説明

冷凍装置

【課題】分子式1:C(但し、m及びnは1以上5以下の整数で、m+n=6の関係が成立する。)で示され且つ分子構造中に二重結合を1個有する冷媒から成る単一冷媒又は該冷媒を含む混合冷媒が用いられる冷媒回路を備えた冷凍装置において、樹脂製機能部品の劣化を防止する。
【解決手段】冷媒回路(10)の冷媒と接触可能に配設される所定の樹脂製機能部品(61,62,63,64,65)を、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、フェノール樹脂、ポリアミド樹脂、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素ゴム、ヒドリンゴムのいずれかで構成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、圧縮機で冷媒を圧縮して冷凍サイクルを行う冷媒回路を備えた冷凍装置に関するものである。
【背景技術】
【0002】
従来より、冷凍サイクルを行う冷媒回路を備えた冷凍装置は、空気調和装置や給湯機等に広く適用されている。
【0003】
特許文献1には、この種の冷凍装置が開示されている。この冷凍装置は、圧縮機、凝縮器、膨張弁、凝縮器が接続されて冷凍サイクルが行われる冷媒回路を備えている。この冷媒回路では、圧縮機で圧縮された冷媒が凝縮器で空気へ放熱して凝縮する。凝縮器で凝縮した冷媒は、膨張弁で減圧された後、蒸発器で蒸発する。蒸発後の冷媒は、圧縮機に吸入されて再び圧縮される。
【0004】
また、特許文献1の冷媒回路には、分子式1:C(但し、m及びnは1以上5以下の整数で、m+n=6の関係が成立する。)で表され且つ分子構造中に二重結合を1個有する冷媒が用いられている。この冷媒は、塩素原子や臭素原子を含まず、オゾン層の破壊への影響が小さいことが知られている。
【特許文献1】特開平4−110388号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
ところで、特許文献1に開示の冷媒は、二重結合を有する等、比較的不安定な分子構造であるため、長期の冷凍サイクルに伴い冷媒が劣化して不純物等が生成することがある。このような不純物が生成されると、例えば圧縮機の可動スクロールの摺動部材やシール部材等の樹脂製の機能部品が不純物の影響により劣化し易くなる。その結果、このような機能部品の耐久性や信頼性が損なわれてしまう虞がある。
【0006】
本発明は、かかる点に鑑みてなされたものであり、その目的は、分子式1:C(但し、m及びnは1以上5以下の整数で、m+n=6の関係が成立する。)で表され且つ分子構造中に二重結合を1個有する冷媒から成る単一冷媒又は該冷媒を含む混合冷媒が用いられる冷媒回路を備えた冷凍装置において、冷媒と接触可能に配設される所定の樹脂製機能部品の劣化を抑制することである。
【課題を解決するための手段】
【0007】
第1の発明は、圧縮機(30)によって冷媒を循環させて冷凍サイクルを行う冷媒回路(10)を備え、上記冷媒回路(10)の冷媒として、分子式1:C(但し、m及びnは1以上5以下の整数で、m+n=6の関係が成立する。)で表され且つ分子構造中に二重結合を1個有する冷媒、又は該冷媒を含む混合冷媒が用いられる冷凍装置を前提としている。そして、この冷凍装置は、上記冷媒回路(10)の冷媒と接触可能に配設される所定の樹脂製機能部品(61,62,63,64,65)が、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、フェノール樹脂、ポリアミド樹脂、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素ゴム、ヒドリンゴムのいずれかで構成されていることを特徴とするものである。
【0008】
第1の発明の冷凍装置では、冷媒回路(10)の冷媒として、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒又は該冷媒を含む混合冷媒が用いられている。この冷媒は、圧縮機(30)によって圧縮され、冷媒回路(10)で冷凍サイクルが行われる。
【0009】
冷媒回路(10)の冷媒と接触可能に所定の樹脂製機能部品(61,62,63,64,65)が配設される。ここで、樹脂製機能部品(61,62,63,64,65)は、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、フェノール樹脂、ポリアミド樹脂、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素ゴム、ヒドリンゴムのいずれかで構成される。これらの樹脂材料は、冷媒から生成される不純物に対して比較的高い安定性を有する。その結果、上記の不純物の生成に伴う樹脂製機能部品の劣化が抑制される。
【0010】
第2の発明は、第1の発明の冷凍装置において、上記樹脂製機能部品は、所定の摺動部に設けられる摺動部材(65)で構成され、該摺動部材(65)は、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、ポリアミド樹脂のいずれかで構成されていることを特徴とするものである。
【0011】
第2の発明では、摺動部に設けられる摺動部材(65)が樹脂製機能部品を構成する。そして、この摺動部材(65)が、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、ポリアミド樹脂のいずれかで構成される。このため、冷媒から生成された不純物の影響により、摺動部材(65)が変性/劣化してしまうことが抑制される。
【0012】
第3の発明は、第1の発明の冷凍装置において、上記樹脂製機能部品は、所定の隙間での冷媒の漏れを防止するためのシール部材(65)で構成され、該シール部材(65)は、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素化ゴム、ヒドリンゴムのいずれかで構成されていることを特徴とするものである。
【0013】
第3の発明では、所定の隙間での冷媒の漏れを防止するためのシール部材(65)が樹脂製機能部品を構成する。そして、シール部材(65)が、ポリフェニレンサルファイド、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素化ゴム、ヒドリンゴムのいずれかで構成される。このため、冷媒から生成された不純物の影響により、シール部材(65)が変性/劣化してしまうことが抑制される。
【0014】
第4の発明は、第1乃至第3のいずれか1つの発明の冷凍装置において、上記圧縮機(30)では、温度30℃、相対湿度90%における飽和水分量が2000ppm以上の冷凍機油が用いられることを特徴とするものである。
【0015】
第4の発明では、圧縮機(30)の冷凍機油として、温度30℃、相対湿度90%の条件下における飽和水分量が2000ppm以上の冷凍機油が用いられる。つまり、本発明では、吸湿性が比較的高い冷凍機油が用いられる。これにより、冷媒中の水分を冷凍機油に捕捉することができる。その結果、冷媒では、水分の影響による劣化が抑制される。
【0016】
第5の発明は、第4の発明の冷凍装置において、上記冷凍機油は、ポリアルキレングリコール、ポリオールエステル、及びポリビニルエーテルのうち少なくとも1つを主成分とすることを特徴とするものである。
【0017】
第5の発明では、冷凍機油として、ポリアルキレングリコール、ポリオールエステル、ポリビニルエーテルの少なくとも1つを主成分とする冷凍機油が用いられている。これらの冷凍機油は、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒に対して相溶性を有するので、この冷媒が冷凍機油に溶解され易くなる。
【0018】
ところで、上述のように冷媒が劣化して不純物が生成されると、この不純物の影響により本発明の冷凍機油も劣化してしまうことがある。これにより、冷凍機油の劣化に起因して更に不純物が生成され、冷凍機油に由来する不純物の影響により樹脂製機能部品(61,62,63,64,65)が劣化し易くなる。しかしながら、本発明では、樹脂製機能部品(61,62,63,64,65)として、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、フェノール樹脂、ポリアミド樹脂、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素ゴム、ヒドリンゴムのいずれかを用いているので、冷凍機油から発生した不純物により樹脂製機能部品(61,62,63,64,65)が劣化してしまうのを回避できる。
