説明

ロール変位測定方法、及びそれを用いたロール変位測定装置、並びにフィルム厚測定方法、及びそれを用いたフィルム厚測定装置

【課題】被測定物が掛けられるロールの変位を高精度に測定し、被測定物の材質に拘わらず、被測定物の厚さ寸法を高精度に測定する。
【解決手段】ロール2の周面に、ロール軸に沿って延びる複数のマーキング2aを平行に設け、検出ヘッド5に、前記マーキングの接近を検出する近接センサ18,19を、前記ロールの中心軸を挟んで相対向する位置にそれぞれ設け、前記ロールにフィルム20が掛けられていない状態で、前記検出ヘッドを走査し、前記相対向する近接センサの間における第一の検出時間差と、前記ロールにおける第一の回転速度とを求めるステップと、前記ロールにフィルムが掛けられた状態で、前記検出ヘッドを走査し、前記相対向する近接センサの間における第二の検出時間差と、前記ロールにおける第二の回転速度とを求めるステップと、前記第一及び第二の検出時間差と、前記第一及び第二の回転速度とに基づいて、前記ロールの変位を求める。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、フィルム状の被測定物が掛けられたロールの変位を測定するロール変位測定方法、及び該ロール変位測定方法を用いたロール変位測定装置、並びにロール変位測定方法を用いたフィルム厚測定方法、及び該フィルム厚測定方法を用いたフィルム厚測定装置に関する。
【背景技術】
【0002】
従来、フィルム状(シート状)の被測定物の厚みを測定する装置として、特許文献1に開示された厚み測定装置がある。図7に示すように、特許文献1に開示の厚み測定装置50は、駆動手段(図示せず)により回転可能に配置された金属ロール51と、この金属ロール51上に配置される被測定物のシート70の上方をロール表面に沿って軸方向に走査する検出ヘッド52とを備える。
【0003】
検出ヘッド52は、レーザ光発生器53と、レーザ光発生器53から発射されたレーザ光を反射する反射ミラー54と、反射したレーザ光を集光し、ロール上方に配置された遮光板55とロール上のシート70との間の間隙を通過させるためのレンズ56、57と、レーザ光を受光する受光器58とを備える。
【0004】
受光器58には、レーザ光が前記間隙を通過する間だけ入射されるため、受光器58は、前記間隙に比例した幅の信号を出力する。従って、受光器58が出力した信号に基づき、遮光板55下端とロール上のシート70表面との間の距離(L1とする)が測定されることになる。
更に、検出ヘッド52は、前記遮光板55付近に配置された渦電流センサ59(磁界利用センサ)を備え、この渦電流センサ59によりセンサ下端と金属ロール51表面までの距離(L2とする)を測定するように構成されている。
【0005】
尚、検出ヘッド52の受光器58から出力される信号は、カウンタ60においてデジタル信号に変換されて演算器61に入力される。一方、渦電流センサ59による検出信号は、増幅器62によって増幅され、演算器61に入力されるように構成されている。
【0006】
このように構成された厚み測定装置50においては、走査ヘッド52が金属ロール51の軸方向に沿って走査され、受光器58で受光したレーザ光の大きさに基づき、演算部61において、遮光板55下端と金属ロール51上のシート70表面との間の平均距離L1が求められる。一方、渦電流センサ59を用いた測定により、演算部61において、センサ下端と金属ロール51表面との間の平均距離L2が求められる。
そして、演算部61において、前記距離L1と距離L2との差分が、シート70の厚さ寸法として算出される。
このように、特許文献2に開示される厚み測定装置50にあっては、金属ロール51に被測定物が掛けられた状態で、検出ヘッド52から被測定物までの距離L1、及びロール表面までの距離L2が求められるため、ロール51に被測定物が掛けられた際のロール変位を考慮した測定がなされる。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開平05−231856号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
ところで、特許文献1に開示される厚さ測定装置にあっては、被測定物を走査するセンサと、被測定物が載置されるロール表面との間の距離測定において、電磁波を被測定物に透過させる磁界利用センサを用いている。
