説明

光モジュール

【課題】高精度にパッシブアライメントが可能なレンズ部材を用いて、コンパクトに構成された光モジュールを提供すること。
【解決手段】表面実装の位置決め用に形成された溝192と、溝192に位置決め載置された光ファイバ132と、光ファイバ132の外径と同径に構成され、溝192によって位置決め載置される1対のマイクロレンズ12a、12bと、1対のマイクロレンズ12a、12bにより光ファイバ132と光結合される光源112および受光器のいずれか一方と、1対のマイクロレンズ12a、12bの間に配置された光機能素子141と、を具備することを特徴とする、光モジュールが提供される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光通信機器に適用するのに好適な光モジュールに関するものである。
【背景技術】
【0002】
光通信等に用いられる光モジュールを安価に大量生産する技術として表面実装が広く知られている。これは、あらかじめ光モジュールに必要とされる半導体レーザ(以下、LDと略す)やレンズ素子の外形を高精度に作って、V溝が形成されたシリコン基板上にサブミクロン精度で配置したり、素子に位置決め用のアライメントマークを高精度に配置して、そのアライメントマークをCCDカメラ等で取り込み、画像認識技術を応用して配置するパッシブアライメントを行う技術である。パッシブアライメントの場合には、光ファイバに入力する光量をモニタすることなく各部品を配置するために、これらの部品の加工精度や配置精度が最終的に光ファイバに入力される光量に影響を及ぼす。そのため、各部品を精密に加工し、高精度にアライメントする必要がある。
【0003】
ところで、光通信の分野においては、多チャンネルで光送受信を行うために、多チャンネル光モジュールの開発が進められている。例えば、LDアレイと光ファイバアレイの間にレンズアレイを配設して光結合を行う多チャンネルアレイモジュールが考案されている(下記の特許文献1参照。)。
【0004】
【特許文献1】特開平6−94938号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、このようなパッシブアライメントで利用可能な従来のレンズは、レンズ自体の外形が直径1mm程度と大きい。このようなレンズの光軸をシリコン基板上に配置された光ファイバやLDの光軸と位置決めするためには、V溝を非常に深く形成する必要がある。また、そのようなレンズは、金型を用いた型押し形成により作製される。このため、例えばロッド形状のレンズでは、本来合致しているべきである、レンズ部分の光軸とレンズの外形より得られる中心とに数μm程度の誤差が生じ、光結合の効率が低下する。このようなことから、上記のような従来のレンズは、高効率が要求される表面実装には適さないという欠点がある。
【0006】
また、従来光通信で用いられる合分波、光源/受光モジュールなどでは、光ファイバの直径が125μmであり、LDもたかだか250μm角程度であるのに対し、光の結合に使用するレンズや、合分波器として用いられるビームスプリッタなどはmm単位の大きさである。このため、結果としてそれら要素部品を組み合わせて作り上げられる、いわゆる光モジュールは、1cm×2cm程度の配置面積を必要とするのが一般的である。したがって、数多くの光モジュールを基板上に配置する場合、広い設置面積が必要となり、装置の小型化に反するという問題点がある。特に、多チャンネルの光モジュールを考えた場合、チャンネルごとにmm単位のレンズやビームスプリッタを配置すると、光モジュールのサイズが非常に大きくなってしまうという問題があった。
【0007】
そこで、本発明の目的は、このような問題に鑑みてなされたものであり、その目的とするところは、高精度にパッシブアライメントが可能なレンズ部材を用い、コンパクトに構成された光モジュールを提供することにある。
【課題を解決するための手段】
【0008】
上記課題を解決するために、本発明のある観点によれば、表面実装の位置決め用に形成された溝と、前記溝に位置決め載置された光ファイバと、前記光ファイバの外径と同径に構成され、前記溝によって位置決め載置される1対のマイクロレンズと、前記1対のマイクロレンズにより前記光ファイバと光結合される光源および受光器のいずれか一方と、前記1対のマイクロレンズの間に配置された光機能素子と、を具備することを特徴とする、光モジュールが提供される。
【0009】
かかる構成によれば、マイクロレンズは前記溝に適合する形状を有するため、光ファイバが載置される溝と同じ溝に実装でき、高精度なパッシブアライメントが可能である。また、このようなマイクロレンズを用いて光源と光ファイバとを光結合できるため、コンパクトな光モジュールを実現できる。
【0010】
また、上記課題を解決するために、本発明の別の観点によれば、表面実装の位置決め用に形成された溝と、前記溝に位置決め載置された1対の光ファイバと、前記光ファイバの外径と同径に構成され、前記溝によって位置決め載置される1対のマイクロレンズと、前記1対のマイクロレンズの間に配置された光機能素子と、を具備することを特徴とする、光モジュールが提供される。
【0011】
かかる構成によれば、高精度にパッシブアライメントが可能なマイクロレンズを用いてコンパクトな光機能モジュールを実現できる。その際に、前記1対のマイクロレンズの光学系を軸ずれ型で構成し、前記光機能素子の入出射端面に対する光の進行方向を傾斜させることが可能であり、この場合には、光機能素子の入出射端面での反射戻り光を防止できる。なお、前記光機能素子は、アイソレータ、偏向子、波長板、フィルタのうちのいずれか1つであるようにしてもよい。