【0019】
第6の発明は、第4又は第5の発明の冷凍装置において、上記冷凍機油が、動粘度が40℃において30cSt以上400cSt以下で、流動点が−30℃以下であることを特徴とするものである。
【0020】
第6の発明では、冷凍機油の動粘度が40℃において30cSt以上であるため、動粘度不足によって油膜強度が不十分になることはなく、摺動部の潤滑性能が確保される。また、冷凍機油の流動点が−30℃以下であるため、冷媒回路(10)において低温部位でも冷凍機油の流動性が確保できる。
【0021】
第7の発明は、第1乃至第6のいずれか1つの発明の冷凍装置において、上記冷凍機油は、表面張力が20℃において0.02N/m以上0.04N/m以下であることを特徴とするものである。
【0022】
第7の発明では、冷凍機油の表面張力が、20℃において0.02N/m以上0.04N/m以下となる。ここで、冷凍機油の表面張力が小さすぎると、圧縮機(30)内のガス冷媒中で冷凍機油が小さな油滴になりやすく、比較的多量の冷凍機油が冷媒と共に圧縮機(30)から吐出されてしまう。従って、圧縮機(30)で油上がりが生じる虞がある。逆に、冷凍機油の表面張力が大きすぎると、圧縮機(30)から吐出された冷凍機油が、冷媒回路(10)において大きな油滴になり易い。このため、圧縮機(30)から吐出された冷凍機油が、冷媒によって押し流されにくく、圧縮機(30)に戻りにくくなる。従って、この場合にも、圧縮機(30)で油上がりが生じる虞がある。
【0023】
以上のように、本発明では、冷凍機油の表面張力が20℃において0.02N/m以上0.04N/m以下としたので、油滴の大きさが最適な範囲となり、上記のような油上がりが回避される。
【0024】
第8の発明は、第4乃至第7のいずれか1つの発明の冷凍装置において、上記冷凍機油は、塩素濃度が50ppm以下であることを特徴とするものである。
【0025】
第8の発明では、冷凍機油の塩素濃度が50ppm以下となるので、塩素に起因する冷媒の劣化促進が抑制される。これにより、不純物の生成も抑制され、樹脂製機能部品(61,62,63,64,65)の耐久性が向上する。
【0026】
第9の発明は、第4乃至第8のいずれか1つにおいて、上記冷凍機油は、硫黄濃度が50ppm以下であることを特徴とするものである。
【0027】
第9の発明では、冷凍機油の硫黄濃度が50ppm以下となるので、硫黄に起因する冷媒の劣化が抑制される。これにより、不純物の生成も抑制され、樹脂製機能部品(61,62,63,64,65)の耐久性が向上する。
【0028】
第10の発明は、第4乃至第9のいずれか1つの発明の冷凍装置において、上記冷凍機油には、酸捕捉剤、極圧添加剤、酸化防止剤、酸素捕捉剤、消泡剤、油性剤、及び銅不活性化剤のうち少なくとも1種類の添加剤が添加されていることを特徴とするものである。
【0029】
第10の発明では、酸捕捉剤、極圧添加剤、酸化防止剤、酸素捕捉剤、消泡剤、油性剤、及び銅不活性化剤の添加剤のうち少なくとも1種類の添加剤が冷凍機油に含まれている。このため、冷凍機油や冷媒の安定化が図られ、不純物等の生成が抑制される。
【0030】
第11の発明は、第10の発明の冷凍装置において、上記冷凍機油では、1種類の添加剤が添加されている場合には該添加剤の割合が0.01質量%以上5質量%以下に、複数種類の添加剤が添加されている場合には各添加剤の割合が0.01質量%以上5質量%以下になっていることを特徴とするものである。
【0031】
第11の発明では、1種類の添加剤が冷凍機油に添加されている場合には、冷凍機油中の添加剤の割合が、0.01質量%以上5質量%以下になっている。複数種類の添加剤が冷凍機油に添加されている場合には、冷凍機油中の何れの添加剤も、その割合が0.01質量%以上5質量%以下になっている。
【0032】
第12の発明は、第1乃至第11の何れか1つの発明の冷凍装置において、上記分子式1:C(但し、m及びnは1以上5以下の整数で、m+n=6の関係が成立する。)で表され且つ分子構造中に二重結合を1個有する冷媒は、2,3,3,3−テトラフルオロ−1−プロペンであることを特徴とするものである。
【0033】
第12の発明では、冷媒回路(10)の冷媒として、2,3,3,3−テトラフルオロ−1−プロペンからなる単一冷媒、又は2,3,3,3−テトラフルオロ−1−プロペンを含む混合冷媒が用いられる。
【0034】
第13の発明は、第1乃至第12のいずれか1つの発明の冷凍装置において、上記冷媒回路(10)の冷媒は、さらにジフルオロメタンを含む混合冷媒であることを特徴とするものである。
【0035】
第13の発明では、冷媒回路(10)の冷媒として、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒とジフルオロメタンとを含む混合冷媒が用いられる。ここで、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒は、いわゆる低圧冷媒である。このため、例えば上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒からなる単一冷媒を用いる場合には、冷媒の圧力損失が冷凍装置の運転効率に与える影響が比較的大きく、理論上の運転効率に対して実際の運転効率が低下してしまう。そこで、本発明では、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒に、いわゆる高圧冷媒であるジフルオロメタンが加えられている。
【0036】
第14の発明は、第1乃至第13のいずれか1つの発明の圧縮機において、上記冷媒回路(10)の冷媒は、さらにペンタフルオロエタンを含む混合冷媒であることを特徴とするものである。
【0037】
第14の発明では、冷媒回路(10)の冷媒として、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒とペンタフルオロエタンとを含む混合冷媒が用いられる。ここで、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒は、微燃性の冷媒ではあるが、発火するおそれがない訳ではない。そこで、本発明では、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒に、難燃性の冷媒であるペンタフルオロエタンが加えられている。
【発明の効果】
【0038】
本発明では、冷媒回路(10)の冷媒として、分子式1:C(但し、m及びnは1以上5以下の整数で、m+n=6の関係が成立する。)で表され且つ分子構造中に二重結合を1個有する冷媒、又は該冷媒を含む混合冷媒が用いられる。これにより、冷凍サイクルの理論上の成績係数(COP)が高い冷凍装置を提供できる。
【0039】
ここで、上記の冷媒は、二重結合を有する等の理由により比較的不安定な分子構造であり、冷媒が劣化して不純物等が生成され易い。このため、冷凍装置の樹脂製機能部品(61,62,63,64,65)は、このような不純物の影響により化学的/物理的に変性して劣化してしまう虞がある。しかしながら、本発明の樹脂製機能部品(61,62,63,64,65)は、上記の冷媒の不純物に対して、比較的安定性に優れた材料、即ちポリテトラフルオロエチレン、ポリフェニレンサルファイド、フェノール樹脂、ポリアミド樹脂、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素ゴム、ヒドリンゴムのいずれかで構成されている。従って、上記不純物の影響により、樹脂製機能部品(61,62,63,64,65)が化学的/物理的に変性してしまうことが回避される。その結果、樹脂製機能部品では、所望とする耐久性を確保することができる。
【0040】
第2の発明では、樹脂製機能部品としての摺動部材(61,62,63,64)をポリテトラフルオロエチレン、ポリフェニレンサルファイド、ポリアミド樹脂のいずれかで構成している。これにより、冷媒から生成する不純物に起因する摺動部材(61,62,63,64)の劣化を回避できる。その結果、摺動部材(61,62,63,64)の耐久性が向上するので、摺動部材(61,62,63,64)では、所望とする摺動性/耐摩耗性を得ることができる。
【0041】
第3の発明では、樹脂製機能部品としてのシール部材(65)をポリテトラフルオロエチレン、ポリフェニレンサルファイド、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素化ゴム、ヒドリンゴムのいずれかで構成している。これにより、冷媒から生成する不純物に起因するシール部材(65)の劣化を回避できる。その結果、シール部材(65)の耐久性が向上するので、シール部材(65)では、所望とするシール性を得ることができる。