即ち、金属ロールに対し、磁界利用センサ側で生じる検出コイルの複素インピーダンス変化、或いはホール素子等の磁気を測定する方法に基づき、距離検出を行っている。
しかしながら、この磁界利用センサにあっては、被測定物が非金属体に限定されるだけでなく、磁界利用センサの測定精度に限界があり、測定結果に誤差が生じる問題があった。
即ち、特許文献1に開示の測定装置にあっては、ロール変位を考慮した測定の精度が低いという課題を有しており、そのために被測定物の厚さ測定に誤差が生じていた。したがって、前記のようにロールに被測定物を掛けて厚み測定を行う装置にあっては、精度よくロール変位を測定することが要求されていた。
【0009】
本発明は、前記した点に着目してなされたものであり、フィルム状の被測定物が掛けられたロールの変位を高精度に測定することのできるロール変位測定方法、及び該ロール変位測定方法を用いたロール変位測定装置、並びに被測定物の材質に拘わらず、被測定物の厚さ寸法を高精度に測定することができるフィルム厚測定方法、及び該フィルム厚測定方法を用いたフィルム厚測定装置を提供することを目的とする。
【課題を解決するための手段】
【0010】
前記目的を達成するため、本発明に係るロール変位測定方法は、軸周りに回転可能に支持され、被測定物である長尺帯状のフィルムを送り出し可能に設けられたロールに対し、ロール軸に沿って検出ヘッドを走査し、前記ロールにフィルムが掛けられた際のロール変位を求めるロール変位測定方法であって、前記ロールの周面に、ロール軸に沿って延びる複数の磁気的、或いは電気的なマーキングを平行に設け、前記検出ヘッドに、前記マーキングの接近を検出する近接センサを、前記ロールの中心軸を挟んで相対向する位置にそれぞれ設け、前記ロールにフィルムが掛けられていない状態で、回転する前記ロールの軸方向に沿って前記検出ヘッドを走査し、前記相対向する近接センサの間における第一の検出時間差と、前記ロールにおける第一の回転速度とを求めるステップと、前記ロールにフィルムが掛けられた状態で、回転する前記ロールの軸方向に沿って前記検出ヘッドを走査し、前記相対向する近接センサの間における第二の検出時間差と、前記ロールにおける第二の回転速度とを求めるステップと、前記第一及び第二の検出時間差と、前記第一及び第二の回転速度とに基づいて、前記ロールに前記フィルムが掛けられていない状態と掛けられた状態との間における前記ロールの変位を求めるステップとを含むことに特徴を有する。
【0011】
また、前記目的を達成するため、本発明に係るロール変位測定装置は、前記ロール変位測定方法を実施するロール変位測定装置であって、軸周りに回転可能に支持され、被測定物である長尺帯状のフィルムを送り出し可能に設けられると共に、その周面に、ロール軸に沿って延びる複数の磁気的、或いは電気的なマーキングが平行に設けられたロールと、回転する前記ロールの軸方向に沿って走査され、前記マーキングの接近を検出する近接センサが、前記ロールの中心軸を挟んで相対向する位置にそれぞれ設けられた検出ヘッドと、前記検出ヘッドから入力される検出信号に基づいて、前記ロールの変位を算出する制御部とを備えることに特徴を有する。
【0012】
このようにロール変位の算出にあっては、ロールの周面に、ロール軸に沿って延びる複数の磁気的、或いは電気的なマーキングが設けられ、検出ヘッドに、前記マーキングの接近を検出する近接センサが前記ロールの中心軸を挟んで相対向する位置にそれぞれ設けられる。
そして、前記相対向する近接センサがマーキングを検出する時間差の変化、及びロールの回転速度に基づきロール変位が算出される。
即ち、近接センサは、マーキングの検出のみを行えばよいため、前記ロール変位の算出において、被測定物の材質に影響されることがなく、被測定物の厚さ寸法を高精度に測定することができる。
【0013】