【0012】
また、上記課題を解決するために、本発明の別の観点によれば、ビームスプリッタと、前記ビームスプリッタの光路となる3方向それぞれに配設された、表面実装の位置決め用の3つの溝と、前記3つの溝それぞれに位置決め載置された3つの光ファイバと、前記光ファイバの外径と同径に構成され、前記溝によって位置決め載置される3つのマイクロレンズと、を具備することを特徴とする、光モジュールが提供される。
【0013】
また、上記課題を解決するために、本発明の別の観点によれば、表面実装の位置決め用に形成された溝と、前記溝に位置決め載置された一対の光ファイバと、前記光ファイバの外径と同径に構成され、前記溝によって位置決め載置される一対のマイクロレンズと、前記一対のマイクロレンズの少なくともいずれか一方に設けられた波長選択性を有するフィルタと、を具備することを特徴とする、光モジュールが提供される。
【0014】
また、前記マイクロレンズは、シリコン結晶基板からなり、回折光学素子からなるレンズ部を有する構成であってもよい。
【発明の効果】
【0015】
以上、詳細に説明したように本発明によれば、高精度にパッシブアライメントが可能なレンズ部材を用いて、コンパクトに構成された光モジュールを提供できる。
【発明を実施するための最良の形態】
【0016】
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
【0017】
(第1実施形態)
図1は、本発明の第1実施形態にかかる光モジュール100の構成を示す上面図である。光モジュール100は、光源アレイ110と、2つのマイクロレンズアレイ120a、120bと、光ファイバ群130と、V溝群190が形成されたシリコンプラットフォーム198とを有する。
【0018】
シリコンプラットフォーム198はシリコン結晶基板からなり、その上面の一端から途中までにV溝群190が高精度に形成されている。V溝群190は、1つのV溝192を構成要素として、複数のV溝192が所定のピッチP(図3にて図示)で並列配設されたものである。V溝192は表面実装される部材の位置決め載置に用いられるものであり、V字形状の横断面を有し、ここでは直径125μmの光ファイバを載置可能な寸法を有する。また、ここでのV溝群190のピッチPは250μmとなるよう形成されている。
【0019】
光源アレイ110は、光源としての1つのLD112を構成要素として、複数のLD112をV溝群190のピッチと同一ピッチで並列配置して一体化した光源群である。
【0020】
マイクロレンズアレイ120a、120bは1つのレンズ部を構成要素として、V溝群190のピッチと同一ピッチで列状に形成された複数のレンズ部を一体化したレンズ部材である。以下ではマイクロレンズアレイ120aを例にとり構成の説明をするが、マイクロレンズアレイ120bはマイクロレンズアレイ120aと同様の構成を有する。
【0021】
図2はマイクロレンズアレイ120aの構成を示す斜視図である。マイクロレンズアレイ120aは、光学基板の表面に列状に形成された複数のレンズ部2と、それらレンズ部2を一体化して一方向に伸長した取扱部4を有する。取扱部4は、図2に示す通り、レンズ部2の外周の上部側でレンズ部と接続し、レンズ部2表面に略平行な面上でレンズ部2を越えてレンズ部2の列方向に沿って伸長し、1列中の全レンズ部2を接続して一体化するように形成されている。
【0022】
レンズ部2はここでは円形形状をしており、エッチングにより形成された回折光学素子からなる。レンズ部2は、回折光学素子の1つであるCGH(Computer Generated Hologram)素子により形成してもよい。CGH素子は、所望の光学特性を示す光学素子の光路差関数から所望の光学特性を得るに必要なフォトマスクのパターンをコンピュータを用いて求め、そのマスクパターンを用いて光学基板の表面の所望箇所にエッチング処理を施すことにより、所望の光学特性を有する回折型光学素子を形成したものである。なお、レンズ部2はCGH素子や回折光学素子に限定されず、別の構成、例えば屈折型のレンズであってもよい。
【0023】
レンズ部2の下部側にはレンズ部2の外周の一部としての縁部3が位置し、レンズ部2の円周形状に沿った円弧形状を有する。この縁部3の円弧形状を呈する外形はレンズ部2の形成面側からその対向面側まで延びており、レンズ部2の光軸を中心軸とする略円柱形状の一部である略蒲鉾形の形状となっている。取扱部4から下方に張り出すこの略蒲鉾形の部分を張出部5と呼ぶ。
【0024】
張出部5の円弧形状の外径寸法は、マイクロレンズアレイ120aが光結合する光ファイバの外径と同径になるよう構成され、ここではφ125μmである。従って、張出部5はV溝192に適合する形状および寸法を有する。また、張出部5はV溝群190のピッチと同一ピッチで列状に複数形成されている。以上の張出部5の構成によって、マイクロレンズアレイ120aをV溝群190へ高精度に位置決め載置することが可能になる。
【0025】
取扱部4の上面6および側面7は平坦に形成されている。したがって、上方あるいは側方から保持手段によりマイクロレンズアレイ120aを保持することが容易である。保持手段としては例えば、表面実装で一般的なフリップチップボンダのような挟持手段や吸引保持する負圧吸盤のような負圧保持手段が考えられる。
【0026】
