説明

光電変換材料、半導体電極並びにそれを用いた光電変換素子

【課題】光電変換特性と耐久性に優れた光電変換素子を提供する。
【解決手段】特定の縮合環状アミノ基を導入した下記色素を光電変換材料として用いる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光電変換材料、半導体電極並びにそれを用いた光電変換素子に関するものである。
【背景技術】
【0002】
大量の化石燃料の使用で引き起こされるCO2濃度増加による地球温暖化、更に人口増加に伴うエネルギー需要の増大は、人類の存亡にまで関わる問題と認識されている。そのため近年、無限で有害物質を発生しない太陽光の利用が精力的に検討されている。このクリーンエネルギー源である太陽光利用として現在実用化されているものは住宅用の単結晶シリコン、多結晶シリコン、アモルファスシリコン及びテルル化カドミウムやセレン化インジウム銅等の無機系太陽電池が挙げられる。
【0003】
しかしながら、これらの無機系太陽電池にも欠点がある。例えばシリコン系では、非常に純度の高いものが要求され、当然精製の工程は複雑でプロセス数が多く、製造コストが高い。それ以外にも軽量化等の要求もあり、特に、ユーザーへのペイバックが長い点でも不利であり、普及には問題があった。
【0004】
その一方で、有機材料を使う太陽電池も多く提案されている。有機太陽電池としては、p型有機半導体と仕事関数の小さい金属を接合させるショットキー型光電変換素子、p型有機半導体とn型無機半導体、あるいは、p型有機半導体と電子受容性有機化合物を接合させるヘテロ接合型光電変換素子等があり、利用される有機半導体は、クロロフィル、ペリレン等の合成色素や顔料、ポリアセチレン等の導電性高分子材料、またはそれらの複合材料等である。これらを真空蒸着法、キャスト法、ディッピング法等により薄膜化し、電池材料が構成されている。有機材料は低コスト、大面積化が容易等の長所もあるが、変換効率は1%以下と低いものが多く、また耐久性も悪いという問題もあった。
【0005】
こうした状況の中で、良好な特性を示す太陽電池がスイスのグレッツェル博士らによって報告された(例えば、非特許文献1参照)。この文献には電池作製に必要な材料及び製造技術も開示されている。提案された電池は、色素増感型太陽電池またはグレッツェル型太陽電池と呼ばれ、ルテニウム錯体で分光増感された酸化チタン多孔質薄膜を作用電極とする湿式太陽電池である。この方式の利点は酸化チタン等の安価な酸化物半導体を高純度まで精製する必要がないこと、従って安価で、更に利用できる光は広い可視光領域にまでわたっており、可視光成分の多い太陽光を有効に電気へ変換できることである。
【0006】
反面、資源的制約があるルテニウム錯体が使われているため、この太陽電池が実用化された場合に、ルテニウム錯体の供給が危ぶまれている。また、このルテニウム錯体は高価なため、ルテニウム錯体の少なくとも一部を安価な有機色素へ変更することができれば、この問題は解決できる。この電池の色素としてメロシアニン色素、シアニン色素、9−フェニルキサンテン系色素が報告されている(例えば、特許文献1〜3参照)。しかしながら、これらの色素は酸化チタンへの吸着性が悪く、高い増感効果を得ることができない。
【0007】
最近、酸化物半導体の分光増感色素として高性能を有し、更に経時安定性にも優れた有機色素が開示された(例えば、特許文献4〜5参照)が、実用的な太陽電池を製造する観点からは、光電変換効率と耐久性の両面で性能が不十分であった。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開平11−238905号公報
【特許文献2】特開2001−76773号公報
【特許文献3】特開平10−92477号公報
【特許文献4】特開2004−200068号公報
【特許文献5】特開2005−19252号公報
【非特許文献】
【0009】
【非特許文献1】Nature,353,737(1991)
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明の課題は高い光電変換効率で耐久性に優れた光電変換素子を提供することである。
【課題を解決するための手段】
【0011】
本発明者は上記課題を達成すべく鋭意検討した結果、一般式[I]または一般式[II]で示される色素の少なくとも一種を用いる光電変換材料により目標達成することができた。
【0012】
光電変換材料とは、例えば、導電性支持体を構成する材料、半導体電極を構成する材料、電解質、対極を構成する材料等、光を電気エネルギーに変換する素子を構成する全ての部材のことを意味する。可視領域に光電変換能を持たない半導体電極上に可視領域の光を吸収する色素を吸着担持させることにより、半導体電極の光電変換能を可視領域にまで拡大することができるが、このような目的で使用される色素は増感色素と呼ばれる。本発明の色素は、この増感色素のことを意味する。
【0013】
【化1】

【0014】
一般式[I]において、R1は、アルキル基、アラルキル基、アリール基またはヘテロ環置換基を示す。R2は、一般式[III]または一般式[IV]で示される酸性基を置換基として有する残基を示す。lは、0または1を示す。R5は芳香環上の置換基であって、水素原子、アルキル基、アラルキル基、アルコキシ基またはアリール基を示す。
【0015】
【化2】

【0016】
一般式[II]において、R3は、アルキル基、アラルキル基、アリール基またはヘテロ環置換基を示す。R4は、一般式[III]または一般式[IV]で示される酸性基を置換基として有する残基を示す。mは、0または1を示す。R6は、芳香環上の置換基であって、水素原子、アルキル基、アラルキル基、アルコキシ基またはアリール基を示す。
【0017】
【化3】