また、本発明に係るフィルム厚測定方法は、前記ロール変位測定方法を用いて、前記フィルムの厚さ寸法を求めるフィルム厚測定方法であって、軸周りに回転可能に支持され、被測定物である長尺帯状のフィルムを送り出し可能に設けられたロールの周面に、ロール軸に沿って延びる複数の磁気的、或いは電気的なマーキングを平行に設け、前記ロールに対し、ロール軸に沿って走査される検出ヘッドに、前記マーキングの接近を検出する近接センサを、前記ロールの中心軸を挟んで相対向する位置にそれぞれ設け、前記ロールにフィルムが掛けられていない状態で、回転する前記ロールの軸方向に沿って前記検出ヘッドを走査し、前記相対向する近接センサの間における第一の検出時間差と、前記ロールにおける第一の回転速度とを求めると共に、前記ロールと前記検出ヘッドとの間の第一の距離を測定するステップと、前記ロールにフィルムが掛けられた状態で、回転する前記ロールの軸方向に沿って前記検出ヘッドを走査し、前記相対向する近接センサの間における第二の検出時間差と、前記ロールにおける第二の回転速度とを求めると共に、前記ロール上のフィルムと前記検出ヘッドとの間の第二の距離を測定するステップと、前記第一及び第二の検出時間差と、前記第一及び第二の回転速度とに基づいて、前記ロールに前記フィルムが掛けられていない状態と掛けられた状態との間における前記ロールの変位を求めるステップと、前記ロールに前記フィルムが掛けられていない状態と掛けられた状態との間における前記ロールの変位と、前記第一の距離と、第二の距離とを用いてフィルムの厚さ寸法を算出するステップとを含むことに特徴を有する。
【0014】
また、本発明に係るフィルム厚測定装置は、前記のフィルム厚測定方法を実施するフィルム厚測定装置であって、軸周りに回転可能に支持され、被測定物である長尺帯状のフィルムを送り出し可能に設けられると共に、その周面に、ロール軸に沿って延びる複数の磁気的、或いは電気的なマーキングが平行に設けられたロールと、回転する前記ロールの軸方向に沿って走査され、前記マーキングの接近を検出する近接センサが、前記ロールの中心軸を挟んで相対向する位置にそれぞれ設けられた検出ヘッドと、前記ロールにフィルムが掛けられていない状態で、前記ロールと前記検出ヘッドとの間の第一の距離を測定し、前記ロールにフィルムが掛けられた状態で、前記ロール上のフィルムと前記検出ヘッドとの間の第二の距離を測定する距離測定手段と、前記検出ヘッドから入力される検出信号に基づいて、前記ロールの変位を算出すると共に、前記算出されたロールの変位と、前記第一の距離と、前記第二の距離とを用いてフィルムの厚さ寸法を算出する制御部とを備えることに特徴を有する。
【0015】
このようにフィルム厚の測定にあっては、前記ロール変位測定方法を用いることによって、被測定物の材質に拘わらず、被測定物の厚さ寸法を高精度に測定することができる。
【発明の効果】
【0016】
本発明によれば、フィルム状の被測定物が掛けられたロールの変位を高精度に測定することのできるロール変位測定方法、及び該ロール変位測定方法を用いたロール変位測定装置、並びに被測定物の材質に拘わらず、被測定物の厚さ寸法を高精度に測定することができるフィルム厚測定方法、及び該フィルム厚測定方法を用いたフィルム厚測定装置を得ることができる。
【図面の簡単な説明】
【0017】
【図1】図1は、本発明に係るロール変位測定装置、及びそのロール変位測定装置を備えるフィルム厚測定装置を模式的に示す斜視図である。
【図2】図2は、図1の測定装置が備える検出ヘッド及び金属製ロールの内部構成を模式的に示す断面図である。
【図3】図3は、図1の測定装置の動作の流れを示すフローである。
【図4】図4は、金属製ロールにフィルムが掛けられていない状態の、検出ヘッドと金属ロールとの位置関係を示す断面図である。
【図5】図5は、金属製ロールにフィルムが掛けられている状態の、検出ヘッドと金属ロールとの位置関係を示す断面図である。
【図6】図6は、検出ヘッドに設けられた近接センサの検出タイミングの関係を示すタイミング図である。
【図7】図7は、従来のレーザ光と磁界利用センサによる厚さ測定方法を実施する厚み測定装置の斜視図である。
【図8】図8は、図7の厚み測定装置の一部拡大図である。
【発明を実施するための形態】
【0018】
以下、本発明の実施の形態を図面に基づき説明する。図1は、本発明に係るロール変位測定装置、及びそれを備えるフィルム厚測定装置を模式的に示す斜視図である。
尚、本発明に係るフィルム厚測定方法及び測定装置によって厚み測定されるフィルム状の被測定物は、その材質が特に限定されるものではなく、金属製、非金属製のいずれでもよく、また、多孔質のもの、或いは密度が一定でないものであってもよい。
【0019】