マイクロレンズアレイ120aはここでは、シリコン結晶基板からなる。マイクロレンズアレイ120aは、半導体技術で用いられるフォトリソ・エッチング技術を用いて、シリコン結晶基板にマイクロレンズアレイ120aに対応する形状のパターンをフォトマスクパターンとして用いてエッチングを行うことにより大量に高精度にかつ安価に作製可能である。また、レンズ部2はここではエッチングにより形成される回折光学素子からなるため、例えば1つのマイクロレンズアレイ120aにおいて性能の異なるレンズ部2を形成したい場合には、個々のレンズ部2に応じたマスクパターンを用いてエッチングを行えばよく、容易に作製可能である。
【0027】
光ファイバ群130は1つの光ファイバ132を構成要素として、複数の光ファイバ132の一端側をV溝群190のピッチと同一ピッチで並列配置したものである。ここでは各光ファイバ132は直径125μmのシングルモードファイバである。
【0028】
図1に示すように、シリコンプラットフォーム198上には、光源アレイ110、2つのマイクロレンズアレイ120a、120b、光ファイバ群130がこの順に配置されている。光源アレイ110側に配置されたマイクロレンズアレイ120aの各レンズ部2は光源アレイ110の各LD112に対向し、光ファイバ群130側に配置されたマイクロレンズアレイ120bの各レンズ部2は光ファイバ群130の各光ファイバ132の端面に対向するように配置されている。なお、図3の部分拡大図に示すように、光ファイバ群130の各光ファイバ132およびマイクロレンズアレイ120a、120bの各張出部5がV溝群190の各V溝192の側壁に当接して位置決め載置されることで、高精度なパッシブアライメントが実現されている。
【0029】
図1に示す光モジュール100では、光源アレイ110、2つのマイクロレンズアレイ120a、120b、光ファイバ群130、V溝群190における構成要素の数は全て8つであり、これらは同一ピッチで構成され、全体として8つの光結合した組、すなわち8つのチャンネルが形成されている。
【0030】
具体的には、光源アレイ110の各LDから出射したそれぞれの発散光はマイクロレンズアレイ120aの対向する各レンズ部2によりコリメートされて平行光になり、その後、マイクロレンズアレイ120bの各レンズ部2により収束されて各レンズ部2が対向する光ファイバ群130の各光ファイバ132の端面に集光されて入射する。
【0031】
2つのマイクロレンズアレイ120a、120b間を伝搬する光が、V溝192によって一部反射される等の不都合を極力避けるためには、このようにマイクロレンズアレイ120a、120bのレンズ部2がコリメートレンズであることが望ましいが、実際にはコリメートレンズに限定されるものではない。すなわち、レンズ部2に要求される最低限の機能は、LD112の出射光のスポット径を拡大して光ファイバ132の入射スポット径に整合させることで、効率よい光結合を実現することである。その目的を達成するためには、1つのチャンネルに含まれるレンズ部2の組はコリメートレンズ対である必要はなく、上記のスポット径の拡大を実現する結像系を構成していればよいのである。以上より、光モジュール100によって、複数の光源からの出射光を、複数の光ファイバに一括して結合する光モジュール、すなわち多チャンネル光源モジュールが実現される。
【0032】
本実施形態によれば、V溝群190のV溝192のピッチと同一ピッチでレンズ部が形成されたマイクロレンズアレイ120a、120bを用いることにより、多チャンネル光源モジュールをきわめてコンパクトに構成することができる。詳細に説明すると、直径125μmの光ファイバを用いた光モジュールにおいて、光源アレイ110、マイクロレンズアレイ120a、120b、光ファイバ群130、V溝群190のピッチを250μmに統一することができ、これによって、1チャンネルが250μm相当の多チャンネル光モジュールを実現できる。250μmピッチでチャンネル幅を設定できるため、例えば、4チャンネルの光モジュールの場合には、チャンネル幅方向の全体の寸法は高々1mmにしかならない。また、8チャンネルの光モジュールの場合でも、チャンネル幅方向の全体の寸法は高々2mmにしかならない。従って、多チャンネルの光源モジュールを、きわめて小型に構成することができる。
【0033】
ここでは、ピッチを250μmにとって説明したが、このピッチは光ファイバの直径(125μm)よりも大きい値を任意にとれることはいうまでもない。しかしながら、光通信用の多チャンネルコネクタとして規格化されているMTコネクタのピッチが一般に250μmであるため、最終的にそのようなファイバアレイに光を結合する際には好都合である。
【0034】
従来の光モジュールでは、光結合用のレンズがmm単位の寸法であったため、各構成要素間のピッチを250μmのような小さな値に統一することはできず、光モジュールのサイズは大きなものとなっていた。その点、本実施形態によれば、上記構成のマイクロレンズアレイを用いることにより、従来の光モジュールに比べてはるかに小型化された光モジュールを実現できる。
【0035】
また、マイクロレンズアレイ120a、120bはV溝192に適合する形状を有するため、光ファイバ132とともにV溝192への高精度なパッシブアライメントが可能であり、小型化とともに高精度の実装が達成された光モジュールを提供できる。
【0036】
なお、本実施形態の説明では、光源アレイを例にとって説明を行ったが、光源アレイの代わりに受光器アレイを用いて同様の配置をすることで、多チャンネル受光モジュールを構成できる。この場合も、小型化および高精度実装という効果が得られる。