【0018】
【化4】

【0019】
一般式[IV]において、R7とR8は、それぞれ独立して、アルキル基、アラルキル基、酸性基を置換基として有するアルキル基または酸性基を置換基として有するアラルキル基を示す。R7とR8のうち、少なくとも一方は酸性基を置換基として有する。nは、0または1を示す。nが1の場合、二つの複素五員環の立体配置はZ型とE型のどちらでも構わない。
【発明の効果】
【0020】
本発明で使用される一般式[I]または一般式[II]の色素を用いることにより、優れた変換効率を示す光電変換素子を得ることができる。
【発明を実施するための形態】
【0021】
一般式[I]と一般式[II]の色素の詳細について説明する。
【0022】
1とR3の具体例としては、メチル基、エチル基、n−ブチル基、n−オクチル基等のアルキル基、ベンジル基、フェネチル基、1−ナフチルメチル基等のアラルキル基、フェニル基、1−ナフチル基、2−ナフチル基、4−ビフェニル基等のアリール基、チオフェン−2−イル基、インドール−3−イル基等のヘテロ環置換基が挙げられる。これらは、更に置換基を有してもよい。
【0023】
2とR4は酸性基を置換基として有する残基であって、一般式[III]または一般式[IV]で示される。
【0024】
7とR8は、メチル基、エチル基、n−ブチル基、n−ヘキシル基、n−オクチル基等のアルキル基、ベンジル基、フェネチル基等のアラルキル基が挙げられる。また、それらに結合する酸性の置換基としては、カルボキシル基、スルホ基、スルフィノ基、スルフェノ基、フォスフォノ基、フォスフィニコ基等が挙げられるが、その中でも、カルボキシル基が特に好ましい。
【0025】
5とR6は、芳香環上の置換基であって、水素原子の他に、メチル基、エチル基、n−ブチル基等のアルキル基、ベンジル基、フェネチル基等のアラルキル基、メトキシ基、エトキシ基、n−ブトキシ基等のアルコキシ基、フェニル基、ビフェニル基、1−ナフチル基等のアリール基が挙げられる。
【0026】
本発明の色素は、メロシアニン色素に分類される色素である。メロシアニン色素は、分子内において、電子供与性の置換基を有するユニットと電子吸引性の置換基を有するユニットとを共役二重結合で連結した構造を有する。メロシアニン色素を半導体の増感色素として使用する場合には、色素の電子吸引性の置換基を有するユニット上に半導体との吸着性を促進する酸性基を導入することが一般的である。色素は、吸着性を促進する酸性基を介して半導体上に吸着する。
【0027】
本発明の色素が高い光電変換効率であることについて詳細なことは不明であるが、以下のような推測を行うことができる。
【0028】
色素の電子供与性の置換基として特定構造の縮合環状アミノ基を用いることにより、色素分子は特定の剛直な立体構造を保持すると予想される。この色素が半導体上に吸着する場合、複数の色素分子間の縮合環状アミノ基のπ電子同士の相互作用により、高い光電変換効率を発現する凝集体を優先的に形成して半導体上に吸着すると考えられる。
【0029】
次に、本発明の一般式[I]の色素の具体例を挙げるが、これらに限定されるものではない。
【0030】
【化5】

【0031】
【化6】

【0032】
【化7】

【0033】
【化8】

【0034】
【化9】

【0035】
【化10】

【0036】
【化11】

【0037】
【化12】

【0038】
【化13】

【0039】
【化14】

【0040】
【化15】

【0041】
【化16】

【0042】
【化17】

【0043】
次に、本発明の一般式[II]の色素の具体例を挙げるが、これらに限定されるものではない。
【0044】
【化18】

【0045】
【化19】

【0046】
【化20】

【0047】
【化21】

【0048】
【化22】

【0049】
【化23】

【0050】
【化24】

【0051】
【化25】

【0052】
【化26】

【0053】
【化27】

【0054】
【化28】

【0055】
【化29】

【0056】
【化30】

【0057】
本発明に係わる色素は、電子吸引性の置換基を有するユニットにおける共役二重結合の炭素原子上の置換基の立体配置によって幾何異性体(E体、Z体)が存在する。一般式[I]または一般式[II]で示される色素の酸性基を置換基として有する残基が一般式[III]の場合には二種、一般式[IV]でnが0の場合には二種、nが1の場合には共役二重結合の炭素原子が色素分子内に二組存在するため、四種の幾何異性体(Z−E体、Z−Z体、E−Z体、E−E体)が存在する。更に、一般式[I]または一般式[II]において、lまたはmが1の場合には、そのビニレン基の幾何構造の違いによって、二種類の幾何異性体(CIS体、TRANS体)が存在する。色素を合成する際には、通常、幾何異性体の混合物として単離される。化学構造を以下に示すが、本発明においては、これらの中の何れの異性体であってもよく、それらの混合物でも構わない。
【0058】
【化31】