図1に示すフィルム厚測定装置1は、軸方向に所定の長さを有する金属製ロール2を備え、この金属製ロール2の両端が支持フレーム3によって回転自在に支持されている。金属製ロール2と支持フレーム3は、熱膨張差による測定精度の低下を抑制するよう同一材質により形成されている。尚、図示しないが、金属製ロール2と支持フレーム3の内部に、水、油、空気、フロン等の熱媒を循環させる循環路を形成し、金属製ロール2及び支持フレーム3の温度制御を行ってもよい。
【0020】
金属製ロール2の一端には、金属製ロール2を所定の速度で所定方向に軸周りに回転させるための駆動モータ4が設けられ、その駆動制御は、演算手段等を有する制御部10によってなされる。
金属製ロール2には、被測定物である長尺のフィルム20が掛けられ、回転する金属製ロール2によってフィルム20が所定方向、及び所定速度で送り出しされるようになっている。
【0021】
また、金属製ロール2の上方には、ロール2の左右両側を覆うように、門形状の検出ヘッド5が設けられている。図1に示すように、金属製ロール2の左右側方には、金属製ロール2に沿って一対のガイドレール6(一方のみ図示)が支持フレーム3に懸架され、検出ヘッド5は、その左右両側の下端部が、ガイドレール6に摺動自在に係合することによって支持されている。
また、一方のガイドレール6は、例えばボールねじ機構(図示せず)を有し、その駆動モータ7が前記ボールねじ機構を駆動することにより、検出ヘッド5がガイドレール6に沿って(金属製ロール2の軸方向に沿って)、所定速度で移動するようになされている。
尚、駆動モータ7は、制御部10によって駆動制御される。また、駆動モータ4、7は、前記のように制御部10によって駆動制御されるが、その駆動の開始、及び停止命令は、操作パネル26から入力される構成となっている。
【0022】
図2は、検出ヘッド5及び金属製ロール2の内部構成を模式的に示す断面図である。検出ヘッド5は、該ヘッドから金属製ロール2の表面(或いはフィルム20表面)までの距離を検出するための距離センサ(距離測定手段)と、金属製ロール2にフィルム20が掛けられた状態でのロール変位とを検出するためのセンサを有する。
【0023】
具体的には、前記距離センサとして、図2に示すように所定波長のレーザ光を出力するレーザ光源11と、レーザ光を反射ミラー12を介して偏向する光偏向器13と、偏向されたレーザ光を平行光にするレンズ14とを有する(これらによりレーザ光発射手段が構成される)。更に、金属製ロール2上を通過するレーザ光(平行光)を集光する集光レンズ15と、集光されたレーザ光を受光する受光器16とを有する(これらによりレーザ光受光手段が構成される)。
また、検出ヘッド5の裏面には、金属製ロール2上を通過するレーザ光の上部分を遮光するための遮光板17が設けられている。
【0024】
また、検出ヘッド5の受光器16は、レーザ光を光電変換により電気信号である受光信号に変換し、カウンタ8に出力するようになされている。カウンタ8は、入力された受光信号をデジタル信号に変換し、その結果を制御部10に出力するようになっている。制御部10では、入力されたデジタル信号値と、予め設定されたデジタル信号値の大きさと距離寸法との対応関係とに基づいて、遮光板17下端とロール2上端(フィルム20上端)との間の距離Aを算出するようになっている。
【0025】
また、図2に示すように、検出ヘッド5は、ロール変位を検出するためのセンサとして、金属製ロール2の左右両端にそれぞれ臨む面に設けられた、磁気形の近接センサ18,19を有する。
一方、金属製ロール2の表面には、軸方向に沿ってライン状に所定間隔毎に平行に付された、複数の磁気マーキング2aが設けられている(図では6本)。
この構成において、金属製ロール2が所定の設定速度Sで回転され、いずれかの磁気マーキング2aが近接センサ18、19に接近すると、それぞれの検出信号が制御部10に出力されるようになっている。
また、制御部10は、前記遮光板17下端とロール2上端(フィルム20上端)との間の距離A、及び近接センサ18,19から入力される検出信号に基づき、フィルム20の厚さ寸法Dを算出し、その結果を表示部25に出力するように構成されている。
【0026】
続いて、このように構成されたフィルム厚測定装置1によるフィルム厚測定方法について図3に沿って説明する。図3は、フィルム厚測定装置1の動作の流れを示すフローである。
