説明

三次元計測装置、三次元計測装置の制御方法、およびプログラム

【課題】パターンの1周期を撮像素子の少ない画素数でサンプリングした上で交点間隔の誤差を低減し、三次元計測の精度を向上する。
【解決手段】明部と暗部とが交互に配置された第1の明暗パターン光が投影された対象物を撮像して取得される第1の画像の階調値と、当該第1の明暗パターン光の位相をずらした第2の明暗パターン光が投影された当該対象物を撮像して取得される第2の画像の階調値とを用いて、当該第1の明暗パターン光と当該第2の明暗パターン光との複数の交点位置を検出する検出部と、検出部により検出された複数の交点位置に含まれる第1の交点位置と当該第1の交点位置と隣接する第2の交点位置とに基づいて、第3の位置を算出して、当該第3の位置の間隔に基づいて対象物の三次元位置を計測する計測部と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、三次元計測装置、三次元計測装置の制御方法、およびプログラムに関し、特に明部と暗部が任意の幅で配置されたパターン光を投影して空間変調を生成する空間符号化法を用いた三次元計測装置、三次元計測装置の制御方法、およびプログラムに関する。
【背景技術】
【0002】
三次元計測として、投影装置と撮像装置を既知の関係に配置し、投影装置からパターン光を投影した被写体を撮像し、投影装置と撮像装置の関係から三角測量の原理を用いて被写体までの距離を求めるという測定方法が良く知られている。
【0003】
特許文献1では、明部と暗部が任意の幅で交互に配置された第1の明暗パターン光と、第1の明暗パターン光の位相をずらした第2の明暗パターン光とをそれぞれ投影して、各々撮像した画像の階調分布を取得し、第1と第2の明暗パターン光の交点の撮像素子上の位置を算出することにより三次元計測を行う方法が開示されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2007-192608号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
前述した第1と第2の明暗パターン光から算出した交点が撮像素子上のどの位置に存在するかを算出することが測距において基本であるが、第1と第2の明暗パターン光の交点位置の絶対値以上に、その交点間隔を正しく求めることが重要である。
【0006】
なぜならば交点の絶対値は、被検物の絶対位置を算出する場合に必要であるが、三次元計測においては被検物の形状を計測することが主体であり、この場合は各交点の相対的位置関係が正確に求まれば良いためである。被検物の絶対位置の算出は、絶対位置の既知な指標を用意し、これとの被検物の相対関係を計測するキャリブレーションにより達成される。
【0007】
従来の交点検出手法は、第1と第2の明暗パターン光の撮像素子上の階調分布を撮像画素でサンプリングし、各々のパターン光のサンプリング点を直線近似して交点を求めている。測定対象物に投影したパターンの1周期を比較的少ない撮像素子画素でサンプリングする場合、従来の方法で交点を求めると、交点には直線近似によるサンプリング誤差が含まれる。そのため、その交点から交点間隔を算出すると、交点間隔には誤差が発生する。特に、パターン光の1周期を撮像素子の奇数画素近傍でサンプリングした場合はその誤差の発生が顕著になる。パターン光の1周期を撮像素子の多くの画素でサンプリングすれば、交点の誤差を小さくすることができ、交点間隔の誤差も抑えることができるが、解像度が高い撮像素子が必要となり、装置が大型化しコストが高くなるという問題が発生する。
【0008】
一方、外光などの影響により第一の明暗パターン光もしくは第二の明暗パターン光のいずれか一方の輝度値が全体的に高くなることがある。この場合、解像度が高い撮像素子を用いたとしても、第一の明暗パターン光と第二の明暗パターン光との交点にずれが発生し、上記交点算出の際に誤差が発生する。
【0009】
上記の課題に鑑み、本発明は、交点間隔の誤差を低減し、三次元計測の精度を向上することを目的とする。
【課題を解決するための手段】
【0010】
上記の目的を達成する本発明に係る三次元計測装置は、
明部と暗部とが交互に配置された第1の明暗パターン光が投影された対象物を撮像して取得される第1の画像の階調値と、当該第1の明暗パターン光の位相をずらした第2の明暗パターン光が投影された当該対象物を撮像して取得される第2の画像の階調値とを用いて、当該第1の明暗パターン光と当該第2の明暗パターン光との複数の交点位置を検出する検出手段と、