【0042】
第4の発明では、温度30℃、相対湿度90%における飽和水分量が2000ppm以上の冷凍機油を用いているので、冷媒中の水分を冷凍機油に捕捉させることができる。このため、水分の影響により冷媒が劣化してしまうのを防止できる。
【0043】
第5の発明の冷凍機油は、ポリアルキレングリコール、ポリオールエステル、及びポリビニルエーテルのうち少なくとも1つを主成分としている。これにより、冷媒と冷凍機油とが相互に溶け易くなる。このため、冷媒回路(10)中に冷凍機油が流出しても、この冷凍機油は冷媒に溶け込んで圧縮機(30)に返送され易くなる。その結果、圧縮機(30)における油上がりを抑制することができるので、圧縮機(30)の冷凍機油不足、更には潤滑不良を未然に回避できる。従って、圧縮機(30)の信頼性を向上させることができる。
【0044】
特に、第6の発明の冷凍機油は、動粘度が40℃において30cSt以上400cSt以下であるので、摺動部の潤滑性能を充分確保できる。また、本発明では、流動点が−30℃以下であるので、比較的低温部位でも冷凍機油の流動性を確保できる。
【0045】
第7の発明の冷凍機油は、表面張力が20℃において0.02N/m以上0.04N/m以下であるので、圧縮機(30)から多量に冷凍機油が吐出されることや、圧縮機から吐出された冷凍機油が圧縮機に戻りにくくなることがない。従って、圧縮機において油上がりが生じることを抑制することができ、圧縮機構(82)の摺動部の潤滑不良を防止できる。
【0046】
第8の発明の冷凍機油は、塩素濃度が50ppm以下であるので、塩素に起因して冷媒の劣化が促進してしまうことを防止できる。その結果、樹脂製機能部品(61,62,63,64,65)の耐久性を更に向上できる。また、第9の発明の冷凍機油は、硫黄濃度が50ppm以下であるので、硫黄に起因して冷媒の劣化が促進してしまうことを防止できる。その結果、樹脂製機能部品(61,62,63,64,65)の耐久性を更に向上できる。
【0047】
第10や第11の発明の冷凍機油では、酸捕捉剤、極圧添加剤、酸化防止剤、消泡剤、油性剤、及び銅不活性化剤の6種類の添加剤のうち少なくとも1種類の添加剤が添加されている。このため、冷媒や冷凍機油を安定化させることができ、不純物の発生を抑制できる。その結果、樹脂製機能部品(61,62,63,64,65)の耐久性/信頼性を更に向上できる。
【0048】
第12の発明では、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒が、2,3,3,3−テトラフルオロ−1−プロペンであるので、冷凍サイクルのCOPの向上を図ることができる。
【0049】
第13の発明では、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒に、いわゆる高圧冷媒であるジフルオロメタンが加えられている。このため、冷媒の圧力損失が冷凍装置の運転効率に与える影響を小さくすることができるので、冷凍装置の実際の運転効率を向上させることができる。
【0050】
第14の発明では、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒に、難燃性の冷媒であるペンタフルオロエタンが加えられている。従って、冷媒回路(10)の冷媒が燃えにくくなるので、冷凍装置の信頼性を向上させることができる。
【発明を実施するための最良の形態】
【0051】
以下、本発明の実施形態を図面に基づいて詳細に説明する。
【0052】
本実施形態は、本発明に係る冷凍装置(20)によって構成された空気調和装置(20)である。本実施形態の空気調和装置(20)は、図1に示すように、室外機(22)と3台の室内機(23a,23b,23c)とを備えている。なお、室内機(23)の台数は、単なる例示である。
【0053】
上記空気調和装置(20)は、冷媒を充填されて冷凍サイクルを行う冷媒回路(10)を備えている。冷媒回路(10)は、室外機(22)に収容される室外回路(9)と、各室内機(23)に収容される室内回路(17a,17b,17c)とを備えている。これらの室内回路(17a,17b,17c)は、液側連絡配管(18)及びガス側連絡配管(19)によって室外回路(9)に接続されている。これらの室内回路(17a,17b,17c)は、互いに並列に接続されている。
【0054】
本実施形態の冷媒回路(10)には、冷媒として2,3,3,3−テトラフルオロ−1−プロペン(以下、「HFO−1234yf」という。)の単一冷媒が充填されている。なお、HFO−1234yfの化学式は、CF−CF=CHで表される。
【0055】
〈室外回路の構成〉
室外回路(9)には、圧縮機(30)、室外熱交換器(11)、室外膨張弁(12)、及び四路切換弁(13)が設けられている。
【0056】
圧縮機(30)は、例えば運転容量が可変なインバータ式の圧縮機として構成されている。圧縮機(30)には、インバータを介して電力が供給される。圧縮機(30)は、吐出側が四路切換弁(13)の第2ポート(P2)に接続され、吸入側が四路切換弁(13)の第1ポート(P1)に接続されている。なお、圧縮機(30)についての詳細は後述する。
【0057】
室外熱交換器(11)は、クロスフィン型のフィン・アンド・チューブ熱交換器として構成されている。室外熱交換器(11)の近傍には、室外ファン(14)が設けられている。室外熱交換器(11)では、室外空気と冷媒との間で熱交換が行われる。室外熱交換器(11)は、一端が四路切換弁(13)の第3ポート(P3)に接続され、他端が室外膨張弁(12)に接続されている。また、四路切換弁(13)の第4ポート(P4)は、ガス側連絡配管(19)に接続されている。
【0058】
室外膨張弁(12)は、室外熱交換器(11)と室外回路(9)の液側端との間に設けられている。室外膨張弁(12)は、開度可変の電子膨張弁として構成されている。
【0059】
四路切換弁(13)は、第1ポート(P1)と第4ポート(P4)とが連通して第2ポート(P2)と第3ポート(P3)とが連通する第1状態(図1に実線で示す状態)と、第1ポート(P1)と第3ポート(P3)とが連通して第2ポート(P2)と第4ポート(P4)とが連通する第2状態(図1に破線で示す状態)とが切り換え自在に構成されている。
【0060】
〈室内回路の構成〉
各室内回路(17)には、そのガス側端から液側端へ向かって順に、室内熱交換器(15a,15b,15c)と、室内膨張弁(16a,16b,16c)とが設けられている。
【0061】
室内熱交換器(15)は、クロスフィン型のフィン・アンド・チューブ熱交換器として構成されている。室内熱交換器(15)の近傍には、室内ファン(21)が設けられている。室内熱交換器(15)では、室内空気と冷媒との間で熱交換が行われる。また、室内膨張弁(16)は、開度可変の電子膨張弁として構成されている。
【0062】
〈圧縮機の構成〉
圧縮機(30)は、例えば全密閉の高圧ドーム型のスクロール圧縮機として構成されている。圧縮機(30)の構成を図2及び図3に従って説明する。
【0063】
圧縮機(30)は、縦型で密閉容器を形成するケーシング(70)を備えている。ケーシング(70)の内部には、下から上へ向かって、電動機(85)と圧縮機構(82)とが配置されている。
【0064】
電動機(85)は、ステータ(83)とロータ(84)とを備えている。ステータ(83)は、ケーシング(70)の胴部に固定されている。一方、ロータ(84)は、ステータ(83)の内側に配置され、クランク軸(90)が連結されている。クランク軸(90)は、ケーシング(70)の油溜まりの近傍に配置された下部軸受部材(60)に支持されている。
【0065】
圧縮機構(82)は、可動スクロール(76)と固定スクロール(75)とを備え、スクロール式の圧縮機構を構成している。可動スクロール(76)は、略円板状の可動側鏡板(76b)と、渦巻き状の可動側ラップ(76a)とを備えている。可動側ラップ(76a)は可動側鏡板(76b)の前面(上面)に立設されている。また、可動側鏡板(76b)の背面(下面)には、クランク軸(90)の偏心部が挿入された円筒状の突出部(76c)が立設されている。可動スクロール(76)は、オルダムリング(79)を介して、可動スクロール(76)の下側に配置されたハウジング(77)に支持されている。一方、固定スクロール(75)は、略円板状の固定側鏡板(75b)と、渦巻き状の固定側ラップ(75a)とを備えている。固定側ラップ(75a)は固定側鏡板(75b)の前面(下面)に立設されている。圧縮機構(82)では、固定側ラップ(75a)と可動側ラップ(76a)とが互いに噛み合うことによって、両ラップ(75a,76a)の接触部の間に複数の圧縮室(73)が形成されている。