先ず、金属製ロール2に被測定物であるフィルム20を掛けない状態、即ち、無負荷の状態で金属製ロール2を所定の設定速度(rad/s)で回転させ、検出ヘッド5により金属製ロール2の一端側から他端側まで走査する(図3のステップS1)。
【0027】
この検出ヘッド5の走査の間、制御部10は、図4に示すように、遮光板17下端と金属製ロール2上端との間の平均距離A1(第一の距離)を算出する。
即ち、検出ヘッド5の走査の間、レーザ光源11から発射されたレーザ光が、遮光板17の下端と金属製ロール2の上端との間の間隙を通過させられる。そして、制御部10において、受光器16により受光したレーザ光の大きさに基づき、前記平均距離A1が求められる。
【0028】
また、制御部10は、無負荷状態での金属製ロール2の回転速度S1(第一の回転速度(rad/s))を、例えば駆動モータ4から検出する。
更に、制御部10は、図6(タイミング図)に示すように、近接センサ18による磁気マーキング2aの検出タイミングと近接センサ19による磁気マーキング2aの検出タイミングの差分T1(第一の検出時間差(sec))を検出する。
また、前記のように得られた距離A1、回転速度S1、及びタイミング差分T1は、制御部10が有する記憶手段(図示せず)に記憶される(図3のステップS2)。
尚、図4に示すようにマーキング2aが配置されている場合、近接センサ18,19は略同時にマーキング2aの検出を行うため、前記差分T1は略0(sec)となる。
【0029】
次いで、金属製ロール2に被測定物であるフィルム20を掛けた状態、即ち、負荷状態で金属製ロール2を所定の設定速度で回転させ、検出ヘッド5により金属製ロール2の一端側から他端側まで走査する(図3のステップS3)。
ここで、金属製ロール2は、フィルム20によって下方に向けて負荷を受けるため、図4に示すように、その中心軸の位置がC1からC2に変位している。
そして、この検出ヘッド5の走査の間、制御部10は、遮光板17下端と金属製ロール2上端との間の平均距離A2(第二の距離)を算出する。
即ち、検出ヘッド5の走査の間、レーザ光源11から発射されたレーザ光が、遮光板17の下端と金属製ロール2上のフィルム20との間の間隙を通過させられる。そして、制御部10において、受光器16により受光したレーザ光の大きさに基づき、前記平均距離A2が求められる。
【0030】
また、制御部10は、負荷状態での金属製ロール2の回転速度S2(第二の回転速度(rad/s))を、例えば駆動モータ4から検出する。
更に、制御部10は、図6(タイミング図)に示すように、近接センサ18による磁気マーキング2aの検出タイミングと近接センサ19による磁気マーキング2aの検出タイミングの差分T2(第二の検出時間差(sec))を検出する。
また、前記のように得られた距離A2、回転速度S2、及びタイミング差分T2は、制御部10が有する記憶手段(図示せず)に記憶される(図3のステップS4)。
【0031】
ここで、金属製ロール2に対し無負荷の状態における金属製ロール2の中心軸変位B1(即ち、無負荷状態の金属製ロール2の中心軸C1と、近接センサ18と近接センサ19の中心を結ぶ直線Lとの距離)は、図5に基づき、式(1)により算出される。
尚、式(1)中、Rは金属製ロール2の半径 、S1は金属製ロール2の回転速度、T1は近接センサ18,19による磁気マーキング2aの検出タイミングの差分である。
(数1)
B1=R・sin(S1・T1・(1/2))
≒R・S1・T1・(1/2)・・・・・式(1)
【0032】
また、金属製ロール2に対し負荷の状態における金属製ロール2の中心軸変位B2(即ち、負荷状態の金属製ロール2の中心軸C2と、近接センサ18と近接センサ19の中心を結ぶ直線Lとの距離)は、図5に基づき、式(2)により算出される(図3のステップS5)。
尚、式(2)中、Rは金属製ロール2の半径 、S2は金属製ロール2の回転速度、T2は近接センサ18,19による磁気マーキング2aの検出タイミングの差分である。
(数2)
B2=R・sin(S2・T2・(1/2))
≒R・S2・T2・(1/2)・・・・・式(2)
【0033】
また、金属製ロール2の中心軸変位B1,B2が算出されると、制御部10は、次式(3)により、フィルム20の厚さDを算出する(図3のステップS6)。
(数3)
D=A1−A2+B2−B1・・・(3)
このようにしてフィルム20の厚さDが算出されると、制御部10は、その算出結果を表示部25に出力して表示させる。