【0059】
【化32】

【0060】
【化33】

【0061】
【化34】

【0062】
本発明の光電変換素子は、導電性支持体、導電性支持体表面上を被覆した色素によって増感された半導体層、電荷移動層及び対極からなる。半導体層は単層構成でも積層構成でもよく、目的に応じて設計される。また、導電性支持体の導電層と半導体層の境界、半導体層と移動層の境界等、この素子における境界においては、各層の構成成分は相互に拡散または混合していてもよい。
【0063】
導電性支持体は、金属のように支持体そのものに導電性があるもの、または表面に導電剤を含む導電層を有するガラスあるいはプラスチックの支持体を用いることができる。後者の場合、導電剤としては白金、金、銀、銅、アルミニウム等の金属、炭素、あるいはインジウム−スズ複合酸化物(以降「ITO」と略記する)、フッ素をドーピングした酸化スズ等の金属酸化物(以降「FTO」と略記する)等が挙げられる。導電性支持体は、光を10%以上透過する透明性を有していることが好ましく、50%以上透過することがより好ましい。この中でも、ITOやFTOからなる導電層をガラス上に堆積した導電性ガラスが特に好ましい。
【0064】
透明導電性支持体の抵抗を下げる目的で、金属リード線を用いてもよい。金属リード線の材質はアルミニウム、銅、銀、金、白金、ニッケル等の金属が挙げられる。金属リード線は、透明導電性支持体に蒸着、スパッタリング、圧着等で設置し、その上にITOやFTOを設ける方法、あるいは透明導電性支持体上に金属リード線を設置する。
【0065】
半導体としては、シリコン、ゲルマニウムのような単体半導体、あるいは金属のカルコゲニドに代表される化合物半導体、またはペロブスカイト構造を有する化合物等を使用することができる。金属のカルコゲニドとしてはチタン、スズ、亜鉛、鉄、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、あるいはタンタルの酸化物、カドミウム、亜鉛、鉛、銀、アンチモン、ビスマスの硫化物、カドミウム、鉛のセレン化物、カドミウムのテルル化物等が挙げられる。他の化合物半導体としては亜鉛、ガリウム、インジウム、カドミウム、等のリン化物、ガリウム砒素、銅−インジウム−セレン化物、銅−インジウム−硫化物等が好ましい。また、ペロブスカイト構造を有する化合物としては、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸ナトリウム、チタン酸バリウム、ニオブ酸カリウム等が好ましい。
【0066】
本発明に用いられる半導体は、単結晶でも多結晶でもよい。変換効率としては単結晶が好ましいが、製造コスト、原材料確保等の点では多結晶が好ましく、その半導体の粒径は2nm以上、1μm以下であることが好ましい。
【0067】
導電性支持体上に半導体層を形成する方法としては、半導体微粒子の分散液またはコロイド溶液を導電性支持体上に塗布する方法、ゾル−ゲル法等がある。その分散液の作製方法としては、前述のゾル−ゲル法、乳鉢等で機械的に粉砕する方法、ミルを使って粉砕しながら分散する方法、あるいは、半導体を合成する際に溶媒中で微粒子として析出させ、そのまま使用する方法等が挙げられる。
【0068】
機械的粉砕あるいはミルを使用して粉砕して作製する分散液の場合、少なくとも半導体微粒子単独あるいは半導体微粒子と樹脂の混合物を、水あるいは有機溶剤に分散して形成される。使用される樹脂としては、スチレン、酢酸ビニル、アクリル酸エステル、メタクリル酸エステル等によるビニル化合物の重合体や共重合体、シリコーン樹脂、フェノキシ樹脂、ポリスルホン樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリエステル樹脂、セルロースエステル樹脂、セルロースエーテル樹脂、ウレタン樹脂、フェノール樹脂、エポキシ樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリアミド樹脂、ポリイミド樹脂等が挙げられる。
【0069】
半導体微粒子を分散する溶媒としては、水、メタノール、エタノール、あるいはイソプロピルアルコール等のアルコール系溶媒、アセトン、メチルエチルケトン、あるいはメチルイソブチルケトン等のケトン系溶媒、ギ酸エチル、酢酸エチル、あるいは酢酸n−ブチル等のエステル系溶媒、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、あるいはジオキサン等のエーテル系溶媒、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、あるいはN−メチル−2−ピロリドン等のアミド系溶媒、ジクロロメタン、クロロホルム、ブロモホルム、ヨウ化メチル、ジクロロエタン、トリクロロエタン、トリクロロエチレン、クロロベンゼン、o−ジクロロベンゼン、フルオロベンゼン、ブロモベンゼン、ヨードベンゼン、あるいは1−クロロナフタレン等のハロゲン化炭化水素系溶媒、n−ペンタン、n−ヘキサン、n−オクタン、1,5−ヘキサジエン、シクロヘキサン、メチルシクロヘキサン、シクロヘキサジエン、ベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン、エチルベンゼン、あるいはクメン等の炭化水素系溶媒を挙げることができる。これらは単独、あるいは2種以上の混合溶媒として用いることができる。
【0070】
得られた分散液の塗布方法としては、ローラ法、ディップ法、エアーナイフ法、ブレード法、ワイヤーバー等、スライドホッパ法、エクストルージョン法、カーテン法、スピン法、あるいはスプレー法を挙げることができる。
【0071】
更に、半導体層は単層であっても多層であってもよい。多層の場合、粒径の異なる半導体微粒子の分散液を多層塗布したり、種類の異なる半導体や、樹脂、添加剤の組成が異なる塗布層を多層塗布することもできる。また、一度の塗布で膜厚が不足する場合には多層塗布は有効な手段である。
【0072】
一般的に、半導体層の膜厚が増大するほど単位投影面積当たりの担持色素量も増えるため光の捕獲率が高くなるが、生成した電子の拡散距離も増えるために電荷の再結合も多くなってしまう。従って、半導体層の膜厚は0.1〜100μmが好ましく、1〜30μmがより好ましい。
【0073】
半導体微粒子は導電性支持体上に塗布した後、加熱処理してもしなくともよいが、粒子同士の電子的コンタクト及び塗膜強度の向上や支持体との密着性向上の点から、加熱処理をした方が好ましい。更に、マイクロ波照射、プレス処理あるいは電子線照射を行ってもよく、これらの処理は単独で行っても二種類以上行っても構わない。加熱処理の際、加熱温度は40〜700℃が好ましく、80〜600℃がより好ましい。また、加熱時間は5分〜50時間が好ましく、10分〜20時間がより好ましい。マイクロ波照射は、半導体電極の半導体層形成側から照射しても、裏側から照射しても構わない。照射時間には特に制限がないが、1時間以内で行うことが好ましい。プレス処理は、9.80665×106N/m2以上が好ましく、9.80665×107N/m2が更に好ましい。プレスする時間は特に制限がないが、1時間以内で行うことが好ましい。
【0074】
半導体微粒子は多くの色素を吸着できるように表面積の大きなものが好ましい。このため半導体層を支持体上に塗設した状態での表面積は、投影面積に対して10倍以上であることが好ましく、100倍以上であることがより好ましい。
【0075】
本発明の光電変換素子における色素は、一般式[I]または一般式[II]で示される色素の何れかを用いる。また、これらを併用しても構わない。
【0076】
半導体層に色素を吸着させる方法としては、色素溶液中あるいは色素分散液中に半導体微粒子を含有する作用電極を浸漬する方法、色素溶液あるいは分散液を半導体層に塗布して吸着させる方法を用いることができる。前者の場合、浸漬法、ディップ法、ローラ法、エアーナイフ法等を用いることができ、後者の場合は、ワイヤーバー法、スライドホッパー法、エクストルージョン法、カーテン法、スピン法、スプレー法等を用いることができる。
【0077】
色素を吸着する際、縮合剤を併用してもよい。縮合剤は、無機物表面に物理的あるいは化学的に色素を結合すると思われる触媒的作用をするもの、または化学量論的に作用し、化学平衡を有利に移動させるものの何れであってもよい。更に、縮合助剤としてチオール、あるいはヒドロキシ化合物を添加してもよい。
【0078】
色素を溶解、あるいは分散する溶媒は、水、メタノール、エタノール、あるいはイソプロピルアルコール等のアルコール系溶媒、アセトン、メチルエチルケトン、あるいはメチルイソブチルケトン等のケトン系溶媒、ギ酸エチル、酢酸エチル、あるいは酢酸n−ブチル等のエステル系溶媒、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、あるいはジオキサン等のエーテル系溶媒、アセトニトリル、プロピオニトリル等のニトリル系溶媒、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、あるいはN−メチル−2−ピロリドン等のアミド系溶媒、ジクロロメタン、クロロホルム、ブロモホルム、ヨウ化メチル、ジクロロエタン、トリクロロエタン、トリクロロエチレン、クロロベンゼン、o−ジクロロベンゼン、フルオロベンゼン、ブロモベンゼン、ヨードベンゼン、あるいは1−クロロナフタレン等のハロゲン化炭化水素系溶媒、n−ペンタン、n−ヘキサン、n−オクタン、1,5−ヘキサジエン、シクロヘキサン、メチルシクロヘキサン、シクロヘキサジエン、ベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン、エチルベンゼン、あるいはクメン等の炭化水素系溶媒を挙げることができ、これらは単独、あるいは2種以上の混合として用いることができる。
【0079】
これらを用い、色素を吸着する際の温度としては、−50℃以上、200℃以下が好ましい。また、この吸着は攪拌しながら行っても構わない。攪拌する場合の方法としては、スターラー、ボールミル、ペイントコンディショナー、サンドミル、アトライター、ディスパーザー、あるいは超音波分散等が挙げられるが、これらに限定されるものではない。吸着に要する時間は、5秒以上、1000時間以下が好ましく、10秒以上、500時間以下がより好ましく、1分以上、150時間が更に好ましい。
【0080】
本発明では、一般式[I]または一般式[II]で示される色素を吸着する際、共吸着剤としてステロイド系化合物を併用しても構わない。
【0081】
そのステロイド化合物の具体例としては、C1〜C10に示すものが挙げられる。ステロイド系化合物の量は、色素1質量部に対して0.01〜1000質量部が好ましく、0.1〜100質量部がより好ましい。
【0082】
【化35】