【0066】
なお、本実施形態の圧縮機(30)では、いわゆる非対称渦巻き構造が採用されており、固定側ラップ(75a)と可動側ラップ(76a)とで巻き数(渦巻きの長さ)が相違している。上記複数の圧縮室(73)は、固定側ラップ(75a)の内周面と可動側ラップ(76a)の外周面との間に構成される第1圧縮室(73a)と、固定側ラップ(75a)の外周面と可動側ラップ(76a)の内周面との間に構成される第2圧縮室(73b)とから構成されている。
【0067】
圧縮機構(82)では、固定スクロール(75)の外縁部に吸入ポート(98)が形成されている。吸入ポート(98)には、ケーシング(70)の頂部を貫通する吸入管(57)が接続されている。吸入ポート(98)は、可動スクロール(76)の公転運動に伴って、第1圧縮室(73a)と第2圧縮室(73b)のそれぞれに間欠的に連通する。また、吸入ポート(98)には、圧縮室(73)から吸入管(57)へ戻る冷媒の流れを禁止する吸入逆止弁が設けられている(図示省略)。
【0068】
また、圧縮機構(82)では、固定側鏡板(75b)の中央部に吐出ポート(93)が形成されている。吐出ポート(93)は、可動スクロール(76)の公転運動に伴って、第1圧縮室(73a)と第2圧縮室(73b)のそれぞれに間欠的に連通する。吐出ポート(93)は、固定スクロール(75)の上側に形成されたマフラー空間(96)に開口している。
【0069】
ケーシング(70)内は、円盤状のハウジング(77)によって、上側の吸入空間(101)と下側の吐出空間(100)とに区画されている。吸入空間(101)は、図示しない連通ポートを通じて、吸入ポート(98)に連通している。吐出空間(100)は、固定スクロール(75)とハウジング(77)とに亘ってに形成された連絡通路(103)を通じて、マフラー空間(96)に連通している。運転中の吐出空間(100)は、吐出ポート(93)から吐出された冷媒がマフラー空間(96)を通じて流入するので、圧縮機構(82)で圧縮された冷媒で満たされる高圧空間になる。吐出空間(100)には、ケーシング(70)の胴部を貫通する吐出管(56)が開口している。
【0070】
本実施形態の圧縮機(30)のケーシング(70)内には、有機材料によって構成された部品として、ステータ(83)の巻き線の絶縁被覆材料、絶縁フィルム、及び圧縮機構(82)のシール材料が用いられている。これらの部品には、高温高圧の冷媒に接触した場合でも、冷媒により物理的や化学的に変性を受けない物質で、特に耐溶剤性、耐抽出性、熱的・化学的安定性、耐発泡性を有する物質が用いられている。
【0071】
具体的に、ステータ(83)の巻き線の絶縁被覆材料は、ポリビニルフォルマール、ポリエステル、THEIC変性ポリエステル、ポリアミド、ポリアミドイミド、ポリエステルイミド、ポリエステルアミドイミドの何れかが用いられている。なお、好ましいのは、上層がポリアミドイミド、下層がポリエステルイミドの二重被覆線である。また、上記物質以外に、ガラス転移温度が120℃以上のエナメル被覆を用いてもよい。
【0072】
また、絶縁フィルムには、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリフェニレンサルファイド(PPS)、ポリブチレンテフタレート(PBT)の何れかが用いられている。なお、絶縁フィルムに、発泡材料が冷凍サイクルの冷媒と同じ発泡フィルムを用いることも可能である。インシュレーター等の巻き線を保持する絶縁材料には、ポリエーテルエーテルケトン(PEEK)又は液晶ポリマー(LCP)が用いられている。ワニスには、エポキシ樹脂が用いられている。
【0073】
また、ケーシング(70)の底部には、冷凍機油が貯留される油溜まりが形成されている。また、クランク軸(90)の内部には、油溜まりに開口する第1給油通路(104)が形成されている。また、可動側鏡板(76b)には、第1給油通路(104)に接続する第2給油通路(105)が形成されている。この圧縮機(30)では、油溜まりの冷凍機油が第1給油通路(104)及び第2給油通路(105)を通じて低圧側の圧縮室(73)に供給される。
【0074】
また、圧縮機(30)には、冷媒及び冷凍機油と接触可能に配設される樹脂製構造部品が設けられている。本実施形態の圧縮機(30)には、上記樹脂製構造部品として、上部軸受(61)と中間軸受(62)と下部軸受(63)とスラスト軸受(64)とが設けられている。
【0075】
上部軸受(61)は、クランク軸(90)の上端の偏心部と可動スクロール(76)の突出部(76c)との間の摺動部位に形成されている。中間軸受(62)は、クランク軸(90)の大径部位と、ハウジング(77)の貫通口の内周面との間の摺動部位に形成されている。下部軸受(63)は、クランク軸(90)の下端部と、上記下部軸受部材(60)の貫通口の内周面との間の摺動部位に形成されている。上部軸受(61)、中間軸受(62)、及び下部軸受(63)は、いわゆるジャーナル軸受を構成している。スラスト軸受(64)は、可動スクロール(76)の可動側鏡板(76b)の背面とハウジング(77)の支持部との間の摺接部位に形成されている。
【0076】
上記樹脂製機能部品から成る各軸受け(61,62,63,64)は、摺動部材を構成している。これらの摺動部材を構成する各軸受け(61,62,63,64)は、ポリテトラフルオロエチレン(PTFE)、ポリフェニレンサルファイド、ポリアミド樹脂のいずれかで構成されている。
【0077】
〈冷凍機油について〉
本実施形態では、ポリアルキレングリコール、ポリオールエステル、及びポリビニルエーテルの3種類の基油のうち少なくとも1種類を主成分とする冷凍機油を圧縮機(30)に用いることが可能である。例えば、本実施形態の冷凍機油には、この3種類のうちポリビニルエーテルだけを主成分とする冷凍機油が用いられている。
【0078】
本実施形態の冷凍機油では、下記一般式(I)で表される構成単位を有するポリビニルエーテルを主成分とする冷凍機油が用いられている。この構造のポリビニルエーテルは、ポリビニルエーテルの中でも、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒との相溶性に優れている。
【0079】
【化1】

【0080】
一般式(I)において、R1、R2、及びR3は、水素又は炭素数が1以上8以下の炭化水素基を表している。R1、R2、及びR3は、同一でもよく、互いに異なっていてもよい。また、一般式(I)においては、構成単位毎において、R4が炭素数が1又は2のアルキル基が40%以上100%以下、炭素数が3又は4のアルキル基が0%以上60%以下の構成比を有している。
【0081】
上記冷凍機油は、動粘度が40℃において30cSt以上400cSt以下で、流動点が−30℃以下で、表面張力が20℃において0.02N/m以上0.04N/m以下で、さらに密度が15℃において0.8g/cm以上1.8g/cm以下になっている。また、冷凍機油は、温度30℃、相対湿度90%における飽和水分量が2000ppm以上で、さらにアニリン点が所定の数値範囲内の値となっている。ここで、「アニリン点」は、例えば炭化水素系溶剤等の溶解性を示す数値であり、試料(ここでは冷凍機油)を等容積のアニリンと混合して冷やしたときに、互いに溶解し合えなくなって濁りがみえ始めたときの温度を表すものである(JIS K 2256で規定)。なお、これらの値は、冷媒が溶解しない状態の冷凍機油自体の値である。この点は、後述する変形例1、変形例2、及びその他の実施形態に記載した冷凍機油も同じである。
【0082】
本実施形態では、冷凍機油の主成分となるポリビニルエーテルが、HFO−1234yfに対して相溶性を有している。そして、冷凍機油の動粘度は、40℃において400cSt以下である。このため、HFO−1234yfが、冷凍機油にある程度溶解する。また、冷凍機油の流動点が−30℃以下であるため、冷媒回路(10)において低温部位でも冷凍機油の流動性が確保できる。また、表面張力が20℃において0.04N/m以下であるため、圧縮機(30)から吐出された冷凍機油が冷媒によって押し流されにくくなるような大きな油滴になりにくい。従って、圧縮機(30)から吐出された冷凍機油は、HFO−1234yfに溶解してHFO−1234yfと共に圧縮機(30)に戻ってくる。
【0083】