【0037】
(第2実施形態)
図4は、本発明の第2の実施形態にかかる光モジュール200の構成を示す上面図である。光モジュール200は、1対のマイクロレンズアレイ220a、220bと、1対の光ファイバ群230a、230bと、光機能素子としてのアイソレータ240と、1対のV溝群290a、290bが形成されたシリコンプラットフォーム298とを有する。
【0038】
シリコンプラットフォーム298はシリコン結晶基板からなり、基板両端から途中までに1対のV溝群290a、290bがそれらの伸長方向で互いに対向するように高精度に形成されている。V溝群290a、290bは共に、第1実施形態におけるV溝群190同様に、1つのV溝を構成要素として、複数のV溝がそれぞれ所定のピッチで並列配設されたものである。このV溝は表面実装される部材の位置決め載置に用いられるものであり、V字形状の横断面を有し、ここでは直径125μmの光ファイバを載置可能な寸法を有する。V溝群290a、290bのピッチは共に250μmとなるよう形成されている。
【0039】
1対のマイクロレンズアレイ220a、220bは共に第1実施形態におけるマイクロレンズアレイ120aと同様の構成を有し、1つのレンズ部を構成要素として、V溝群290a、290bのピッチと同一ピッチで列状に形成された複数のレンズ部を一体化した構成を有し、V溝群290a、290bのV溝に適合する張出部を有する。
【0040】
1対の光ファイバ群230a、230bは第1実施形態における光ファイバ群130と同様に、1つの光ファイバを構成要素として、複数の光ファイバの一端側をV溝群290a、290bのピッチと同一ピッチで並列配置したものである。ここでは各光ファイバは直径125μmのシングルモードファイバである。
【0041】
アイソレータ240は戻り光を遮断する機能を有する光機能素子である。
【0042】
図4に示すように、V溝群290aには光ファイバ群230aおよびマイクロレンズアレイ220aが載置され、V溝群290bには光ファイバ群230bおよびマイクロレンズアレイ220bが載置され、マイクロレンズアレイ220a、220bの間にはアイソレータ240が配置されている。シリコンプラットフォーム298上には光路に沿って順に、光ファイバ群230a、マイクロレンズアレイ220a、アイソレータ240、マイクロレンズアレイ220b、光ファイバ群230bが配置されている。
【0043】
また、マイクロレンズアレイ220a、220bの各レンズ部2は共に光ファイバ群230a、230bの各光ファイバの端面に対向するように配置されている。本実施形態においても、光ファイバ群230a、230bおよびマイクロレンズアレイ220a、220bは、それぞれV溝群290a、290bの各V溝の側壁に当接して位置決め載置されることで、高精度なパッシブアライメントが実現されている。
【0044】
図4に示す光モジュール200では、マイクロレンズアレイ220a、220b、光ファイバ群230a、230b、V溝群290a、290bにおける構成要素の数は全て8つであり、これらは同一ピッチで構成され、全体として8つの光結合した組、すなわち8つのチャンネルが形成されている。
【0045】
具体的には、光ファイバ群230a側が入射側とした場合は、光ファイバ群230aの各光ファイバの端面から出射したそれぞれの発散光はマイクロレンズアレイ220aの対向する各レンズ部によりコリメートされて平行光になり、アイソレータ240を透過した後、マイクロレンズアレイ220bの各レンズ部により収束されて各レンズ部が対向する光ファイバ群230bの各光ファイバの端面に集光されて入射する。以上より、光モジュール200によって、複数の光ファイバからの出射光を、光機能素子を経由させた後、複数の光ファイバに一括して入射させる光モジュール、すなわち多チャンネル光機能素子モジュールが実現される。
【0046】
アイソレータに代表される光機能素子は、一般に1〜3mm角程度の大きさを有する。光の回折の影響等を考慮して隣接するチャンネル間で影響を及ぼさないように、光ファイバからの略平行光がこのような光機能素子を伝搬するには、コリメートされた入射光束の直径を約100μmにすれば十分である。
【0047】
マイクロレンズアレイ220a、220bを用いない従来の光モジュールでは、1つのチャンネル、すなわち1本の光ファイバに対して1つの光機能素子を用いていた。この場合、断面積が1mm角の光機能素子では、1つのチャンネルの光信号が実際に占有しているのは、光機能素子の断面のうち、面積にしてわずか1%に過ぎず、残りの99%の断面積部分は、何の効果にも寄与していないことになる。このように従来では、光機能素子の断面寸法と光ファイバの断面寸法とで単位が異なるほどの大幅なギャップがあるために、光機能モジュール自体のパッケージが不必要に大きくなってしまうという弊害をもたらしていた。
【0048】
一方、本実施形態によれば、4〜12本の光ファイバに対して上記のような数mm角の断面積を持つ1つの光機能素子を用いることができる。1つの光機能素子に対して使用できる光ファイバ数が多いため、光ファイバ1本あたりのコストが大幅に低下するばかりでなく、実装体積も大幅に減少するという大きな効果が得られる。
【0049】
なお、本実施形態の説明では、光機能素子としてアイソレータを例にとって説明したが、このほかの光機能素子として、偏向子、波長板、フィルタなどの光機能素子が同様に利用可能であることは言うまでもない。
【0050】
(第3実施形態)
