそれぞれ一致(図では説明の便宜上離して図示している。)しており、燃焼炉1の炉内を透過した後、図1に示す実施の形態と同様の態様で、各位置検出センサ11−1,11−2,11−3,11−4で検出される。各位置検出センサ11−1,11−2,11−3,11−4の出力信号はそれぞれ演算処理装置38に供給され、この演算処理装置38で所定の処理をすることにより光軸調節部12−1,12−2,12−3,12−4を制御して光軸と受光ヘッド部6−1〜6−4(レーザ光検出器36)との相対的な位置関係がそれぞれ所定通りになるように調節する。かかる位置調節は、各測定用レーザ光3−1〜3−4に関して独立に行われるが、制御の態様は図1に示す実施の形態の場合と全く同様である。
【0046】
上記分岐部43は、ファイバスプリッタで形成するとともに、各光ファイバ44−1〜44−4及び光ファイバ45−1〜45−4の接続部では相対向する光ファイバの端面を斜めに切断してある。このことにより測定用レーザ光3−1〜3−4の散乱及び反射による干渉等を防止してガスでの吸収が所定通りに、良好に行われ、測定精度を十分な高精度に保持し得るよう工夫している。また、光ファイバ44−1〜44−4及び光ファイバ45−1〜45−4はシングルモードのものを用いている。測定用レーザ光3−1〜3−4のモードの崩れを防止するためである。
【0047】
図5は上記第3の実施の形態における4本のレーザ光の検出手順を示すタイミングチャートである。同図に示すように、Ch1では光ファイバ45−1を伝送されてきた測定用レーザ光3−1をシグナル切替器47で選択してレーザ光検出器36に取り込み、以下同様にしてCh2では光ファイバ45−2を伝送されてきた測定用レーザ光3−2を、Ch3では光ファイバ45−3を伝送されてきた測定用レーザ光3−3を、Ch4では光ファイバ45−4を伝送されてきた測定用レーザ光3−4を順次レーザ光検出器36に取り込んで所定の処理をするようになっている。
【0048】
一方、パルスレーザ光10−1〜10−4は、それぞれが光軸を共通にする測定用レーザ光3−1〜3−4の取り込みタイミング以外のタイミング(各測定用レーザ光3−1〜3−4を処理する以外のタイミング)で照射され、これに基づく位置調整を行う。図5に示す場合は、パルスレーザ光10−1はCh3で、パルスレーザ光10−2はCh4で、パルスレーザ光10−3はCh1で、パルスレーザ光10−4はCh2でそれぞれ各パルスレーザ光10−1〜10−4を照射している。これは、光軸を共通にする測定用レーザ光3−1〜3−4とパルスレーザ光10−1〜10−4とが重複することなく、異なるチャンネルCh1〜Ch4の何れかに分離されていれば良い。パルスレーザ光10−1〜10−4の影響を排除した状態で測定用レーザ光3−1〜3−4を取り込めれば良いからである。
【0049】
このように、本形態では、測定用レーザ光3−1〜3−4の数に対応するチャンネルCh1〜Ch4を設け、各チャンネルCh1〜Ch4に割り当てた所定の期間に、特定の一本の測定用レーザ光3−1〜3−4をシグナル切替器47で選択する。このことにより、一台のレーザ光検出器36で4本の測定用レーザ光3−1〜3−4のデータを処理することができる。また、光軸位置の調整は、各測定用レーザ光3−1〜3−4のレーザ光検出器36に対する取り込み期間以外の期間に、光軸を共通にするパルスレーザ光10−1〜10−4の何れかが照射されるので、かかるパルスレーザ光10−1〜10−4の照射が、測定用レーザ光3−1〜3−4によるガスの濃度等の測定に影響を与えることもない。
【0050】
なお、本形態においては、測定用レーザ光3−1〜3−4の分析処理を微分方式により行う場合について説明したが、これはオートバランス法であっても勿論良い。同様に、送受光系に図3のシステムを利用する、いわゆる往復方式であっても勿論良い。また、送受光系の数及びその燃焼炉1に対する設置位置も必要に応じ適宜選定し得る。さらに、コストの点を考慮しなければ、レーザ光源2及びびレーザ光検出器36を測定用レーザ光3−1〜3−4の数だけ設けることもできる。