また、冷凍機油の動粘度が40℃において30cSt以上であるため、動粘度が低すぎて油膜強度が不十分になることはなく、潤滑性能が確保される。また、表面張力が20℃において0.02N/m以上であるため、圧縮機(30)内のガス冷媒中で小さな油滴になりにくく、圧縮機(30)から多量に冷凍機油が吐出されることがない。このため、圧縮機(30)における冷凍機油の貯留量を充分に確保することができる。
【0084】
また、冷凍機油の飽和水分量が、温度30℃/相対湿度90%において2000ppm以上であるため、冷凍機油の吸湿性が比較的高いものとなる。これにより、HFO−1234yf中の水分を冷凍機油によって有る程度捕捉することが可能となる。HFO−1234yfは、含有される水分の影響により、変質/劣化し易い分子構造を有する。よって、冷凍機油による吸湿効果により、このような劣化を抑制することができる。
【0085】
更に、冷凍機油のアニリン点は、上記樹脂製機能部品との適合性を考慮して、その数値範囲を設定するのが良い。このようにアニリン点を設定することで、例えば上述した樹脂製機能部品を構成する軸受(61,62,63,64)と冷凍機油との適合性が向上する。具体的に、アニリン点が小さ過ぎると、冷凍機油が軸受(61,62,63,64)に浸透し易くなり、軸受(61,62,63,64)が膨潤し易くなる。一方、アニリン点が大き過ぎると、冷凍機油が軸受(61,62,63,64)と浸透し難くなり、軸受(61,62,63,64)が収縮し易くなる。そこで、冷凍機油のアニリン点を所定の数値範囲とすることで、軸受(61,62,63,64)の膨潤/収縮変形を防止できる。ここで、例えば各軸受(61,62,63,64)が膨潤/縮小変形してしまうと、摺動部での隙間(ギャップ)を所望とする長さに維持することができない。その結果、摺動抵抗の増大や摺動部の剛性の低下を招く虞がある。しかしながら、上記のように冷凍機油のアニリン点を所定の数値範囲とすることで、軸受(61,62,63,64)の膨潤/縮小変形が抑制されるので、このような不具合を回避できる。
【0086】
また、本実施形態の冷凍機油には、添加剤として、酸捕捉剤、極圧添加剤、酸化防止剤、消泡剤、油性剤、及び銅不活性化剤が添加されている。なお、本実施形態では上記6つの添加剤を全て使用しているが、各添加剤は必要に応じて添加すればよく、添加剤が1つだけであってもよい。個々の添加剤の配合量は、冷凍機油に含まれる割合が0.01質量%以上5質量%以下になるように設定されている。なお、酸捕捉剤の配合量、及び酸化防止剤の配合量は、0.05質量%以上3質量%以下の範囲が好ましい。
【0087】
酸捕捉剤には、フェニルグリシジルエーテル、アルキルグリシジルエーテル、アルキレングリコールグリシジルエーテル、シクロヘキセンオキシド、α−オレフィンオキシド、エポキシ化大豆油などのエポキシ化合物を用いることができる。なお、これらの中で相溶性の観点から好ましい酸捕捉剤は、フェニルグリシジルエーテル、アルキルグリシジルエーテル、アルキレングリコールグリシジルエーテル、シクロヘキセンオキシド、α−オレフィンオキシドである。アルキルグリシジルエーテルのアルキル基、及びアルキレングリコールグリシジルエーテルのアルキレン基は、分岐を有していてもよい。これらの炭素数は、3以上30以下であればよく、4以上24以下であればより好ましく、6以上16以下であれば更に好ましい。また、α−オレフィンオキシドは、全炭素数が4以上50以下であればよく、4以上24以下であればより好ましく、6以上16以下であれば更に好ましい。酸捕捉剤は、1種だけを用いてもよく、複数種類を併用することも可能である。
【0088】
なお、極圧添加剤には、リン酸エステル類を含むものを用いることができる。リン酸エステル類としては、リン酸エステル、亜リン酸エステル、酸性リン酸エステル、及び酸性亜リン酸エステル等を用いることができる。また、極圧添加剤には、リン酸エステル類には、リン酸エステル、亜リン酸エステル、酸性リン酸エステル、及び酸性亜リン酸エステルのアミン塩を含むものを用いることもできる。
【0089】
リン酸エステルには、トリアリールホスフェート、トリアルキルホスフェート、トリアルキルアリールホスフェート、トリアリールアルキルホスフェート、トリアルケニルホスフェート等がある。さらに、リン酸エステルを具体的に列挙すると、トリフェニルホスフェート、トリクレジルホスフェート、ベンジルジフェニルホスフェート、エチルジフェニルホスフェート、トリブチルホスフェート、エチルジブチルホスフェート、クレジルジフェニルホスフェート、ジクレジルフェニルホスフェート、エチルフェニルジフェニルホスフェート、ジエチルフェニルフェニルホスフェート、プロピルフェニルジフェニルホスフェート、ジプロピルフェニルフェニルホスフェート、トリエチルフェニルホスフェート、トリプロピルフェニルホスフェート、ブチルフェニルジフェニルホスフェート、ジブチルフェニルフェニルホスフェート、トリブチルフェニルホスフェート、トリヘキシルホスフェート、トリ(2−エチルヘキシル)ホスフェート、トリデシルホスフェート、トリラウリルホスフェート、トリミリスチルホスフェート、トリパルミチルホスフェート、トリステアリルホスフェート、トリオレイルホスフェート等がある。
【0090】
また、亜リン酸エステルの具体的としては、トリエチルホスファイト、トリブチルホスファイト、トリフェニルホスファイト、トリクレジルホスファイト、トリ(ノニルフェニル)ホスファイト、トリ(2−エチルヘキシル)ホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリイソオクチルホスファイト、ジフェニルイソデシルホスファイト、トリステアリルホスファイト、トリオレイルホスファイト等がある。
【0091】
また、酸性リン酸エステルの具体的としては、2−エチルヘキシルアシッドホスフェート、エチルアシッドホスフェート、ブチルアシッドホスフェート、オレイルアシッドホスフェート、テトラコシルアシッドホスフェート、イソデシルアシッドホスフェート、ラウリルアシッドホスフェート、トリデシルアシッドホスフェート、ステアリルアシッドホスフェート、イソステアリルアシッドホスフェート等がある。
【0092】
また、酸性亜リン酸エステルの具体的としては、ジブチルハイドロゲンホスファイト、ジラウリルハイドロゲンホスファイト、ジオレイルハイドゲンホスファイト、ジステアリルハイドロゲンホスファイト、ジフェニルハイドロゲンホスファイト等がある。以上のリン酸エステル類の中で、オレイルアシッドホスフェート、ステアリルアシッドホスフェートが好適である。
【0093】
また、リン酸エステル、亜リン酸エステル、酸性リン酸エステル又は酸性亜リン酸エステルのアミン塩に用いられるアミンのうちモノ置換アミンの具体例としては、ブチルアミン、ペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、オクチルアミン、ラウリルアミン、ステアリルアミン、オレイルアミン、ベンジルアミン等がある。また、ジ置換アミンの具体例としては、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジオクチルアミン、ジラウリルアミン、ジステアリルアミン、ジオレイルアミン、ジベンジルアミン、ステアリル・モノエタノールアミン、デシル・モノエタノールアミン、ヘキシル・モノプロパノールアミン、ベンジル・モノエタノールアミン、フェニル・モノエタノールアミン、トリル・モノプロパノール等がある。また、トリ置換アミンの具体例としては、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリオクチルアミン、トリラウリルアミン、トリステアリルアミン、トリオレイルアミン、トリベンジルアミン、ジオレイル・モノエタノールアミン、ジラウリル・モノプロパノールアミン、ジオクチル・モノエタノールアミン、ジヘキシル・モノプロパノールアミン、ジブチル・モノプロパノールアミン、オレイル・ジエタノールアミン、ステアリル・ジプロパノールアミン、ラウリル・ジエタノールアミン、オクチル・ジプロパノールアミン、ブチル・ジエタノールアミン、ベンジル・ジエタノールアミン、フェニル・ジエタノールアミン、トリル・ジプロパノールアミン、キシリル・ジエタノールアミン、トリエタノールアミン、トリプロパノールアミン等がある。
【0094】