【0083】
【化36】

【0084】
色素を吸着した後、あるいは色素と上記ステロイド系化合物を共吸着した後、t−ブチルピリジン、2−ピコリン、2,6−ルチジン等の塩基性化合物、あるいはリン酸、リン酸エステル、アルキルリン酸、酢酸、プロピオン酸等の酸性化合物を含有する有機溶媒に浸漬処理しても構わない。
【0085】
本発明の電荷移動層としては、酸化還元対を有機溶媒に溶解した電解液、酸化還元対を有機溶媒に溶解した液体をポリマーマトリックスに含浸したゲル電解質、酸化還元対を含有する溶融塩、固体電解質、有機正孔輸送材料等を用いることができる。
【0086】
本発明で使用される電解液は、電解質、溶媒、及び添加物から構成されることが好ましい。好ましい電解質はヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化セシウム、ヨウ化カルシウム等の金属ヨウ化物−ヨウ素の組み合わせ、テトラアルキルアンモニウムヨーダイド、ピリジニウムヨーダイド、イミダゾリウムヨーダイド等の4級アンモニウム化合物のヨウ素塩−ヨウ素の組み合わせ、臭化リチウム、臭化ナトリウム、臭化カリウム、臭化セシウム、臭化カルシウム等の金属臭化物−臭素の組み合わせ、テトラアルキルアンモニウムブロマイド、ピリジニウムブロマイド等の4級アンモニウム化合物の臭素塩−臭素の組み合わせ、フェロシアン酸塩−フェリシアン酸塩、フェロセン−フェリシニウムイオン等の金属錯体、ポリ硫化ナトリウム、アルキルチオール−アルキルジスルフィド等のイオウ化合物、ビオロゲン色素、ヒドロキノン−キノン等が挙げられる。上述の電解質は単独の組み合わせであっても混合であってもよい。また、電解質として、室温で溶融状態の溶融塩を用いることもできる。この溶融塩を用いた場合は、特に溶媒を用いなくても構わない。
【0087】
電解液における電解質濃度は、0.05〜20Mが好ましく、0.1〜15Mが更に好ましい。電解液に用いる溶媒としては、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒、3−メチル−2−オキサゾリジノン等の複素環化合物、ジオキサン、ジエチルエーテル、エチレングリコールジアルキルエーテル等のエーテル系溶媒、メタノール、エタノール、ポリプロピレングリコールモノアルキルエーテル等のアルコール系溶媒、アセトニトリル、ベンゾニトリル等のニトリル系溶媒、ジメチルスルホキシド、スルホラン等の非プロトン性極性溶媒等が好ましい。また、t−ブチルピリジン、2−ピコリン、2,6−ルチジン等の塩基性化合物を併用しても構わない。
【0088】
本発明では、電解質はポリマー添加、オイルゲル化剤添加、多官能モノマー類を含む重合、ポリマーの架橋反応等の手法によりゲル化させることもできる。ポリマー添加によりゲル化させる場合の好ましいポリマーとしては、ポリアクリロニトリル、ポリフッ化ビニリデン等を挙げることができる。オイルゲル化剤添加によりゲル化させる場合の好ましいゲル化剤としては、ジベンジルデン−D−ソルビトール、コレステロール誘導体、アミノ酸誘導体、トランス−(1R,2R)−1,2−シクロヘキサンジアミンのアルキルアミド誘導体、アルキル尿素誘導体、N−オクチル−D−グルコンアミドベンゾエート、双頭型アミノ酸誘導体、4級アンモニウム誘導体等を挙げることができる。
【0089】
多官能モノマーによって重合する場合の好ましいモノマーとしては、ジビニルベンゼン、エチレングルコールジメタクリレート、エチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ペンタエリスリトールトリアクリレート、トリメチロールプロパントリアクリレート等を挙げることができる。更に、アクリルアミド、メチルアクリレート等のアクリル酸やα−アルキルアクリル酸から誘導されるエステル類やアミド類、マレイン酸ジメチル、フマル酸ジエチル等のマレイン酸やフマル酸から誘導されるエステル類、ブタジエン、シクロペンタジエン等のジエン類、スチレン、p−クロロスチレン、スチレンスルホン酸ナトリウム等の芳香族ビニル化合物、ビニルエステル類、アクリロニトリル、メタクリロニトリル、含窒素複素環を有するビニル化合物、4級アンモニウム塩を有するビニル化合物、N−ビニルホルムアミド、ビニルスルホン酸、ビニリデンフルオライド、ビニルアルキルエーテル類、N−フェニルマレイミド等の単官能モノマーを含有してもよい。モノマー全量に占める多官能性モノマーは、0.5〜70質量%が好ましく、1.0〜50質量%がより好ましい。
【0090】
上述のモノマーは、ラジカル重合によって重合することができる。本発明で使用できるゲル電解質用モノマーは、加熱、光、電子線あるいは電気化学的にラジカル重合することができる。架橋高分子が加熱によって形成される場合に使用される重合開始剤は、2,2′−アゾビスイソブチロニトリル、2,2′−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル−2,2′−アゾビス(2−メチルプロピオネート)等のアゾ系開始剤、ベンゾイルパーオキシド等の過酸化物系開始剤等が好ましい。これらの重合開始剤の添加量は、モノマー総量に対して0.01〜20質量%が好ましく、0.1〜10質量%がより好ましい。
【0091】
ポリマーの架橋反応により電解質をゲル化させる場合、架橋反応に必要な反応性基を含有するポリマー及び架橋剤を併用することが望ましい。架橋可能な反応性基に好ましい例としては、ピリジン、イミダゾール、チアゾール、オキサゾール、トリアゾール、モルフォリン、ピペリジン、ピペラジン等の含窒素複素環を挙げることができ、好ましい架橋剤は、ハロゲン化アルキル、ハロゲン化アラルキル、スルホン酸エステル、酸無水物、酸クロリド、イソシアネート等の窒素原子に対して求電子反応可能な2官能以上の試薬を挙げることができる。
【0092】
無機固体化合物を電解質の代わりに用いる場合、ヨウ化銅、チオシアン化銅等をキャスト法、塗布法、スピンコート法、浸漬法、電解メッキ等の手法により電極内部に導入することができる。
【0093】