前記検出手段により検出された複数の交点位置に含まれる第1の交点位置と当該第1の交点位置と隣接する第2の交点位置とに基づいて、第3の位置を算出して、当該第3の位置の間隔に基づいて前記対象物の三次元位置を計測する計測手段と、
を備えることを特徴とする。
【発明の効果】
【0011】
本発明によれば、交点間隔の誤差を低減し、三次元計測の精度を向上することができる。
【図面の簡単な説明】
【0012】
【図1】本発明に係る三次元計測装置の基本構成を示す図。
【図2】測定対象物面上における明暗パターン光と、CCDカメラの画素との関係を示す図。
【図3】サンプリング数を5とした際の撮像した画像データから取得した階調値を示す図。
【図4】交点Cから算出した交点間隔を示す図。
【図5】交点Tから算出した交点間隔を示す図。
【図6】サンプリング数を5.04とした際の従来の方法で算出した交点間隔を示す図。
【図7】サンプリング数5.04とした際の本発明の方法で算出した交点間隔を示す図。
【図8】測定対象物面上における明暗パターン光の1周期と、CCDカメラの画素でサンプリングしたときの交点間隔の誤差量とを示す図。
【発明を実施するための形態】
【0013】
(第1実施形態)
図1を参照して、本発明に係る三次元計測装置の基本構成を説明する。三次元計測装置は、投影部102と、撮像部103と、コンピュータ104と、コンピュータ105とを備え、測定対象物101の三次元位置を計測する。投影部102は、測定対象物101へ明暗パターン光を投影するプロジェクタである。撮像部103は、例えばCCDカメラである。コンピュータ104は、投影部102へ画像を入力する。コンピュータ105は、撮像した画像データの値、すなわち階調値を取得して測定対象物101の三次元位置を計算する。
【0014】
また本実施形態で使用する明暗パターン光の例として、明部と暗部とが交互に配置された第1の明暗パターン光105aと、第1の明暗パターン光の位相をずらした第2の明暗パターン光105bとが示される。ただし、第1の明暗パターン光と、第2の明暗パターン光とは、図に示される構成と異なっていても構わない。
【0015】
以下、測定対象物101の位置の算出方法について説明する。第1の明暗パターン光105aと、第2の明暗パターン光105bとを、コンピュータ104から投影部102へ信号として送出する。投影部102を通じて明暗パターン光105a、明暗パターン光105bを測定対象物101へ投影し、明暗パターン光が投影された測定対象物101上の輝度分布を撮像部103により撮影する。そしてデジタル画像データとしてコンピュータ105に取り込む。
【0016】
以降、第1の明暗パターン光105aと第2の明暗パターン光105bとの各々の画像データ(第1の画像データ、第2の画像データ)の値を階調値と称する。画像データのうち、あるCCD画素の断面を取り、その断面において第1の明暗パターン光105aと第2の明暗パターン光105bとの階調値を各々結ぶと、図3を参照して後述するように、第1の明暗パターン光105aと第2の明暗パターン光105bとの各階調値を結んだ線が交差する。
【0017】
次に図2を参照して、図1に示した測定対象物101に投影した明暗パターン光の強度分布と、撮像部103によってサンプリング制御された撮像後の階調分布との関係を説明する。図2の実線10は撮像部103(CCDカメラ)の各画素に対応する測定対象物101上の範囲を示しておりその撮像間隔をSとする。測定対象物101上における明暗パターン光の1周期(明部と暗部の1組)をPとし、サンプリング数Q画素分を、P=Q×S(Q>0)を満たすQ(正の実数)として定義する。第1実施形態では、Q=5(奇数画素)が成り立つように投影部102と、撮像部103とを構成している。
【0018】
以下、図3を参照して、第1の明暗パターン光と第2の明暗パターン光とに対応する画像データから階調値を取得して、第1の明暗パターン光と第2の明暗パターン光との境界を検出する方法を説明する。
【0019】