また、上記以外の極圧添加剤を添加することも可能である。例えば、モノスルフィド類、ポリスルフィド類、スルホキシド類、スルホン類、チオスルフィネート類、硫化油脂、チオカーボネート類、チオフェン類、チアゾール類、メタンスルホン酸エステル類等の有機硫黄化合物系の極圧添加剤、チオリン酸トリエステル類等のチオリン酸エステル系の極圧添加剤、高級脂肪酸、ヒドロキシアリール脂肪酸類、多価アルコールエステル類、アクリル酸エステル類等のエステル系の極圧添加剤、塩素化炭化水素類、塩素化カルボン酸誘導体等の有機塩素系の極圧添加剤、フッ素化脂肪族カルボン酸類、フッ素化エチレン樹脂、フッ素化アルキルポリシロキサン類、フッ素化黒鉛等の有機フッ素化系の極圧添加剤、高級アルコール等のアルコール系の極圧添加剤、ナフテン酸塩類(ナフテン酸鉛等)、脂肪酸塩類(脂肪酸鉛等)、チオリン酸塩類(ジアルキルジチオリン酸亜鉛等)、チオカルバミン酸塩類、有機モリブデン化合物、有機スズ化合物、有機ゲルマニウム化合物、ホウ酸エステル等の金属化合物系の極圧添加剤を用いることが可能である。
【0095】
また、酸化防止剤には、フェノール系の酸化防止剤やアミン系の酸化防止剤を用いることができる。フェノール系の酸化防止剤には、2,6−ジ−tert−ブチル−4−メチルフェノール(DBPC)、2,6−ジ−tert−ブチル−4−エチルフェノール、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,4−ジメチル−6−tert−ブチルフェノール、2,6−ジ−tert−ブチルフェノール等がある。また、アミン系の酸化防止剤には、N,N’−ジイソプロピル−p−フェニレンジアミン、N,N’−ジ−sec−ブチル−p−フェニレンジアミン、フェニル−α−ナフチルアミン、N.N’−ジ−フェニル−p−フェニレンジアミン等がある。なお、酸化防止剤には、酸素を捕捉する酸素捕捉剤も用いることができる。
【0096】
また、銅不活性化剤としては、ベンゾトリアゾールやその誘導体等を用いることができる。消泡剤としては、ケイ素化合物を用いることができる。油性剤としては、高級アルコール類を用いることができる。
【0097】
また、本実施形態の冷凍機油には、必要に応じて、耐荷重添加剤、塩素捕捉剤、清浄分散剤、粘度指数向上剤、防錆剤、安定剤、腐食防止剤、及び流動点降下剤等を添加することも可能である。個々の添加剤の配合量は、冷凍機油に含まれる割合が0.01質量%以上5質量%以下であればよく、0.05質量%以上3質量%以下であることが好ましい。また、本実施形態の冷凍機油は、塩素濃度が50ppm以下、さらに硫黄濃度が50ppm以下になっている。
【0098】
−運転動作−
上記空気調和装置(20)の運転動作について説明する。この空気調和装置(20)は、冷房運転と暖房運転とが実行可能になっており、四路切換弁(13)によって冷房運転と暖房運転との切り換えが行われる。
【0099】
《冷房運転》
冷房運転時には、四路切換弁(13)が第1状態に設定される。この状態で、圧縮機(30)の運転が行われると、圧縮機(30)から吐出された高圧冷媒が、室外熱交換器(11)において室外空気へ放熱して凝縮する。室外熱交換器(11)で凝縮した冷媒は、各室内回路(17)へ分配される。各室内回路(17)では、流入した冷媒が、室内膨張弁(16)で減圧された後に、室内熱交換器(15)において室内空気から吸熱して蒸発する。一方、室内空気は冷却されて室内へ供給される。
【0100】
各室内回路(17)で蒸発した冷媒は、他の室内回路(17)で蒸発した冷媒と合流して、室外回路(9)へ戻ってくる。室外回路(9)では、各室内回路(17)から戻ってきた冷媒が、圧縮機(30)で再び圧縮されて吐出される。なお、冷房運転中は、各室内膨張弁(16)の開度が、室内熱交換器(15)の出口における冷媒の過熱度が一定値(例えば5℃)になるように過熱度制御される。
【0101】
《暖房運転》
暖房運転時には、四路切換弁(13)が第2状態に設定される。この状態で、圧縮機(30)の運転が行われると、圧縮機(30)から吐出された高圧冷媒が、各室内回路(17)へ分配される。各室内回路(17)では、流入した冷媒が室内熱交換器(15)において室内空気へ放熱して凝縮する。一方、室内空気は加熱されて室内へ供給される。室内熱交換器(15)で凝縮した冷媒は、室外回路(9)で合流する。
【0102】
室外回路(9)で合流した冷媒は、室外膨張弁(12)で減圧された後、室外熱交換器(11)において室外空気から吸熱して蒸発する。室外熱交換器(11)で蒸発した冷媒は、圧縮機(30)で再び圧縮されて吐出される。なお、暖房運転中は、各室内膨張弁(16)の開度が、室内熱交換器(15)の出口における冷媒の過冷却度が一定値(例えば5℃)になるようにサブクール制御される。
【0103】
−実施形態の効果−
本実施形態では、冷媒回路(10)の冷媒として、分子式1:C(但し、m及びnは1以上5以下の整数で、m+n=6の関係が成立する。)で表され且つ分子構造中に二重結合を1個有する冷媒から成る冷媒(即ち、HFO−1234yf)を用いている。これにより、冷凍サイクルの理論上の成績係数(COP)が高い空気調和装置(20)を提供できる。
【0104】
一方、HFO−1234yfは、二重結合を有する等の理由により比較的不安定な分子構造であり、冷媒が劣化して不純物等が生成され易い。従って、このような不純物により、空気調和装置(10)の樹脂製機能部品(即ち、軸受(61,62,63,64))が化学的/物理的に変性して劣化してしまう虞がある。しかしながら、本発明では、各軸受(61,62,63,64)が、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、ポリアミド樹脂のいずれかで構成されており、これらの樹脂材料は、冷媒から生成される不純物に対して比較的高い安定性を有する。従って、上記の不純物の影響により、軸受(61,62,63,64)が劣化してしまうのを回避でき、軸受(61,62,63,64)では、所望とする摺動性能を得ることができる。
【0105】
また、本実施形態では、温度30℃、相対湿度90%における飽和水分量が2000ppm以上の冷凍機油を用いているので、冷媒中の水分を冷凍機油に捕捉させることができる。このため、水分の影響によりHFO−1234yfが劣化してしまうのを防止できる。また、冷凍機油は、塩素濃度が50ppm以下であるので、塩素成分の影響により冷媒の劣化が促進してしまうことも防止できる。更に、冷凍機油は、硫黄濃度が50ppm以下であるので、硫黄成分の影響により、冷媒の劣化が促進してしまうことも防止できる。以上のように、本実施形態では、冷媒の劣化を極力防止するように冷凍機油を選定しているので、冷媒の劣化に起因する不純物の生成を抑えることができ、これにより軸受(61,62,63,64)の変性/劣化を効果的に防止できる。
【0106】
また、冷凍機油は、ポリアルキレングリコール、ポリオールエステル、及びポリビニルエーテルのうち少なくとも1つを主成分としている。これにより、冷媒と冷凍機油とが相互に溶け易くなる。このため、冷媒回路(10)中に冷凍機油が流出しても、この冷凍機油は冷媒に溶け込んで圧縮機(30)に返送され易くなる。その結果、圧縮機(30)における油上がりを抑制することができるので、圧縮機(30)の冷凍機油不足、更には潤滑不良を未然に回避できる。従って、圧縮機(30)の信頼性を向上させることができる。
【0107】
一方、このような冷凍機油は、長期の冷凍サイクルにより劣化して不純物が生成することがある。しかしながら、本実施形態の軸受(61,62,63,64)は、ポリテトラフルオロエチレン又はポリアミド樹脂で構成されているので、冷凍機油の劣化に起因する不純物の影響により、軸受(61,62,63,64)が化学的/物理的に変性してしまうことも回避される。
【0108】
更に、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒に、いわゆる高圧冷媒であるジフルオロメタンが加えられている。このため、冷媒の圧力損失が空気調和装置(20)の運転効率に与える影響を小さくすることができるので、空気調和装置(20)の実際の運転効率を向上させることができる。
【0109】
−実施形態の変形例1−
本実施形態の変形例1では、ポリアルキレングリコール、ポリオールエステル、及びポリビニルエーテルの3種類の基油のうちポリオールエステルだけを主成分とする冷凍機油が、圧縮機(30)に用いられている。ポリオールエステルには、「脂肪族多価アルコールと直鎖状若しくは分岐鎖状の脂肪酸とのエステル」、「脂肪族多価アルコールと直鎖状若しくは分岐鎖状の脂肪酸との部分エステル」、及び、「脂肪族多価アルコールと炭素数が3以上9以下の直鎖状若しくは分岐鎖状の脂肪酸との部分エステルと、脂肪族二塩基酸若しくは芳香族二塩基酸とのコンプレックスエステル」の何れかが用いられている。これらのポリオールエステルは、ポリオールエステルの中でも、上記分子式1で表され且つ分子構造中に二重結合を1個有する冷媒との相溶性に優れている。