図5は、本発明の第3の実施形態にかかる光モジュール300の構成を示す上面図である。本実施形態では、第2の実施形態のコリメート型ファイバ結合光学系から、マイクロレンズアレイの各レンズを軸ずれ型に変更することで、軸ずれ型のファイバ結合光学系を構成することを特徴とする。以下、この点に注目して説明し、光モジュール200と同様の構成については、重複説明を省略する。
【0051】
光モジュール300は、1対のマイクロレンズアレイ320a、320bと、1対の光ファイバ群330a、330bと、光機能素子としてのアイソレータ240と、1対のV溝群390a、390bが形成されたシリコンプラットフォーム398とを有する。
【0052】
V溝群390a、390bは共に構成要素であるV溝の数が7つである。すなわち、シリコンプラットフォーム398は、図4に示す第2の実施形態におけるシリコンプラットフォーム298のV溝群290aから最も下側のV溝の1つ、およびV溝群290bから最も上側のV溝の1つを除去した構成を有する。マイクロレンズアレイ320a、320bのレンズ部は軸ずれ型で構成され、構成要素であるレンズ部の数が7つであり、その他の点は第2の実施形態のマイクロレンズアレイ220a、220bと同様の構成を有する。また、1対の光ファイバ群330a、330bは共に構成要素である光ファイバの数が7つであり、全体として7つのチャンネルが形成されている。
【0053】
図5に示すように、光ファイバ群330a側が入射側とした場合、光ファイバ群330aの各光ファイバの端面から出射したそれぞれの発散光はマイクロレンズアレイ320aの対向する各レンズ部に入射する。そして各レンズ部により、出射光はコリメートされて平行光になるとともに、入射光に対して傾斜した方向に進行し、アイソレータ240に斜入射する。アイソレータ240を透過した光は、マイクロレンズアレイ320bの各レンズ部に入射する。そして各レンズ部により、出射光は収束されるとともに、入射光に対して傾斜した方向に進行し、光ファイバ群330aからの出射光と平行な方向に進み、光ファイバ群330bの各光ファイバの端面に集光されて入射する。
【0054】
本実施形態では、レンズ部を軸ずれ型で構成し、光機能素子の入出射端面に対して略コリメート光の進行方向を傾斜させている。これによって、第2の実施形態の効果に加え、レンズ部表面及び光機能素子入出射面における反射光が入射光ファイバ側に戻っていくことを防ぐことができ、光機能モジュールにおける反射戻り光量を低減できるという効果が得られる。
【0055】
(第4実施形態)
図6は、本発明の第4の実施形態にかかる光モジュール400の構成を示す上面図である。本実施形態を第2の実施形態の光モジュール200と比較すると、光機能素子としてビームスプリッタを用い、このビームスプリッタから分波された並列光束群が導光される第3のマイクロレンズアレイ及び第3の光ファイバ群をさらに有することを特徴とする。
【0056】
光モジュール400は、3つのマイクロレンズアレイ420a、420b、420cと、3つの光ファイバ群430a、430b、430cと、光機能素子としてのビームスプリッタ450と、3つのV溝群490a、490b、490cが形成されたシリコンプラットフォーム498とを有する。
【0057】
シリコンプラットフォーム498はシリコン結晶基板からなり、ビームスプリッタ450の光路となる3方向それぞれに3つのV溝群490a、490b、490cが配設されている。具体的には、シリコンプラットフォーム498の中心近傍に配置されたビームスプリッタ450に向かうように基板の3辺からビームスプリッタ450の手前までに3つのV溝群490a、490b、490cが高精度に形成されている。V溝群490a、490b、490cは第1実施形態におけるV溝群190同様に、1つのV溝を構成要素として、複数のV溝がそれぞれ所定のピッチで並列配設されたものであり、ピッチは一例として250μmとすることができる。このV溝は表面実装される部材の位置決め載置に用いられるものであり、V字形状の横断面を有し、ここでは直径125μmの光ファイバを載置可能な寸法を有する。
【0058】
マイクロレンズアレイ420a、420b、420cは第1実施形態におけるマイクロレンズアレイ120aと同様の構成を有し、1つのレンズ部を構成要素として、V溝群490a、490b、490cのピッチと同一ピッチで列状に形成された複数のレンズ部を一体化した構成を有し、V溝群490a、490b、490cのV溝に適合する張出部を有する。
【0059】
光ファイバ群430a、430b、430cは第1実施形態における光ファイバ群130と同様に、1つの光ファイバを構成要素として、複数の光ファイバの一端側をV溝群490a、490b、490cのピッチと同一ピッチで、並列配置したものである。ここでは各光ファイバは直径125μmのシングルモードファイバである。
【0060】
ビームスプリッタ450は光の合分波機能を有し、例えば、ダイクロイックミラー、偏光ビームスプリッタ等により構成できる。図6に示すビームスプリッタ450では、一方向から入射した光を透過および反射させることにより、2方向に分波できる。
【0061】
V溝群490aには光ファイバ群430aおよびマイクロレンズアレイ420aが位置決め載置され、V溝群490bには光ファイバ群430bおよびマイクロレンズアレイ420bが位置決め載置され、V溝群490cには光ファイバ群430cおよびマイクロレンズアレイ420cが位置決め載置されている。前述の実施形態同様、各ファイバおよび各マイクロレンズアレイの張出部が各V溝の側壁に当接して載置されることで、高精度なパッシブアライメントが実現されている。また、いずれの場合も光ファイバの端面にマイクロレンズアレイのレンズ部が対向するように配置され、光結合されている。