また、本発明では電解質の代わりに有機電荷輸送物質を用いることができる。電荷輸送物質には正孔輸送物質と電子輸送物質がある。前者の例としては、例えば特公昭34−5466号公報等に示されているオキサジアゾール類、特公昭45−555号公報等に示されているトリフェニルメタン類、特公昭52−4188号公報等に示されているピラゾリン類、特公昭55−42380号公報等に示されているヒドラゾン類、特開昭56−123544号公報等に示されているオキサジアゾール類、特開昭54−58445号公報に示されているテトラアリールベンジジン類、特開昭58−65440号公報、あるいは特開昭60−98437号公報に示されているスチルベン類等を挙げることができる。その中でも、本発明に使用される電荷輸送物質としては、特開昭60−24553号公報、特開平2−96767号公報、特開平2−183260号公報、並びに特開平2−226160号公報に示されているヒドラゾン類、特開平2−51162号公報、並びに特開平3−75660号公報に示されているスチルベン類が特に好ましい。また、これらは単独、あるいは2種以上の混合物として用いることができる。
【0094】
一方、電子輸送物質としては、例えばクロラニル、テトラシアノエチレン、テトラシアノキノジメタン、2,4,7−トリニトロ−9−フルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン、2,4,5,7−テトラニトロキサントン、2,4,8−トリニトロチオキサントン、1,3,7−トリニトロジベンゾチオフェン、あるいは1,3,7−トリニトロジベンゾチオフェン−5,5−ジオキシド等がある。これらの電子輸送物質は単独、あるいは2種以上の混合物として用いることができる。
【0095】
また、更に増感効果を増大させる増感剤として、ある種の電子吸引性化合物を添加することもできる。この電子吸引性化合物としては例えば、2,3−ジクロロ−1,4−ナフトキノン、1−ニトロアントラキノン、1−クロロ−5−ニトロアントラキノン、2−クロロアントラキノン、フェナントレンキノン等のキノン類、4−ニトロベンズアルデヒド等のアルデヒド類、9−ベンゾイルアントラセン、インダンジオン、3,5−ジニトロベンゾフェノン、あるいは3,3′,5,5′−テトラニトロベンゾフェノン等のケトン類、無水フタル酸、4−クロロナフタル酸無水物等の酸無水物、テレフタラルマロノニトリル、9−アントリルメチリデンマロノニトリル、4−ニトロベンザルマロノニトリル、あるいは4−(p−ニトロベンゾイルオキシ)ベンザルマロノニトリル等のシアノ化合物、3−ベンザルフタリド、3−(α−シアノ−p−ニトロベンザル)フタリド、あるいは3−(α−シアノ−p−ニトロベンザル)−4,5,6,7−テトラクロロフタリド等のフタリド類等を挙げることができる。
【0096】
これらの電荷輸送材料を用いて電荷移動層を形成する場合、樹脂を併用しても構わない。樹脂を併用する場合にはポリスチレン樹脂、ポリビニルアセタール樹脂、ポリスルホン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリフェニレンオキサイド樹脂、ポリアリレート樹脂、アクリル樹脂、メタクリル樹脂、フェノキシ樹脂等が挙げられる。これらの中でも、ポリスチレン樹脂、ポリビニルアセタール樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂が好ましい。これらの樹脂は、単独あるいは共重合体として2種以上を混合しても構わない。
【0097】
電荷移動層の形成方法は大きく2通りの方法が挙げられる。1つは増感色素を担持した半導体微粒子含有層の上に、先に対極を貼り合わせ、その隙間に液状の電荷移動層を挟み込む方法、もう一つは、半導体微粒子含有層の上に直接電荷移動層を付与する方法である。後者の場合、電荷移動層の上に対極を新たに付与することになる。
【0098】
前者の場合、電荷移動層の挟み込み方法として、浸漬等による毛管現象を利用する常圧プロセスと常圧より低い圧力にして気相を液相に置換する真空プロセスが挙げられる。後者の場合、湿式の電荷移動層においては未乾燥のまま対極を付与し、エッジ部の液漏洩防止を施す必要がある。また、ゲル電解液の場合においては、湿式で塗布して重合等の方法により固体化する方法もある。その場合、乾燥、固定化した後に対極を付与してもよい。電解液の他、有機電荷輸送材料の溶解液やゲル電解質を付与する方法としては、半導体微粒子含有層や色素の付与と同様に、浸漬法、ローラ法、ディップ法、エアーナイフ法、エクストルージョン法、スライドホッパー法、ワイヤーバー法、スピン法、スプレー法、キャスト法、各種印刷法等が挙げられる。
【0099】
対極は、前述の導電性支持体と同様に導電性層を有する支持体上に用いることができるが、導電性層自体が強度や密封性を十分有する場合は必ずしも支持体は必要ではない。対極に用いる材料の具体例としては、白金、金、銀、銅、アルミニウム、ロジウム、インジウム等の金属、炭素系化合物、ITO、FTO等の導電性金属酸化物等が挙げられる。対極の厚さには特に制限はない。
【0100】
半導体層に光が到達するためには、半導体層を保持した導電性支持体と対極の少なくとも一方は実質的に透明でなければならない。本発明の光電変換素子においては、半導体微粒子層を保持した導電性支持体が透明であり、太陽光を導電性支持体側から入射させる方法が好ましい。この場合、対極には光を反射させる材料を使用することが好ましく、金属、導電性酸化物を蒸着したガラス、プラスチック、あるいは金属薄膜が好ましい。
【0101】
対極の塗設については前述の通り、電荷移動層の上に付与する場合と半導体層上に付与する場合の2通りがある。何れの場合も対極材料の種類や電荷移動層の種類により、適宜、電荷移動層上または半導体層上に対極材料を塗布、ラミネート、蒸着、貼り合わせ等の手法により形成可能である。また、電荷移動層が固体の場合には、その上に直接、前述の導電性材料を塗布、蒸着、CVD等の手法で対極を形成することができる。
【実施例】
【0102】
次に本発明を実施例により更に詳細に説明するが、本発明はこれらに何ら限定されるものではない。
【0103】
(合成例1)
中間体Aの合成
フェニルヒドラジン塩酸塩9.8gと1−インダノン8.8gを酢酸100mlに溶解し、3時間加熱還流した。反応液を室温に冷却し、析出した固体を濾取し、酢酸80ml、次いで水200mlで洗浄後、40℃にて減圧乾燥した。この粗生成物をエタノール450mlから再結晶し、析出結晶を濾取し、エタノール30mlで洗浄、風乾して、中間体A 8.8gを粉体として得た。
【0104】
【化37】