【0110】
「脂肪族多価アルコールと直鎖状又は分岐鎖状の脂肪酸とのエステル又は部分エステル」を形成する脂肪族多価アルコールには、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、トリメチロールエタン、ジトリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、グリセリン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ソルビトール等を用いることができる。このうち脂肪族多価アルコールとしては、ペンタエリスリトール、ジペンタエリスリトール、及びトリペンタエリスリトールが好ましい。
【0111】
また、脂肪酸には、炭素数が3以上12以下のものを用いることができ、例えばプロピオン酸、酪酸、ピバリン酸、吉草酸、カプロン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ドデカン酸、イソ吉草酸、ネオペンタン酸、2−メチル酪酸、2−エチル酪酸、2−メチルヘキサン酸、2−エチルヘキサン酸、イソオクタン酸、イソノナン酸、イソデカン酸、2,2−ジメチルオクタン酸、2−ブチルオクタン酸、3,5,5−トリメチルヘキサン酸を用いることができる。脂肪酸としては、炭素数が5以上12以下の脂肪酸が好ましく、炭素数が5以上9以下の脂肪酸が更に好ましい。具体的には、吉草酸、ヘキサン酸、ヘプタン酸、2−メチルヘキサン酸、2−エチルヘキサン酸、イソオクタン酸、イソノナン酸、イソデカン酸、2,2−ジメチルオクタン酸、2−ブチルオクタン酸、3,5,5−トリメチルヘキサン酸等が好ましい。
【0112】
また、「脂肪族多価アルコールと炭素数が3以上9以下の直鎖状若しくは分岐鎖状の脂肪酸との部分エステルと、脂肪族二塩基酸若しくは芳香族二塩基酸とのコンプレックスエステル」では、炭素数が5以上7以下の脂肪酸が好ましく、炭素数が5又は6の脂肪酸が更に好ましい。具体的には、吉草酸、ヘキサン酸、イソ吉草酸、2−メチル酪酸、2−エチル酪酸又はその混合物が好ましい。また、炭素数が5の脂肪酸と炭素数が6の脂肪酸を重量比で10:90以上90:10以下の割合で混合した脂肪酸を使用することができる。
【0113】
また、脂肪族二塩基酸には、コハク酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、ドコサンナ二酸がある。また、芳香族二塩基酸には、フタル酸、イソフタル酸がある。コンプレックスエステルを調製するためのエステル化反応は、多価アルコールと二塩基酸を所定の割合で反応させて部分エステル化した後に、その部分エステルと脂肪酸とを反応させる。なお、二塩基酸と脂肪酸の反応順序を逆にしてもよく、二塩基酸と脂肪酸を混合してエステル化に供してもよい。
【0114】
−実施形態の変形例2−
本実施形態の変形例2では、ポリアルキレングリコール、ポリオールエステル、及びポリビニルエーテルの3種類の基油のうちポリアルキレングリコールだけを主成分とする冷凍機油が、圧縮機(30)に用いられている。
【0115】
この変形例2では、分子式2:R1(R2)(R3O)R4(但し、m及びnは整数で、R1及びR4は、水素、炭素数が1以上6以下のアルキル基、又はアリール基を表し、R2及びR3は、炭素数が1以上4以下のアルキル基を表す。)で表される分子構造のポリアルキレングリコールが用いられている。この分子構造のポリアルキレングリコールは、ポリアルキレングリコールの中でも、上記分子式で表され且つ分子構造中に二重結合を1個有する冷媒との相溶性に優れている。
【0116】
−実施形態の変形例3−
本発明の樹脂材料は、冷媒と接触可能に配設された樹脂製機能部品であれば、圧縮機(30)の内側、及び外側(冷媒回路(10)に接続される各機能部品)についても適用可能である。この場合、樹脂製機能部品としては、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、フェノール樹脂、ポリアミド樹脂、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素ゴム、ヒドリンゴムのいずれかで構成されるのが好ましい。この点について、以下に詳細に説明する。
【0117】
〈摺動部材〉
例えば可動スクロール(76)、固定スクロール(75)、オルダムリング(79)等の摺動部の表面に、フッ素系樹脂、例えばポリテトラフルオロエチレン、ポリフェニレンサルファイド、ポリアミド樹脂のいずれかから成る摺動部材を形成するようにしても良い。
【0118】
また、圧縮機(30)の外側の冷媒回路(10)の各機能部品に適用される摺動部材について、本発明の樹脂材料を適用しても良い。具体的には、例えば四路切換弁(13)の弁体の摺動部に、フッ素系樹脂、例えばポリテトラフルオロエチレン、ポリフェニレンサルファイド、ポリアミド樹脂のいずれかから成る摺動部材を適用しても良い。特に、弁体の摺動部では、上記ポリアミド樹脂として66ナイロンを用いることが好ましい。
【0119】
〈シール部材〉
本発明の樹脂材料を冷媒の漏れを防止するためのシール部材に適用することもできる。例えば図4では、可動スクロール(76)の可動側鏡板(76b)とハウジング(77)の上面との間にシール部材としてのシールリング(65)が介設されている。シールリング(65)は、ハウジング(77)の上側の空間を内外に仕切っている。つまり、シールリング(65)は、その内周側の高圧冷媒が、その外周側、即ち圧縮室(30)の吸入側に漏れるのを防止している。このようなシール部材(65)は、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素化ゴム、ヒドリンゴムのいずれかで構成されるのが好ましい。これらの樹脂材料は、冷媒の劣化により生成した不純物に対して、比較的高い安定性を有する。その結果、上記の不純物の生成に伴って、シールリング(65)が劣化してしまうことが抑制される。
【0120】
また、本発明が適用されるシール部材としては、例えばケーシング(70)の内周面とハウジング(77)の外周面との間に介設されるオーリングや、吸入管(56)や吐出管(57)の配管継手部に介設されるパッキン等も挙げられる。
【0121】
また、圧縮機(30)の外側の冷媒回路(10)の各機能部品に適用されるシール部材について、本発明の樹脂材料を適用することもできる。具体的には、例えば四路切換弁(13)、各膨張弁(12,16a,16b,16c)、その他電磁弁等において、冷媒が外部へ流出するのを防止するためのシール部材を、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素化ゴム、ヒドリンゴムのいずれかで構成しても良い。
【0122】
また、本発明の樹脂材料をシール部材(65)に適用する場合にも、冷凍機油のアニリン点を所定の数値範囲の値にすることが好ましい。これにより、シール部材(65)の膨潤や収縮を抑制することができる。その結果、シール部材(65)のシール性能の低下や劣化を防止でき、シール部材(65)のシール性能を長期に亘って確保することができる。
【0123】
〈その他の構造部品〉
更に、本発明の樹脂材料を上記以外の他の部材(構造部品)に適用しても良い。具体的には、例えば冷凍機油を所定箇所に案内するためのパイプや、四路切換弁(13)、膨張弁(12,16a,16b,16c)、その他電磁弁等の弁体そのものを、フッ素樹脂、フェノール樹脂、ポリアミド樹脂(好ましくはナイロン66)のいずれかで構成するようにしても良い。
【0124】
《その他の実施形態》
上記実施形態は、以下のように構成してもよい。
【0125】
上記実施形態について、ポリアルキレングリコール、ポリオールエステル、及びポリビニルエーテルのうち2つ以上を主成分とする冷凍機油を用いてもよい。
【0126】
また、上記実施形態では、冷媒回路(10)の冷媒として、上記分子式で表され且つ分子構造中に二重結合を1個有する冷媒のうちHFO−1234yf以外の冷媒の単一冷媒を用いてもよい。具体的には、1,2,3,3,3−ペンタフルオロ−1−プロペン(「HFO−1225ye」といい、化学式はCF−CF=CHFで表される。)、1,3,3,3−テトラフルオロ−1−プロペン(「HFO−1234ze」といい、化学式はCF−CH=CHFで表される。)、1,2,3,3−テトラフルオロ−1−プロペン(「HFO−1234ye」といい、化学式はCHF−CF=CHFで表される。)、3,3,3−トリフルオロ−1−プロペン(「HFO−1243zf」といい、化学式はCF−CH=CHで表される。)、1,2,2−トリフルオロ−1−プロペン(化学式はCH−CF=CFで表される。)、2−フルオロ−1−プロペン(化学式はCH−CF=CHで表される。)等を用いることができる。