【0034】
以上のように本発明に係る実施の形態によれば、金属製ロール2に被測定物であるフィルム20が掛けられていない状態(負荷が無い状態)と、フィルム20が掛けられた状態(負荷がある状態)との間において、検出ヘッド5と金属製ロール2(フィルム20表面)との距離寸法、及びロール変位が求められ、それらに基づきフィルム20の厚さが算出される。
ここで、ロール変位の算出にあっては、金属製ロール2の周面に、ロール軸に沿って延びる複数の磁気的なマーキング2aが設けられ、検出ヘッド5に、前記マーキング2aの接近を検出する近接センサ18,19が金属製ロール2の中心軸を挟んで相対向する位置にそれぞれ設けられる。
そして、近接センサ18,19がマーキング2aを検出する時間差の変化、及び金属製ロール2の回転速度の変化に基づきロール変位が算出される。
即ち、近接センサ18,19は、マーキング2aの検出のみを行えばよく、前記ロール変位は、従来のように近接センサ18,19におけるインピーダンス変化量から直接求める必要がない。
したがって、被測定物の材質に影響されることがなくロール変位の測定を精度よく行うことができ、被測定物の厚さ寸法を高精度に測定することができる。
【0035】
尚、前記実施の形態においては、金属製ロール2の表面に設けるマーキング2aを磁気的マーキングとし、それを検出可能な近接センサ18,19を検出ヘッド5に設ける構成を示した。しかしながら、本発明にあっては、その構成に限定されるものではない。例えば、金属製ロール2に設けられたマーキング2aは、正電荷と負電荷とを帯電させた電気的なものでもよい。
また、前記実施の形態においては、2つの近接センサ18,19により、金属ロール2に設けられたマーキング2aを検出するものとしたが、前記近接センサの数は、2つ以上であれば、その数は限定されない。
【0036】
また、前記実施の形態においては、前記距離A1、A2を求めるための距離測定手段として、遮光板17と金属製ロール2(或いはフィルム20)との間隙を通過させるレーザ光の強度に基づき求める構成としたが、距離A1、A2をそれぞれ検出することのできる手段であれば、前記構成に限定しなくてもよい。
例えば、前記距離A1、A2を算出可能であれば、その距離測定手段として、レーザビーム走査方式(水平方向に照射される微細なレーザビームを垂直方向に走査し、レーザビームの途切れる位置を検出)、レーザビーム反射方式(三角測量)等の光センサ、又はリニアゲージを使用した接触式センサ等を利用するものであってもよい。
【0037】
また、前記実施の形態にあっては、制御部10においてフィルム厚の算出に用いる距離寸法A1、A2は、走査ヘッド5を金属製ロール2の一端から他端まで走査する間における平均値とした。
しかしながら、金属製ロール2にフィルム20が掛けられているか否かに拘わらず、支持フレーム3に支持されたロール2が曲がることによって、ロール断面が本来の真円から僅かに変形する。
このため、フィルム20の厚さDの算出にあっては、さらにロール2の軸方向に沿った中心軸の変位の分布から各部分でのロールの曲率を算出し、そこから得られたロール断面の変形(ロール上面の変位)を考慮することが好ましい。
即ち、ロール軸に沿ってロール変位Bを求める複数の測定位置を設定し(測定位置はより細かく多数設定するのが好ましい)、各測定位置において、そのロール上面の変位を演算に含めることによって、より高精度の測定を行うことができる。
【符号の説明】
【0038】
1 フィルム厚測定装置
2 金属製ロール
2a マーキング
3 支持フレーム
5 検出ヘッド
10 制御部
18 近接センサ
19 近接センサ
20 フィルム(被測定物)

【特許請求の範囲】
【請求項1】
軸周りに回転可能に支持され、被測定物である長尺帯状のフィルムを送り出し可能に設けられたロールに対し、ロール軸に沿って検出ヘッドを走査し、前記ロールにフィルムが掛けられた際のロール変位を求めるロール変位測定方法であって、
前記ロールの周面に、ロール軸に沿って延びる複数の磁気的、或いは電気的なマーキングを平行に設け、
前記検出ヘッドに、前記マーキングの接近を検出する近接センサを、前記ロールの中心軸を挟んで相対向する位置にそれぞれ設け、
前記ロールにフィルムが掛けられていない状態で、回転する前記ロールの軸方向に沿って前記検出ヘッドを走査し、前記相対向する近接センサの間における第一の検出時間差と、前記ロールにおける第一の回転速度とを求めるステップと、