【0062】
その結果、図6に示すように、ビームスプリッタ450からシリコンプラットフォーム498の3辺に向かってそれぞれマイクロレンズアレイ、光ファイバ群が順に配置され、略T字形の光路を形成している。また、図6に示す光モジュール400では、3つのマイクロレンズアレイ、3つの光ファイバ群、3つのV溝群における構成要素の数は全て4つであり、4つのチャンネルが形成されている。
【0063】
例えば、光ファイバ群430aを入射側とした場合は、光ファイバ群430aの各光ファイバの端面から出射したそれぞれの発散光はマイクロレンズアレイ420aの対向する各レンズ部によりコリメートされて平行光になり、ビームスプリッタ450に入射する。ビームスプリッタ450を透過した光はマイクロレンズアレイ420bの各レンズ部により収束されて各レンズ部が対向する光ファイバ群430bの各光ファイバの端面に集光されて入射する。ビームスプリッタ450で反射された光はマイクロレンズアレイ420cの各レンズ部により収束されて各レンズ部が対向する光ファイバ群430cの各光ファイバの端面に集光されて入射する。以上より、光モジュール400によって、多チャンネル光合分波モジュールが実現される。
【0064】
以上より、本実施形態によれば、通常数mm角の寸法を有するビームスプリッタを、一例として250μmピッチの複数の光ファイバによって共用することができ、容易に小型の多チャンネル光合分波モジュールを構成することが可能となる。
【0065】
(第5実施形態)
図7は、本発明の第5の実施形態にかかる光モジュール500の構成を示す上面図である。本実施形態では、第2の実施形態の光モジュール200において、マイクロレンズアレイ間に配置されていた光機能素子を除去し、1つのマイクロレンズアレイに波長選択性を有するフィルタを付与した構成となっている。以下、この点に注目して説明し、光モジュール200と同様の構成については、重複説明を省略する。
【0066】
光モジュール500は、1対のマイクロレンズアレイ220a、220bと、1対の光ファイバ群230a、230bと、WDMフィルタ560と、1対のV溝群290a、290bが形成されたシリコンプラットフォーム298とを有する。
【0067】
WDMフィルタ560は、波長選択性を有するフィルタであり、例えば、λ1、λ2の2種類の異なる波長の光が入射したとき、λ2の波長の光を反射し、λ1の波長の光を透過する性質を有する。WDMフィルタ560は、入射側のマイクロレンズアレイ220aのレンズ部が形成されている面と反対側の面に設けられている。
【0068】
光モジュール500では、例えば、光ファイバ群230aからλ1、λ2の2種類の異なる波長の光を入射させると、多チャンネルで一括して、λ1の波長の光のみ光ファイバ群230bへ透過させ、λ2の波長の光は反射されて再び光ファイバ群230aに戻すことができる。すなわち、λ1、λ2の2種類の異なる波長の光を入射させたときに、多チャンネルで一括して、λ1の波長のみ取り出し、λ2の波長の光は再び入射端に戻すという、いわゆるアド/ドロップ機能を実現することができる。通常、このような機能は、ファイバ1チャンネルあたり1つのモジュールを用意することが普通であるが、本実施形態の構成によれば、多数のチャンネルのアド/ドロップ機能を小型のモジュールとして提供することが可能となる。
【0069】
なお、上記実施形態では、複数のレンズ部が一体化されたマイクロレンズアレイを用いた例を説明したが、本発明はこれに限定するものではない。複数のマイクロレンズアレイを組み合わせて並列配置する構成にすることもできる。また、上記のマイクロレンズアレイに代わり、レンズ部材として図8、図9に示すようなマイクロレンズ12、10を複数、光ファイバ群と同一ピッチで並列させて上記実施形態のような多チャンネルの光モジュールを構成することも可能である。あるいは、上記マイクロレンズアレイ、マイクロレンズ12、マイクロレンズ10のうちから組み合わせて使用することも可能である。
【0070】
図8に示すマイクロレンズ12は、マイクロレンズアレイ120aにおいて、レンズ部2を1つだけ有するような構成になっている。すなわち、マイクロレンズ12は、回折光学素子からなる円形形状のレンズ部2と、レンズ部2の外周の上部側でレンズから延設されレンズ部2より幅広の略直方体形状の取扱部4と、レンズ部2の外周の一部としての縁部3と、V溝に適合する形状および寸法を有する張出部5とを有する。
【0071】
図9に示すマイクロレンズ10は、ロッド形状の外形を有するレンズであり、端面に回折光学素子からなる円形形状のレンズ部2を有し、外径は光ファイバの外径と同径に構成され、V溝に載置可能である。
【0072】
以下、図10〜図14を参照しながら、マイクロレンズ12と同様の構成を有するマイクロレンズを用いた1チャンネルの光モジュール例について簡単に説明する。
【0073】
(第6実施形態)
図10は、本発明の第6の実施形態にかかる光モジュール101の構成を示す上面図である。光モジュール101は、第1実施形態の光モジュール100で各構成要素を1つとし、マイクロレンズアレイ120a、120bの代わりに1対のマイクロレンズ12a、12bを用いて光結合を行い、さらにマイクロレンズ12a、12b間にアイソレータ141を挿入配置した構成を有する。マイクロレンズ12a、12bはマイクロレンズ12と同様の構成を有するコリメートレンズである。光モジュール101では図10に示すように、LD112、マイクロレンズ12a、アイソレータ141、マイクロレンズ12b、光ファイバ132がV溝192を有するシリコンプラットフォーム18上に、この順に配置され光源モジュールを構成している。