【0051】
上記第1乃至第3の実施の形態では測定用レーザ光3の他に光軸ロック用のパルスレーザ光10も用意した。これは、上述の如く、測定用レーザ光3に求められる特性(波長が単一であること。)と、パルスレーザ光10に求められる特性(大きな光強度であること。)とが異なる点を考慮したためであるが、原理的にはこのように2種類のレーザ光を用意する必要はない。十分な強度の単一レーザ光を安価に得られるのであれば、測定用レーザ光3のみで光軸ロックも行うことができる。すなわち、測定用レーザ光3を取り込んでガスの濃度等を演算処理している間に測定用レーザ光3を光軸ロックのためのレーザ光として利用し、パルスレーザ光10を用いる上記第1乃至第3の実施の形態と同様の態様で測定用レーザ光3の光軸位置を調節すれば良い。
【図面の簡単な説明】
【0052】
【図1】本発明の第1の実施の形態を概念的に示す説明図である。
【図2】上記実施の形態に係る演算処理装置で測定用レーザ光を処理した後のその強度(吸収度)特性を示す特性図である。
【図3】本発明の第2の実施の形態を概念的に示す説明図である。
【図4】本発明の第3の実施の形態を概念的に示す説明図である。
【図5】上記第3の実施の形態における4本のレーザ光の検出手順を示すタイミングチャートである。
【図6】検出対象である分子又は原子により吸収を受けた測定用レーザ光の理想的な強度特性を検出対象である分子等の温度毎に示す特性図である。
【図7】検出対象である分子又は原子により吸収を受けた測定用レーザ光の、従来技術における現実の強度特性を示す特性図である。
【符号の説明】
【0053】
1 燃焼炉
1a 炉壁
2 レーザ光源
3 測定用レーザ光
6 レーザ光検出器
8 演算処理装置
9 パルスレーザ光源
10 パルスレーザ光
11 位置検出センサ
12 光軸調節部
16 レーザ光検出器
17 ハーフミラー
18 演算処理装置
21 位置検出センサ
26 位置検出センサ
3−1,3−2,3−3,3−4 測定用レーザ光
9−1,9−2,9−3,9−4 パルスレーザ光源
10−1,10−2,10−3,10−4 パルスレーザ光源
11−1,11−2,11−3,11−4 位置検出センサ
12−1,12−2,12−3,12−4 光軸調節部
47 シグナル切替器
A 信号成分
C ノイズ成分

【特許請求の範囲】
【請求項1】
レーザ光源から対象空間に向けて、測定用レーザ光を、波長を連続的に変化させながら照射し、上記対象空間を透過した測定用レーザ光をレーザ光検出手段で検出して所定の処理をすることにより光路上の特定の分子又は原子の濃度等を検出するレーザ計測方法において、
測定用レーザ光の処理の際、この測定用レーザ光の波長に対する強度を表すデータから、検出する分子又は原子に固有の所定の周波数帯域のデータを削除し、
この削除したデータが残りの他の部分のデータと連続するように、分子又は原子に応じて次数を決定した多項式のデータで上記削除したデータを補完して、ノイズ成分を含むベースラインを求め、
前記ベースライン及び検出する分子又は原子に対応する部分のデータの和と、上記測定用レーザ光のデータとに最小自乗法を適用して、該結果を最小とする、検出する分子又は原子に対応する部分のデータを求めることにより、
ノイズ成分を除去して、検出する分子又は原子に対応する部分のデータのみを抽出することを特徴とするレーザ計測方法。
【請求項2】
〔請求項1〕に記載するレーザ計測方法において、
前記ノイズ成分となる分子はH2Oであり、該H2Oに応じて、多項式の次数を決定することを特徴とするレーザ計測方法。
【請求項3】
〔請求項1〕又は〔請求項2〕に記載するレーザ計測方法において、
対象空間に臨んで、複数対のレーザ光源及びレーザ光検出手段を配設して、対象空間の複数箇所の光路上の分子又は原子の濃度等を検出することを特徴とするレーザ計測方法。