【0127】
また、上記実施形態について、上記分子式で表され且つ分子構造中に二重結合を1個有する冷媒(2,3,3,3−テトラフルオロ−1−プロペン、1,3,3,3−テトラフルオロ−1−プロペン、1,2,3,3−テトラフルオロ−1−プロペン、3,3,3−トリフルオロ−1−プロペン、1,2,2−トリフルオロ−1−プロペン、2−フルオロ−1−プロペン)に、HFC−32(ジフルオロメタン)、HFC−125(ペンタフルオロエタン)、HFC−134(1,1,2,2―テトラフルオロエタン)、HFC−134a(1,1,1,2―テトラフルオロエタン)、HFC−143a(1,1,1−トリフルオロエタン)、HFC−152a(1,1−ジフルオロエタン)、HFC−161、HFC−227ea、HFC−236ea、HFC−236fa、HFC−365mfc、メタン、エタン、プロパン、プロペン、ブタン、イソブタン、ペンタン、2−メチルブタン、シクロペンタン、ジメチルエーテル、ビス−トリフルオロメチル−サルファイド、二酸化炭素、ヘリウムのうち少なくとも1つを加えた混合冷媒を用いてもよい。
【0128】
例えば、HFO−1234yfとHFC−32の2成分からなる混合冷媒を用いてもよい。この場合は、78.2質量%のHFO−1234yfと、21.8質量%のHFC−32とからなる混合冷媒を用いることができる。なお、HFO−1234yfとHFC−32の混合冷媒は、HFO−1234yfの割合が70質量%以上94質量%以下でHFC−32の割合が6質量%以上30質量%以下であればよく、好ましくは、HFO−1234yfの割合が77質量%以上87質量%以下でHFC−32の割合が13質量%以上23質量%以下であればよく、更に好ましくは、HFO−1234yfの割合が77質量%以上79質量%以下でHFC−32の割合が21質量%以上23質量%以下であれば更に好ましい。
【0129】
また、HFO−1234yfとHFC−125の混合冷媒を用いてもよい。この場合は、HFC−125の割合が10質量%以上であるのが好ましく、さらに10質量%以上20質量%以下であるのが更に好ましい。
【0130】
また、HFO−1234yfとHFC−32とHFC−125の3成分からなる混合冷媒を用いてもよい。この場合は、52質量%のHFO−1234yfと、23質量%のHFC−32と、25質量%のHFC−125とからなる混合冷媒を用いることができる。
【0131】
また、上記実施形態について、ケイ酸や合成ゼオライトが乾燥剤として充填された乾燥機を冷媒回路(10)に設けてもよい。
【0132】
また、上記実施形態について、圧縮機(30)が、横型であってもよく、レシプロ式、ロータリ式、及びスクリュー式などの他のタイプの圧縮機であってもよい。
【0133】
また、上記実施形態について、冷凍装置(20)が、暖房専用の空気調和装置であってもよいし、食品を冷却するための冷蔵庫や冷凍庫であってもよいし、空調機と冷蔵庫や冷凍庫とを組み合せた冷凍装置であってもよいし、冷媒回路(10)の放熱器で水を加熱する給湯装置であってもよい。
【0134】
なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
【産業上の利用可能性】
【0135】
以上説明したように、本発明は、冷凍サイクルを行う冷凍装置について有用である。
【図面の簡単な説明】
【0136】
【図1】図1は、実施形態に係る冷凍装置の概略構成図である。
【図2】図2は、実施形態に係る圧縮機の縦断面図である。
【図3】図3は、実施形態に係る圧縮機の圧縮機構の横断面図である。
【図4】図4は、実施形態の変形例3に係る圧縮機の縦断面図である。
【符号の説明】
【0137】
10 冷媒回路
20 空気調和装置(冷凍装置)
30 圧縮機
61 上部軸受(摺動部材,樹脂製機能部品)
62 中間軸受(摺動部材,樹脂製機能部品)
63 下部軸受(摺動部材,樹脂製機能部品)
64 スラスト軸受(摺動部材,樹脂製機能部品)
65 シールリング(シール部材)

【特許請求の範囲】
【請求項1】
圧縮機(30)によって冷媒を循環させて冷凍サイクルを行う冷媒回路(10)を備え、
上記冷媒回路(10)の冷媒として、分子式1:C(但し、m及びnは1以上5以下の整数で、m+n=6の関係が成立する。)で表され且つ分子構造中に二重結合を1個有する冷媒、又は該冷媒を含む混合冷媒が用いられる冷凍装置であって、
上記冷媒回路(10)の冷媒と接触可能に配設される所定の樹脂製機能部品(61,62,63,64,65)が、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、フェノール樹脂、ポリアミド樹脂、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素ゴム、ヒドリンゴムのいずれかで構成されていることを特徴とする冷凍装置。
【請求項2】
請求項1において、
上記樹脂製機能部品は、所定の摺動部に設けられる摺動部材(61,62,63,64)で構成され、
上記摺動部材(61,62,63,64)は、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、ポリアミド樹脂のいずれかで構成されていることを特徴とする冷凍装置。
【請求項3】
請求項1において、
上記樹脂製機能部品は、所定の隙間での冷媒の漏れを防止するためのシール部材(65)で構成され、
上記シール部材(65)は、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素化ゴム、ヒドリンゴムのいずれかで構成されていることを特徴とする冷凍装置。
【請求項4】
請求項1乃至3のいずれか1つにおいて、
上記圧縮機(30)では、温度30℃、相対湿度90%における飽和水分量が2000ppm以上の冷凍機油が用いられることを特徴とする冷凍装置。
【請求項5】
請求項4において、
上記冷凍機油は、ポリアルキレングリコール、ポリオールエステル、及びポリビニルエーテルのうち少なくとも1つを主成分とすることを特徴とする冷凍装置。
【請求項6】
請求項4又は5において、上記冷凍機油は、動粘度が40℃において30cSt以上400cSt以下で、流動点が−30℃以下であることを特徴とする冷凍装置。
【請求項7】
請求項4乃至6のいずれか1つにおいて、
上記冷凍機油は、表面張力が20℃において0.02N/m以上0.04N/m以下であることを特徴とする冷凍装置。
【請求項8】
請求項7において、
上記冷凍機油は、塩素濃度が50ppm以下であることを特徴とする冷凍装置。
【請求項9】
請求項4乃至8のいずれか1つにおいて、
上記冷凍機油は、硫黄濃度が50ppm以下であることを特徴とする冷凍装置。
【請求項10】
請求項4乃至9のいずれか1つにおいて、
上記冷凍機油には、酸捕捉剤、極圧添加剤、酸化防止剤、酸素捕捉剤、消泡剤、油性剤、及び銅不活性化剤のうち少なくとも1種類の添加剤が添加されていることを特徴とする冷凍装置。
【請求項11】
請求項10において、
上記冷凍機油では、1種類の添加剤が添加されている場合には該添加剤の割合が0.01質量%以上5質量%以下に、複数種類の添加剤が添加されている場合には各添加剤の割合が0.01質量%以上5質量%以下になっていることを特徴とする冷凍装置。
【請求項12】
請求項1乃至11のいずれか1つにおいて、
上記分子式1:C(但し、m及びnは1以上5以下の整数で、m+n=6の関係が成立する。)で表され且つ分子構造中に二重結合を1個有する冷媒は、2,3,3,3−テトラフルオロ−1−プロペンであることを特徴とする冷凍装置。
【請求項13】
請求項1乃至12のいずれか1つにおいて、
上記冷媒回路(10)の冷媒は、さらにジフルオロメタンを含む混合冷媒であることを特徴とする冷凍装置。
【請求項14】
請求項1乃至13のいずれか1つにおいて、
上記冷媒回路(10)の冷媒は、さらにペンタフルオロエタンを含む混合冷媒であることを特徴とする冷凍装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2009−222032(P2009−222032A)
【公開日】平成21年10月1日(2009.10.1)
【国際特許分類】
【出願番号】特願2008−70238(P2008−70238)
【出願日】平成20年3月18日(2008.3.18)
【出願人】(000002853)ダイキン工業株式会社 (7,604)
【Fターム(参考)】