【0105】
1H−NMR(DMSO−d6):δ(ppm)
3.69(2H,s)、7.02〜7.11(2H,m)、7.18〜7.22(1H,m)、7.34(1H,t,J=7.4Hz)、7.45(1H,d,J=8.0Hz)、7.54〜7.59(3H,m)
【0106】
(合成例2)
中間体Bの合成
中間体A 8.7gをトリフルオロ酢酸100mlに溶解し、氷冷して液温を5℃に保ちながら、水素化ホウ素ナトリウム3.9gを加えた。水素化ホウ素ナトリウムの添加が終了した後、室温で2時間攪拌した。ロータリエバポレーターを使用してトリフルオロ酢酸を減圧留去した後、飽和炭酸水素ナトリウム水溶液900mlを加えて残留するトリフルオロ酢酸を中和した。更に、クロロホルム100mlで3回抽出し、抽出液を無水硫酸マグネシウムで乾燥後、ロータリーエバポレーターでクロロホルムを減圧留去して粗生成物8.8gを得た。これを酢酸エチル/トルエン=1/15(容積比)を展開溶剤としてシリカゲルカラムクロマトグラフィーを行って中間体Bを油状物として7.8g得た。
【0107】
【化38】

【0108】
1H−NMR(CDCl3):δ(ppm)
3.22(1H,dd,J1=16Hz,J2=1.6Hz)、3.52(1H,dd,J1=16Hz,J2=8.4Hz)、4.20(1H,t,J=8.4Hz)、4.26(1H,broad s)、5.26(1H,d,J=8.4Hz)、6.60(1H,d,J=8.0Hz)、6.73(1H,dt,J1=7.2Hz,J2=0.8H)、7.00(1H,m)、7.16〜7.24(4H,m)、7.32〜7.34(1H、m)
【0109】
(合成例3)
中間体Dの合成
中間体B 4.0gと中間体C 6.5gをキシレン120mlに溶解し、t−ブトキシカリウム4.2gと酢酸パラジウム0.05gを加えて攪拌した。溶液と反応容器内を窒素置換した後、トリ(t−ブチル)ホスフィン0.2mlを加えて、120℃で6時間加熱還流した。反応液を室温まで冷却後、水200mlとクロロホルム200mlを加えて攪拌し、有機層を分液した。このクロロホルム/キシレン混合溶液を水100mlで3回洗浄し、無水硫酸マグネシウムで乾燥した。ロータリーエバポレーターで溶媒を減圧留去して得た残留油状物をシリカゲルカラムクロマトグラフィー(展開溶剤;トルエン/n−ヘキサン=1/2(容積比))で精製して、中間体Dを油状物として7.6g得た。
【0110】
【化39】

【0111】
(合成例4)
中間体Eの合成
DMF30mlに塩化ホスホリル5.4gを添加して室温で30分間攪拌した。ここに中間体D 7.6gをクロロホルム100mlに溶かして1時間かけてゆっくり滴下した。室温で4時間攪拌の後、反応液を氷水にあけて、20%NaOH水溶液を加えてpH=11に調整した。クロロホルム100mlを加えた後、分液して有機層を取り出し、水層をクロロホルム50mlで3回抽出した。有機層を集めて水100mlで3回洗浄した後、無水硫酸マグネシウムで乾燥し、ロータリーエバポレーターで溶媒を減圧留去した。粗生成物をシリカゲルカラムクロマトグラフィー(展開溶剤;トルエン/酢酸エチル=5/1(容積比))で精製して、中間体Eを淡黄色固体として6.2g得た。
【0112】
【化40】

【0113】
1H−NMR(CDCl3):δ(ppm)
3.29(1H,dd,J1=16.4Hz,J2=2.8Hz)、3.57(1H,dd,J1=16.4Hz,J2=8.8Hz)、4.30(1H,broad t,J=8.2Hz)、5.90(1H,d,J=8.8Hz)、6.80(1H,d,J=8.4Hz)、6.86(1H,d,J=7.6Hz)、7.0〜7.4(18H,m)、7.51(1H,dd,J1=8.4Hz,J2=1.6Hz)、7.74(1H、broad s)、9.70(1H,s)
【0114】
(合成例5)
例示色素A34の合成
中間体E 1.0g、中間体F 0.7g、酢酸アンモニウム0.05gを酢酸60mlに溶解し、120℃で4時間加熱還流した。反応液を室温に冷却し、析出した色素を濾取し、酢酸60ml、次いで水100ml、最後にメタノール50mlで洗浄して風乾した。粗生成物をシリカゲルカラムクロマトグラフィー(展開溶剤;クロロホルム/メタノール=20/1(容積比))で精製して、例示色素;A34を赤紫色粉体として0.64g得た。
【0115】
A34の吸収スペクトル(DMF溶液);λmax=523nm
【0116】
【化41】