図3において、横軸はCCD画素の方向、縦軸は画像データから取得された階調値を表している。曲線V、曲線Wは、それぞれ測定対象物101に投影された第1の明暗パターン光、第2の明暗パターン光の撮像素子上の強度分布を示す曲線であり、点列Dは該強度分布V,Wを示す曲線の交点の列である。点列A、点列Bは、強度分布を示す曲線V、曲線Wのそれぞれを撮像画素でサンプリングして得られた階調分布の点列である。点列Cは、点列Aを直線で結んで得られる線と、同じく点列Bを直線で結んで得られる線との交点で構成される点列である。また、点列L1、L2…は、点列Cの隣接二点間距離を示した数値列であり、従来の方法で算出した交点間隔の値である。
【0020】
図4に、交点間隔Lと交点間隔の値との関係を示す。測定対象物101上に投影された明暗パターン光の1周期を撮像素子5画素分になるように構成しているため、交点間隔の真値はその半分の2.5となるが、図4から数値列L1、L2…は真値(2.5)を境にして反転しながら分布していることが分かる。
【0021】
点列Cのうち隣接2点を第1の交点および第2の交点とし、その中点を第3の点として算出したものが図3における点列T1、T2、…であり、本発明に係る第3の位置を示す点列である。点列O1、O2、…は、点列Tの隣接2点間距離を示した数値列であり、本発明を適用して求められる交点間隔の値である。
【0022】
図5に交点間隔Oと交点間隔の値との関係を示す。明暗パターン光の1周期を撮像素子の奇数画素5画素でサンプリングしているため、交点間隔の真値はその半分の2.5であり、求めた数値列Oも2.5で一定に分布している。
【0023】
このように、第3の交点位置を算出して交点間隔を求めると、交点間隔を真値に近づけることができる。交点間隔を正しく求めることで、正しい交点位置からのずれ量を既知の指標に基づいて補正しやすくなり、例えば空間符号化法を用いた三次元計測を精度良く行うことができる。
【0024】
また、本実施形態における手法は、外光などの影響により第一の明暗パターン光もしくは第二の明暗パターン光のいずれか一方の輝度値が全体的に高くなり、交点算出の際に誤差が発生した場合にも有効である。よって、外光を検知する検出部を本実施形態における三次元測定装置に設け、外光の影響が所定値以上の場合に、本実施形態における手法を用いるようにしてもよい。
【0025】
(第2実施形態)
図6は、明暗パターン光の1周期を撮像素子の5.04画素(奇数近傍)でサンプリングし、従来の方法で算出した交点間隔の値を示している。測定対象物101に投影した明暗パターン光の1周期を撮像素子5.04画素で撮影するように構成しているため、交点間隔の真値はその半分の2.52となるが、図6では交点間隔は真値2.52を境にして反転しながら分布していることが分かる。
【0026】
図7は、本発明に係る第3の交点位置を、第1の交点位置と第2の交点位置との中点として求め、第3の交点位置を用いて算出した交点間隔の値を示す。図7において、交点間隔の真値2.52を境にして反転しながら分布しているが、図6に示した従来の方法で算出した交点間隔の誤差に比べて、本発明の方法では分布の幅を半分以下に低減させ、真値に近づけることができる。そのため、従来に比べて本発明の方が精度良く三次元計測を行うことができる。
【0027】
図8は、測定対象物101に投影した明暗パターン光の1周期を撮像素子のQ画素でサンプリングを行った場合の交点間隔の誤差量を計算した結果である。図8において、横軸はサンプリング数Q、縦軸は明暗パターン光の1周期に対する誤差量(単位:%)である。
【0028】
従来の方法で求めた交点間隔の誤差量を線B、本発明の方法で求めた第3の交点位置から算出した交点間隔の誤差量を線Aで示している。
【0029】
従来の方法で算出した交点間隔の誤差に比べて、本発明で算出した交点間隔の誤差の方が全体的に低減させることができ、サンプリング数Qが偶数近傍、奇数近傍においては、真値に近い値を取得できる。
【0030】
特に、サンプリング数Qが奇数近傍においては、従来の方法で求めた交点間隔の誤差量に比べて半分以下に低減させることができる。明暗パターン光の1周期を撮像素子のQ画素でサンプリングして撮像する時、Qが、
N−0.2≦Q≦N+0.2(Nは自然数) ・・・(1)
を満たす範囲において、特に交点間隔が真値に近づき、誤差は0に近くなる。サンプリング数Qが10より大きいときは、プロジェクタの投影画像の1周期を多くのCCD画素で撮影していることになるため、Qの値が大きくなればなる程従来の方法も各交点間隔の誤差が小さくなる。
【0031】
しかし、Qが10以下の場合は、式(1)を満たさない場合は交点間隔の誤差が大きくなるため、取得した値を真値に近づけるように補正することが難しく、三次元計測から取得した位置の精度が落ちてしまう。そのため、式(1)のQが10以下のときは、より三次元計測を精度良く求めることに効果を発揮する。