【0074】
本実施形態においても、V溝192上にマイクロレンズ12a、12b、光ファイバ132が位置決め載置され、高精度なパッシブアライメントが実現されている。また、マイクロレンズ間にアイソレータを挿入しており、これによってきわめてコンパクトな光源モジュールを構成している。従来、このようなアイソレータは、光源モジュールから出た光ファイバに、あらためてアイソレータモジュールを接続することが一般的である。それに比較して、本実施形態によれば、光モジュール総体をコンパクトに実現できるだけでなく、光モジュール外部にあらためてアイソレータデバイスを配置する必要もないため、実用上の効果が大きい。
【0075】
(第7実施形態)
図11は、本発明の第7の実施形態にかかる光モジュール201の構成を示す上面図である。光モジュール201は、第2の実施形態の光モジュール200で各構成要素を1つとし、マイクロレンズアレイ220a、220bの代わりに1対のマイクロレンズ22a、22bを用いて光結合を行う構成を有する。マイクロレンズ22a、22bはマイクロレンズ12と同様の構成を有するコリメートレンズである。光モジュール201では図11に示すように、光ファイバ23a、マイクロレンズ22a、アイソレータ241、マイクロレンズ22b、光ファイバ23bがV溝29a、29bを有するシリコンプラットフォーム28上に、この順に配置され光機能モジュールを構成している。
【0076】
本実施形態においても、V溝29a、29b上にマイクロレンズ22a、22b、光ファイバ23a、23bが位置決め載置され、高精度なパッシブアライメントが実現されている。また、アイソレータに代表されるような、数mm角の断面積を持つ光機能素子を、光ファイバからの出力を略平行光に変換する機能を有するマイクロレンズ対間に配置することで、コンパクトな光機能モジュールを実現できるという効果を有する。
【0077】
(第8実施形態)
図12は、本発明の第8の実施形態にかかる光モジュール301の構成を示す上面図である。光モジュール301は、第3の実施形態の光モジュール300で各構成要素を1つとし、マイクロレンズアレイ320a、320bの代わりに1対のマイクロレンズ32a、32bを用いて光結合を行う構成を有する。マイクロレンズ32a、32bは、そのレンズ部が軸ずれ型で構成され、レンズ部以外はマイクロレンズ12と同様の構成を有するコリメートレンズである。光モジュール301では図12に示すように、光ファイバ23a、マイクロレンズ32a、アイソレータ341、マイクロレンズ32b、光ファイバ23bがV溝39a、39bを有するシリコンプラットフォーム38上に、この順に配置され光機能モジュールを構成している。
【0078】
本実施形態においても、V溝39a、39b上にマイクロレンズ32a、32b、光ファイバ23a、23bが位置決め載置され、高精度なパッシブアライメントが実現されている。また、本実施形態ではマイクロレンズ32a、32bを軸ずれ型で構成し、アイソレータ341の入出射面に対して一定の角度を持って略コリメート光が斜め入射するよう構成している。これにより第7の実施形態の効果に加え、レンズ面及びアイソレータの入出射面における反射光が、光ファイバ側に戻っていくことが防げ、光機能モジュールにおける反射戻り光量を低減できるという効果を有する。
【0079】
(第9実施形態)
図13は、本発明の第9の実施形態にかかる光モジュール401の構成を示す上面図である。光モジュール401は、第4の実施形態の光モジュール400で各構成要素を1つとし、マイクロレンズアレイ420a、420b、420cの代わりにマイクロレンズ42a、42b、42cを用いて光結合を行う構成を有する。マイクロレンズ42a、42b、42cはマイクロレンズ12と同様の構成を有するコリメートレンズである。光モジュール401では図13に示すように、V溝49a、49b、49cを有するシリコンプラットフォーム48上に、横方向に光ファイバ43a、マイクロレンズ42a、ビームスプリッタ451、マイクロレンズ42b、光ファイバ43bが順に配置され、縦方向にはビームスプリッタ451に向かって手前から順に光ファイバ43c、マイクロレンズ42cが配置されて光合分波モジュールを構成している。
【0080】
本実施形態においても、V溝49a、49b、49c上にマイクロレンズ42a、42b、42c、光ファイバ43a、43b、43cが位置決め載置され、高精度なパッシブアライメントが実現されている。また、通常数mm角の寸法を有するビームスプリッタを、シリコンV溝基板上に、必要とされる光ファイバ、コリメートレンズ群と共に実装でき、容易にコンパクトな光合分波モジュールを実現できるという効果を有する。
【0081】
(第10実施形態)
図14は、本発明の第10の実施形態にかかる光モジュール501の構成を示す上面図である。光モジュール501は、第5の実施形態の光モジュール500で各構成要素を1つとし、マイクロレンズアレイ520a、520bの代わりにマイクロレンズ22a、22bを用いて光結合を行う構成を有する。あるいは、第7の実施形態における光モジュール201において、マイクロレンズ間に配置されていた光機能素子を除去し、入射側のマイクロレンズ22aに波長選択性を有するWDMフィルタ561を付与した構成ということもできる。