【0117】
(合成例6)
中間体E 1.3g、シアノ酢酸 0.68g、ピペリジン0.54gをアセトニトリル50mlに溶解し、8時間加熱還流した。析出した色素の固形物を熱時濾取して風乾した。この色素のピペリジン塩をクロロホルム100mlに溶解し、0.03N塩酸100mlと攪拌してフリーの色素に変換した。色素のクロロホルム溶液を水100mlで2回洗浄し、無水硫酸マグネシウムで乾燥した後、ロータリーエバポレーターで溶媒を減圧留去した。残留する固体をメタノール50mlで洗浄して濾取し、更にメタノール50mlで洗浄して、例示色素;A5をくすんだ朱色粉体として1.28g得た。
【0118】
A5の吸収スペクトル(DMF溶液);λmax=409nm
【0119】
(実施例1)
酸化チタン(日本アエロジル社製、商品名:P−25)2g、アセチルアセトン0.2g、界面活性剤(アルドリッチ社製、商品名:Triton X−100)0.3gを水6.5gと共にペイントコンディショナー(レッドデビル社製)で6時間分散処理を施した。更に、この分散液4.0gに対して濃硝酸0.2ml、エタノール0.4ml、ポリエチレングリコール(#20,000)1.2gを加えてペーストを作製した。このペーストをFTOガラス基板上に膜厚12μmになるように塗布し、室温で乾燥後、100℃で1時間、更に550℃で1時間焼成した。
【0120】
例示色素(A5)で示した色素をTHFに溶解し、0.3mMの濃度の色素溶液を作製した。この色素溶液に、先に作製した半導体電極を室温で15時間浸漬して吸着処理を施し、作用電極を作製した。対極にはチタニウム板上に白金をスパッタリングしたものを使用した。両電極を互いに向かい合うように配置し、それらの間に電解液を注入して光電変換素子を作製した。電解液はヨウ化リチウム0.1M、ヨウ素0.05M、ヨウ化1,2−ジメチル−3−n−プロピルイミダゾリウム0.5M、4−t−ブチルピリジン0.05Mの3−メトキシプロピオニトリル溶液を使用した。
【0121】
このようにして作製した光電変換素子の作用極側から、光源としてソーラーシミュレーター(山下電装(株)製、装置名:YSS−40S)から発生した擬似太陽光(AM1.5G、照射強度100mW/cm2)を照射し、電気化学測定装置(ソーラートロン社製、装置名:SI−1280B)を用いて光電変換特性を評価した。その結果、開放電圧0.70V、短絡電流密度9.54mA/cm2、形状因子0.69、光電変換効率4.61%と良好な値を示した。
【0122】
(実施例2〜17)
例示色素(A5)を、表1に示す例示色素に変更した以外は実施例1と同様にして素子を作製し評価した。その結果を表1に示す。
【0123】
【表1】

【0124】
(実施例18〜29)
例示色素(A5)を、表2に示す例示色素に変更した以外は実施例1と同様にして素子を作製し評価した。その結果を表2に示す。
【0125】
【表2】

【0126】
(実施例30)
例示色素(A34)で示した色素をTHFに溶解し、0.3mMの濃度の色素溶液を作製した。この色素溶液に、ステロイド化合物(C1)を0.6mMの濃度で溶解した。このようにして調製した色素溶液に、先に作製した半導体電極を室温で15時間浸漬して吸着処理を施し、作用電極を作製した。対極にはチタニウム板上に白金をスパッタリングしたものを使用した。両電極を互いに向かい合うように配置し、それらの間に電解液を注入して光電変換素子を作製した。電解液はヨウ化リチウム0.1M、ヨウ素0.05M、ヨウ化1,2−ジメチル−3−n−プロピルイミダゾリウム0.5M、4−t−ブチルピリジン0.05Mの3−メトキシプロピオニトリル溶液を使用した。
【0127】
このようにして作製した光電変換素子の作用極側から、光源としてソーラーシミュレーター(山下電装(株)製、装置名:YSS−40S)から発生した擬似太陽光(AM1.5G、照射強度100mW/cm2)を照射し、電気化学測定装置(ソーラートロン社製、装置名:SI−1280B)を用いて光電変換特性を評価した。その結果、開放電圧0.72V、短絡電流密度14.00mA/cm2、形状因子0.69、光電変換効率6.96%と良好な値を示した。
【0128】
(実施例31〜45)
例示色素(A34)を、表3に示す例示色素に変更した以外は実施例30と同様にして素子を作製し評価した。その結果を表3に示す。
【0129】
【表3】

【0130】
(実施例46〜74)
例示色素(A5)を、表4に示す例示色素に変更した以外は実施例1と同様にして素子を作製し評価した。その結果を表4に示す。
【0131】
【表4】

【0132】
(実施例75〜90)
例示色素(A34)を、表5に示す例示色素に変更し、ステロイド化合物(C1)をステロイド化合物(C2)に変更した以外は実施例30と同様にして素子を作製し評価した。その結果を表5に示す。
【0133】
【表5】

【0134】
(比較例1)
例示色素(D1)をTHFに溶解し、0.3mMの濃度の色素溶液を作製した。この色素溶液に、先に作製した半導体電極を室温で15時間浸漬して吸着処理を施し、作用電極を作製した。対極にはチタニウム板上に白金をスパッタリングしたものを使用した。両電極を互いに向かい合うように配置し、それらの間に電解液を注入して光電変換素子を作製した。電解液はヨウ化リチウム0.1M、ヨウ素0.05M、ヨウ化1,2−ジメチル−3−n−プロピルイミダゾリウム0.5M、4−t−ブチルピリジン0.05Mの3−メトキシプロピオニトリル溶液を使用した。
【0135】
このようにして作製した光電変換素子の作用極側から、光源としてソーラーシミュレーター(山下電装(株)製、装置名:YSS−40S)から発生した擬似太陽光(AM1.5G、照射強度100mW/cm2)を照射し、電気化学測定装置(ソーラートロン社製、装置名:SI−1280B)を用いて光電変換特性を評価した。その結果、開放電圧0.65V、短絡電流密度4.52mA/cm2、形状因子0.55、光電変換効率1.62%であった。
【0136】
【化42】

【0137】
(比較例2)
例示色素(D1)を、例示色素(D2)に変更した以外は比較例1と同様にして素子を作製し評価した。その結果、開放電圧0.64V、短絡電流密度4.74mA/cm2、形状因子0.56、光電変換効率1.70%であった。
【0138】
(比較例3)
例示色素(D3)で示した色素をTHFに溶解し、0.3mMの濃度の色素溶液を作製した。この色素溶液に、ステロイド化合物(C1)を0.6mMの濃度で溶解した。このようにして調製した色素溶液に、先に作製した半導体電極を室温で15時間浸漬して吸着処理を施し、作用電極を作製した。対極にはチタニウム板上に白金をスパッタリングしたものを使用した。両電極を互いに向かい合うように配置し、それらの間に電解液を注入して光電変換素子を作製した。電解液はヨウ化リチウム0.1M、ヨウ素0.05M、ヨウ化1,2−ジメチル−3−n−プロピルイミダゾリウム0.5M、4−t−ブチルピリジン0.05Mの3−メトキシプロピオニトリル溶液を使用した。
【0139】
このようにして作製した光電変換素子の作用極側から、光源としてソーラーシミュレーター(山下電装(株)製、装置名:YSS−40S)から発生した擬似太陽光(AM1.5G、照射強度100mW/cm2)を照射し、電気化学測定装置(ソーラートロン社製、装置名:SI−1280B)を用いて光電変換特性を評価した。その結果、開放電圧0.65V、短絡電流密度5.11mA/cm2、形状因子0.56、光電変換効率1.86%であった。
【0140】
【化43】