【0032】
以上のように、第1の明暗パターン光と第2の明暗パターン光の、第1の交点と、当該第1の交点と隣接する第2の交点とから第3の交点を求め、求められた複数の第3の交点位置から交点間隔を求めると、交点間隔を真値に近づけることができる。特に、サンプリング数が奇数近傍においては、従来の交点を求める手法に比べて交点間隔の誤差を大きく低減することができ、精度良く三次元計測を行うことができる。
【0033】
(その他の実施形態)
また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。

【特許請求の範囲】
【請求項1】
明部と暗部とが交互に配置された第1の明暗パターン光が投影された対象物を撮像して取得される第1の画像の階調値と、当該第1の明暗パターン光の位相をずらした第2の明暗パターン光が投影された当該対象物を撮像して取得される第2の画像の階調値とを用いて、当該第1の明暗パターン光と当該第2の明暗パターン光との複数の交点位置を検出する検出手段と、
前記検出手段により検出された複数の交点位置に含まれる第1の交点位置と当該第1の交点位置と隣接する第2の交点位置とに基づいて、第3の位置を算出して、当該第3の位置の間隔に基づいて前記対象物の三次元位置を計測する計測手段と、
を備えることを特徴とする三次元計測装置。
【請求項2】
前記計測手段は、前記算出された複数の第3の位置の間隔を交点間隔として、当該交点間隔に基づいて空間符号化法を用いて前記対象物の三次元位置を計測することを特徴とする請求項1に記載の三次元計測装置。
【請求項3】
前記計測手段は、前記第3の位置を、前記第1の交点位置と前記第2の交点位置との中点として算出することを特徴とする請求項1または2に記載の三次元計測装置。
【請求項4】
前記第1の明暗パターン光または前記第2の明暗パターン光を前記対象物に投影する投影手段と、
前記第1の明暗パターン光または前記第2の明暗パターン光が投影された前記対象物を前記第1の画像または前記第2の画像として撮像する撮像手段と、
をさらに備えることを特徴とする請求項1乃至3の何れか1項に記載の三次元計測装置。
【請求項5】
前記撮像手段は、前記明暗パターン光の明部と暗部との1組を1周期とした場合に、前記投影された前記明暗パターン光の前記1周期を、前記撮像手段が有する撮像素子のQ画素分(Q;実数)で撮像し、N−0.2≦Q≦N+0.2(N;自然数)を満たすように前記投影手段と前記撮像手段とを配置して撮像することを特徴とする請求項4に記載の三次元計測装置。
【請求項6】
前記Nが奇数であることを特徴とする請求項5に記載の三次元計測装置。
【請求項7】
前記第2の明暗パターン光は、前記第1の明暗パターン光の明部と暗部とを反転させたパターン光であることを特徴とする請求項1乃至6の何れか1項に記載の三次元計測装置。
【請求項8】
検出手段と、計測手段とを備える三次元計測装置の制御方法であって、
前記検出手段が、明部と暗部とが交互に配置された第1の明暗パターン光が投影された対象物を撮像して取得される第1の画像の階調値と、当該第1の明暗パターン光の位相をずらした第2の明暗パターン光が投影された当該対象物を撮像して取得される第2の画像の階調値とを用いて、当該第1の明暗パターン光と当該第2の明暗パターン光との複数の交点位置を検出する検出工程と、
前記計測手段が、前記検出手段により検出された複数の交点位置に含まれる第1の交点位置と当該第1の交点位置と隣接する第2の交点位置とに基づいて、第3の位置を算出して、当該第3の位置の間隔に基づいて前記対象物の三次元位置を計測する計測工程と、
を備えることを特徴とする三次元計測装置の制御方法。
【請求項9】
請求項8に記載の三次元計測装置の制御方法の各工程をコンピュータに実行させるためのプログラム。

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2012−251997(P2012−251997A)
【公開日】平成24年12月20日(2012.12.20)
【国際特許分類】
【出願番号】特願2012−103837(P2012−103837)
【出願日】平成24年4月27日(2012.4.27)
【出願人】(000001007)キヤノン株式会社 (59,756)
【Fターム(参考)】