前記ロールにフィルムが掛けられた状態で、回転する前記ロールの軸方向に沿って前記検出ヘッドを走査し、前記相対向する近接センサの間における第二の検出時間差と、前記ロールにおける第二の回転速度とを求めるステップと、
前記第一及び第二の検出時間差と、前記第一及び第二の回転速度とに基づいて、前記ロールに前記フィルムが掛けられていない状態と掛けられた状態との間における前記ロールの変位を求めるステップとを含むことを特徴とするロール変位測定方法。
【請求項2】
前記請求項1に記載のロール変位測定方法を実施するロール変位測定装置であって、
軸周りに回転可能に支持され、被測定物である長尺帯状のフィルムを送り出し可能に設けられると共に、その周面に、ロール軸に沿って延びる複数の磁気的、或いは電気的なマーキングが平行に設けられたロールと、
回転する前記ロールの軸方向に沿って走査され、前記マーキングの接近を検出する近接センサが、前記ロールの中心軸を挟んで相対向する位置にそれぞれ設けられた検出ヘッドと、
前記検出ヘッドから入力される検出信号に基づいて、前記ロールの変位を算出する制御部とを備えることを特徴とするロール変位測定装置。
【請求項3】
前記請求項1記載のロール変位測定方法を用いて、前記フィルムの厚さ寸法を求めるフィルム厚測定方法であって、
軸周りに回転可能に支持され、被測定物である長尺帯状のフィルムを送り出し可能に設けられたロールの周面に、ロール軸に沿って延びる複数の磁気的、或いは電気的なマーキングを平行に設け、
前記ロールに対し、ロール軸に沿って走査される検出ヘッドに、前記マーキングの接近を検出する近接センサを、前記ロールの中心軸を挟んで相対向する位置にそれぞれ設け、
前記ロールにフィルムが掛けられていない状態で、回転する前記ロールの軸方向に沿って前記検出ヘッドを走査し、前記相対向する近接センサの間における第一の検出時間差と、前記ロールにおける第一の回転速度とを求めると共に、前記ロールと前記検出ヘッドとの間の第一の距離を測定するステップと、
前記ロールにフィルムが掛けられた状態で、回転する前記ロールの軸方向に沿って前記検出ヘッドを走査し、前記相対向する近接センサの間における第二の検出時間差と、前記ロールにおける第二の回転速度とを求めると共に、前記ロール上のフィルムと前記検出ヘッドとの間の第二の距離を測定するステップと、
前記第一及び第二の検出時間差と、前記第一及び第二の回転速度とに基づいて、前記ロールに前記フィルムが掛けられていない状態と掛けられた状態との間における前記ロールの変位を求めるステップと、
前記ロールに前記フィルムが掛けられていない状態と掛けられた状態との間における前記ロールの変位と、前記第一の距離と、第二の距離とを用いてフィルムの厚さ寸法を算出するステップとを含むことを特徴とするフィルム厚測定方法。
【請求項4】
前記請求項3に記載のフィルム厚測定方法を実施するフィルム厚測定装置であって、
軸周りに回転可能に支持され、被測定物である長尺帯状のフィルムを送り出し可能に設けられると共に、その周面に、ロール軸に沿って延びる複数の磁気的、或いは電気的なマーキングが平行に設けられたロールと、
回転する前記ロールの軸方向に沿って走査され、前記マーキングの接近を検出する近接センサが、前記ロールの中心軸を挟んで相対向する位置にそれぞれ設けられた検出ヘッドと、
前記ロールにフィルムが掛けられていない状態で、前記ロールと前記検出ヘッドとの間の第一の距離を測定し、前記ロールにフィルムが掛けられた状態で、前記ロール上のフィルムと前記検出ヘッドとの間の第二の距離を測定する距離測定手段と、
前記検出ヘッドから入力される検出信号に基づいて、前記ロールの変位を算出すると共に、前記算出されたロールの変位と、前記第一の距離と、前記第二の距離とを用いてフィルムの厚さ寸法を算出する制御部とを備えることを特徴とするフィルム厚測定装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−112918(P2012−112918A)
【公開日】平成24年6月14日(2012.6.14)
【国際特許分類】
【出願番号】特願2010−264568(P2010−264568)
【出願日】平成22年11月29日(2010.11.29)
【出願人】(510314194)
【Fターム(参考)】