【0141】
(比較例4)
例示色素(D1)を、例示色素(D4)に変更した以外は比較例1と同様にして素子を作製し評価した。その結果、開放電圧0.70V、短絡電流密度8.17mA/cm2、形状因子0.63、光電変換効率3.60%であった。
【0142】
(比較例5)
例示色素(D1)を、例示色素(D5)に変更した以外は比較例1と同様にして素子を作製し評価した。その結果、開放電圧0.69V、短絡電流密度9.58mA/cm2、形状因子0.63、光電変換効率4.16%であった。
【0143】
(比較例6)
例示色素(D3)を、例示色素(D6)に変更した以外は比較例3と同様にして素子を作製し評価した。その結果、開放電圧0.70V、短絡電流密度10.05mA/cm2、形状因子0.66、光電変換効率4.64%であった。
【0144】
(実施例91)
実施例1で作製した光電変換素子を暗所、温度60℃の環境下で10日間保存した後、実施例1と同じ光電変換特性を評価した。その結果、開放電圧0.70V、短絡電流密度9.44mA/cm2、形状因子0.69、光電変換効率4.56%と良好な値を示した。次いで、光電変換効率の維持率を求めた。維持率は保存前の光電変換効率に対する、保存後の光電変換効率の百分率として算出した。その結果、維持率は99%であった。
【0145】
(実施例92〜107)
例示色素(A5)を、表6に示す例示色素に変更した以外は実施例91と同様にして光電変換素子を経時保存し、保存後の変換効率を測定し、その維持率を算出した。その結果を表6に示す。
【0146】
【表6】

【0147】
(実施例108〜119)
例示色素(A5)を、表7に示す例示色素に変更した以外は実施例91と同様にして光電変換素子を経時保存し、保存後の変換効率を測定し、その維持率を算出した。その結果を表7に示す。
【0148】
【表7】

【0149】
(実施例120)
実施例30で作製した光電変換素子を暗所、温度60℃の環境下で10日間保存した後、実施例1と同じ光電変換特性を評価した。その結果、開放電圧0.72V、短絡電流密度13.87mA/cm2、形状因子0.69、光電変換効率6.89%と良好な値を示した。次いで、光電変換効率の維持率を求めた。維持率は保存前の光電変換効率に対する、保存後の光電変換効率の百分率として算出した。その結果、維持率は99%であった。
【0150】
(実施例121〜135)
例示色素(A34)を、表8に示す例示色素に変更した以外は実施例120と同様にして光電変換素子を経時保存し、保存後の変換効率を測定し、その維持率を算出した。その結果を表8に示す。
【0151】
【表8】

【0152】
(実施例136〜164)
例示色素(A5)を、表9に示す例示色素に変更した以外は実施例91と同様にして光電変換素子を経時保存し、保存後の変換効率を測定し、その維持率を算出した。その結果を表9に示す。
【0153】
【表9】

【0154】
(比較例7〜10)
比較例1、比較例2、比較例4、比較例5で作製した光電変換素子を暗所、温度60℃の環境下で10日間保存した後に変換効率を測定し、その維持率を算出した。その結果を表10に示す。
【0155】
【表10】

【0156】
(比較例11〜12)
比較例3と比較例6で作製した光電変換素子を暗所、温度60℃の環境下で10日間保存した後に変換効率を測定し、その維持率を算出した。その結果を表11に示す。
【0157】
【表11】

【0158】
実施例91〜164、比較例7〜12の結果を比較することにより、本発明の色素を用いる光電変換材料は暗中60℃の加熱劣化加速試験においても電池性能が低下せず、良好な耐久性を有することがわかる。
【0159】
(実施例165〜180)
例示色素(A34)を、表12に示す例示色素に変更した以外は実施例30と同様にして素子を作製し評価した。その結果を表12に示す。
【0160】
【表12】

【0161】
(実施例181〜196)
実施例165〜180で作製した光電変換素子を暗所、温度60℃の環境下で10日間保存した後、実施例165〜180と同じ光電変換特性を評価した。次いで、光電変換効率の維持率を求めた。維持率は保存前の光電変換効率に対する、保存後の光電変換効率の百分率として算出した。その結果を表13に示す。
【0162】
【表13】

【0163】
実施例181〜196の結果から、本発明の色素を用いる光電変換材料は暗中60℃の加熱劣化加速試験においても電池性能が低下せず、良好な耐久性を有することがわかる。
【産業上の利用可能性】
【0164】
本発明の活用例として、太陽電池等の光電変換素子に加えて、特定波長の光に感応する光センサー等が挙げられる。

【特許請求の範囲】
【請求項1】
一般式[I]または一般式[II]で示される色素を用いることを特徴とする光電変換材料。
【化1】

(一般式[I]において、R1はアルキル基、アラルキル基、アリール基またはヘテロ環置換基を示す。R2は、一般式[III]または一般式[IV]で示される酸性基を置換基として有する残基を示す。lは、0または1を示す。R5は、芳香環上の置換基であって、水素原子、アルキル基、アラルキル基、アルコキシ基またはアリール基を示す。)
【化2】

(一般式[II]において、R3はアルキル基、アラルキル基、アリール基またはヘテロ環置換基を示す。R4は、一般式[III]または一般式[IV]で示される酸性基を置換基として有する残基を示す。mは、0または1を示す。R6は、芳香環上の置換基であって、水素原子、アルキル基、アラルキル基、アルコキシ基またはアリール基を示す。)
【化3】

【化4】

(一般式[IV]において、R7とR8は、それぞれ独立して、アルキル基、アラルキル基、酸性基を置換基として有するアルキル基または酸性基を置換基として有するアラルキル基を示す。R7とR8のうち、少なくとも一方は酸性基を置換基として有する。nは、0または1を示す。nが1の場合、二つの複素五員環の立体配置はZ型とE型のどちらでも構わない。)
【請求項2】
導電性支持体と、その導電性支持体表面上を被覆した半導体層と、その半導体層の表面に吸着した色素からなる半導体電極において、色素として請求項1記載の一般式[I]または一般式[II]で示される色素を少なくとも一種以上含有することを特徴とする半導体電極。
【請求項3】
請求項2記載の半導体電極を用いることを特徴とする光電変換素子。

【公開番号】特開2010−229353(P2010−229353A)
【公開日】平成22年10月14日(2010.10.14)
【国際特許分類】
【出願番号】特願2009−80189(P2009−80189)
【出願日】平成21年3月27日(2009.3.27)
【出願人】(000005980)三菱製紙株式会社 (1,550)
【Fターム(参考)】