【0082】
光モジュール501では図14に示すように、光ファイバ23a、WDMフィルタ561が付与されたマイクロレンズ22a、マイクロレンズ22b、光ファイバ23bがこの順にV溝29a、29b上に位置決め載置され、高精度なパッシブアライメントを実現すると共に、アド/ドロップ機能を有するコンパクトな光モジュールを実現している。
【0083】
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
【0084】
例えば、多チャンネル光モジュールにおける各部材の構成要素数、チャンネル数は上記例に限定されず、任意に決めることができる。また、マイクロレンズアレイの各部の形状およびマイクロレンズの形状は上記例に限定されず、様々な形状が考えられる。例えば、レンズ部は、円形に限らず所望の形状で形成可能である。さらにまた、表面実装される部材の位置決め載置に用いられる溝の断面形状は、上記例のV字形状に限定されず、例えば略台形形状、略半円形状、略長方形形状、略正方形形状のいずれか1つであるように構成してもよい。
【図面の簡単な説明】
【0085】
【図1】本発明の第1の実施形態に係る光モジュールの構成を示す上面図である。
【図2】図1の光モジュールに用いられるマイクロレンズアレイの構成を示す斜視図である。
【図3】図1の光モジュールの部分拡大斜視図である。
【図4】本発明の第2の実施形態に係る光モジュールの構成を示す上面図である。
【図5】本発明の第3の実施形態に係る光モジュールの構成を示す上面図である。
【図6】本発明の第4の実施形態に係る光モジュールの構成を示す上面図である。
【図7】本発明の第5の実施形態に係る光モジュールの構成を示す上面図である。
【図8】マイクロレンズの構成を示す斜視図である。
【図9】マイクロレンズの構成を示す斜視図である。
【図10】本発明の第6の実施形態に係る光モジュールの構成を示す上面図である。
【図11】本発明の第7の実施形態に係る光モジュールの構成を示す上面図である。
【図12】本発明の第8の実施形態に係る光モジュールの構成を示す上面図である。
【図13】本発明の第9の実施形態に係る光モジュールの構成を示す上面図である。
【図14】本発明の第10の実施形態に係る光モジュールの構成を示す上面図である。
【符号の説明】
【0086】
2 レンズ部
3 縁部
4 取扱部
5 張出部
6 上面
7 側面
10、12 マイクロレンズ
100 光モジュール
110 光源アレイ
112 LD
120a、120b マイクロレンズアレイ
130 光ファイバ群
132 光ファイバ
190 V溝群
192 V溝
198 シリコンプラットフォーム
240 アイソレータ
450 ビームスプリッタ

【特許請求の範囲】
【請求項1】
表面実装の位置決め用に形成された溝と、
前記溝に位置決め載置された光ファイバと、
前記光ファイバの外径と同径に構成され、前記溝によって位置決め載置される1対のマイクロレンズと、
前記1対のマイクロレンズにより前記光ファイバと光結合される光源および受光器のいずれか一方と、
前記1対のマイクロレンズの間に配置された光機能素子と、
を具備することを特徴とする、光モジュール。
【請求項2】
表面実装の位置決め用に形成された溝と、
前記溝に位置決め載置された1対の光ファイバと、
前記光ファイバの外径と同径に構成され、前記溝によって位置決め載置される1対のマイクロレンズと、
前記1対のマイクロレンズの間に配置された光機能素子と、
を具備することを特徴とする、光モジュール。
【請求項3】
前記マイクロレンズの光学系を軸ずれ型で構成し、前記光機能素子の入出射端面に対する光の進行方向を傾斜させたことを特徴とする、請求項2に記載の光モジュール。
【請求項4】
前記光機能素子は、アイソレータ、偏向子、波長板、フィルタのうちのいずれか1つであることを特徴とする、請求項2または3に記載の光モジュール。
【請求項5】
ビームスプリッタと、
前記ビームスプリッタの光路となる3方向それぞれに配設された、表面実装の位置決め用の3つの溝と、
前記3つの溝それぞれに位置決め載置された3つの光ファイバと、
前記光ファイバの外径と同径に構成され、前記溝によって位置決め載置される3つのマイクロレンズと、
を具備することを特徴とする、光モジュール。
【請求項6】
表面実装の位置決め用に形成された溝と、
前記溝に位置決め載置された一対の光ファイバと、
前記光ファイバの外径と同径に構成され、前記溝によって位置決め載置される一対のマイクロレンズと、
前記一対のマイクロレンズの少なくともいずれか一方に設けられた波長選択性を有するフィルタと、
を具備することを特徴とする、光モジュール。
【請求項7】
前記マイクロレンズはシリコン結晶基板からなり、回折光学素子からなるレンズ部を有することを特徴とする、請求項1〜6のいずれかに記載の光モジュール。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2007−86819(P2007−86819A)
【公開日】平成19年4月5日(2007.4.5)
【国際特許分類】
【出願番号】特願2007−753(P2007−753)
【出願日】平成19年1月5日(2007.1.5)
【分割の表示】特願2002−272124(P2002−272124)の分割
【原出願日】平成14年9月18日(2002.9.18)
【出願人】(000000295)沖電気工業株式会社 (6,645)
【Fターム(参考)】