【請求項4】
〔請求項1〕又は〔請求項2〕に記載するレーザ計測方法において、
一個のレーザ光源から光路数に応じて分割した複数本の測定用レーザ光を対象空間内に照射するとともに、或る時間に特定の一本の測定用レーザ光のみが検出されるよう、各レーザ光を受光する時間を時分割して、一個のレーザ光検出手段で順次取り込むようにすることを特徴とするレーザ計測方法。
【請求項5】
〔請求項4〕に記載するレーザ計測方法において、
レーザ光源から出射する測定用レーザ光を、ファイバスプリッタを用いた分岐手段で所定の本数に分岐するとともに、相対向する接続部の端面を斜めに切断したシングルモードの光ファイバを用いて、分岐した各測定用レーザ光をそれぞれ対象空間の所定位置に導くことを特徴とするレーザ計測方法。
【請求項6】
対象空間に向けて、測定用レーザ光を、波長を連続的に変化させながら照射するレーザ光源と、
上記対象空間の内部を透過した上記測定用レーザ光を検出するレーザ光検出手段と、
このレーザ光検出手段の出力信号を処理することにより光路上の特定の分子又は原子の濃度等を検出する演算処理手段とを有するレーザ計測システムにおいて、
前記演算処理手段は、測定用レーザ光の処理の際、この測定用レーザ光の波長に対する強度を表すデータから、検出する分子又は原子に固有の所定の周波数帯域のデータを削除し、この削除したデータが残りの他の部分のデータと連続するように、分子又は原子に応じて次数を決定した多項式のデータで上記削除したデータを補完して、ノイズ成分を含むベースラインを求め、前記ベースライン及び検出する分子又は原子に対応する部分のデータの和と、上記測定用レーザ光のデータとに最小自乗法を適用して、該結果を最小とする、検出する分子又は原子に対応する部分のデータを求めることにより、ノイズ成分を除去して、検出する分子又は原子に対応する部分のデータのみを抽出することを特徴とするレーザ計測システム。
【請求項7】
〔請求項6〕に記載するレーザ計測システムにおいて、
前記演算処理手段は、前記ノイズ成分となる分子をH2Oとして、該H2Oに応じて、多項式の次数を決定することを特徴とするレーザ計測システム。
【請求項8】
〔請求項6〕又は〔請求項7〕に記載するレーザ計測システムにおいて、
前記レーザ光源及び前記レーザ光検出手段を複数対備えて、対象空間の複数箇所の光路上の分子又は原子の濃度等を検出するようにしたことを特徴とするレーザ計測システム。
【請求項9】
〔請求項6〕又は〔請求項7〕に記載するレーザ計測システムにおいて、
レーザ光源及びレーザ光検出手段は一個で形成し、一個のレーザ光源から光路数に応じて分割した複数本の測定用レーザ光を対象空間内に照射するとともに、レーザ光検出手段では、或る時間に特定の一本の測定用レーザ光のみが検出されるよう、各レーザ光を受光する時間を時分割して順次取り込むようにしたことを特徴とするレーザ計測システム。
【請求項10】
〔請求項9〕に記載するレーザ計測システムにおいて、
レーザ光源から出射する測定用レーザ光は、ファイバスプリッタを用いた分岐手段で所定の本数に分岐するとともに、分岐した各測定用レーザ光はシングルモードの光ファイバを用いてそれぞれ対象空間の所定位置に導き、さらに上記光ファイバ自体の接続部では相対向する光ファイバの端面を斜めに切断したことを特徴とするレーザ計測システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2007−199076(P2007−199076A)
【公開日】平成19年8月9日(2007.8.9)
【国際特許分類】
【出願番号】特願2007−44899(P2007−44899)
【出願日】平成19年2月26日(2007.2.26)
【分割の表示】特願2001−82125(P2001−82125)の分割
【原出願日】平成13年3月22日(2001.3.22)
【出願人】(000006208)三菱重工業株式会社 (10,378)
【Fターム(参考)】