説明

半導体受光素子

【課題】安定動作をすることができる半導体受光素子を得る。
【解決手段】n型InP基板1上に、InGaAs光吸収層2、多重反射層3、InGaAs光吸収層7、InP窓層9が順に積層されている。InP窓層9は、InGaAs光吸収層2,7より大きいバンドギャップを持つ。InP窓層9の一部にp型不純物拡散領域11が設けられている。アノード電極12はp型不純物拡散領域11上に設けられ、光が入射する開口を持つ。n型InP基板1の下面にカソード電極13が設けられている。p型不純物拡散領域11の外側にメサ溝14が設けられている。メサ溝14を挟んでp型不純物拡散領域11の反対側にp型不純物拡散領域16が設けられている。p型不純物拡散領域16はInGaAs光吸収層2に達し、金属膜17はp型不純物拡散領域16を介してInGaAs光吸収層2に接続されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光送受信機用の表面入射タイプの半導体受光素子に関し、特に様々な使用環境下で安定動作をすることができる半導体受光素子に関する。
【背景技術】
【0002】
光通信用の半導体受光素子としてアバランシェ・フォトダイオード(以下、APDと称する)やフォトダイオード(以下、PDと称する)が用いられている。最近の波長多重通信システム用の半導体受光素子では、特定波長の光に対する感度を上げる必要がある。そこで、多重反射層を設けたAPDが提案されている。さらに、高速応答に対応するため、AlInAs増倍層を用いたAPDも提案されている(例えば、特許文献1の図5参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2010−45417号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
従来の半導体受光素子は、特定波長の光に対する感度を上げるために半導体基板と光吸収層との間に多重反射膜を有する。しかし、この多重反射膜は、図8に示すように100%の完全な反射膜になっていない。また、光吸収層を薄くすることでキャリアの走行時間を短くして応答速度を上げている。このため、入射光のうち光吸収層で吸収されず、かつ多重反射層で反射されなかった迷光が、基板裏面の電極で反射して戻り光となり、受光素子内部で共振する。この結果、図9に示すように、ある温度周期で最小受信感度が変動する。このように、受信感度が波長や温度に依存性して不安定であるため、従来の半導体受光素子は光送受信機として安定性に欠けていた。
【0005】
本発明は、上述のような課題を解決するためになされたもので、その目的は安定動作をすることができる半導体受光素子を得るものである。
【課題を解決するための手段】
【0006】
本発明に係る半導体受光素子は、第1導電型の半導体基板と、前記半導体基板上に順に積層された第1の光吸収層、多重反射層、第2の光吸収層、及び、前記第1及び第2の光吸収層より大きいバンドギャップを持つ窓層と、前記窓層の一部に設けられた第2導電型の第1の不純物拡散領域と、前記第1の不純物拡散領域上に設けられ、光が入射する開口を持つ上部電極と、前記半導体基板の下面に設けられた下部電極と、前記第1の不純物拡散領域の外側に設けられたメサ溝と、前記メサ溝を挟んで前記第1の不純物拡散領域の反対側に設けられ、前記第1の光吸収層に達する第2の不純物拡散領域と、前記第2の不純物拡散領域を介して前記第1の光吸収層に接続された金属膜とを備えることを特徴とする。
【発明の効果】
【0007】
本発明により、安定動作をすることができる。
【図面の簡単な説明】
【0008】
【図1】本発明の実施の形態1に係る半導体受光素子を示す断面図である。
【図2】本発明の実施の形態1に係る半導体受光素子を示す平面図である。
【図3】本発明の実施の形態1に係る半導体受光素子の変形例1を示す平面図である。
【図4】本発明の実施の形態1に係る半導体受光素子の変形例2を示す平面図である。
【図5】本発明の実施の形態2に係る半導体受光素子を示す断面図である。
【図6】本発明の実施の形態3に係る半導体受光素子を示す断面図である。
【図7】本発明の実施の形態4に係る半導体受光素子を示す断面図である。
【図8】従来の半導体受光素子の多重反射膜の反射率の波長依存性を示す図である。
【図9】従来の半導体受光素子の最小受信感度の温度依存性を示す図である。
【発明を実施するための形態】
【0009】
本発明の実施の形態に係る半導体受光素子について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。
【0010】
実施の形態1.
図1は、本発明の実施の形態1に係る半導体受光素子を示す断面図であり、図2はその平面図である。図2は受光素子を受光面側から見ている。この半導体受光素子は、10Gb/s、伝送距離80km以上の高速・長距離の波長多重システム用の受光素子である。
【0011】
n型InP基板1上に、InGaAs光吸収層2、多重反射層3、InP障壁層4、AlInAs増倍層5、p型InP電界緩和層6、InGaAs光吸収層7、InGaAsPグレーディッド層8、InP窓層9、及びInGaAsコンタクト層10が順に積層されている。
【0012】
InP窓層9やInP障壁層4は、InGaAs光吸収層2,7より大きいバンドギャップを持つ。多重反射層3はInP層とInGaAs層からなる。InGaAs光吸収層2,7は、InGaAsに限らず、InGaAsP、AlGaInAs、AlGaInAsなどでもよい。InP障壁層4は、InPに限らず、AlInAs、AlGaInAs、InGaAsPなどでもよい。InP障壁層4は無くてもよい。
【0013】
InP窓層9の一部に受光領域であるp型不純物拡散領域11が設けられている。アノード電極12はp型不純物拡散領域11上に設けられ、光が入射する開口を持つ。n型InP基板1の下面にカソード電極13が設けられている。p型不純物拡散領域11の外側においてInGaAs光吸収層7及びInP窓層9にメサ溝14が設けられている。InGaAsコンタクト層10上及びメサ溝14内壁に、表面保護膜を兼ねてSiN膜からなる無反射膜15が設けられている。
【0014】
メサ溝14を挟んでp型不純物拡散領域11の反対側、InGaAs光吸収層2、多重反射層3、InGaAs光吸収層7、及びInP窓層9にp型不純物拡散領域16が設けられている。本実施の形態ではメサ溝14の外側全てにp型不純物拡散領域16が設けられている。そのp型不純物拡散領域16上の全面に金属膜17が設けられている。
【0015】
p型不純物拡散領域16はInGaAs光吸収層2に達し、金属膜17はp型不純物拡散領域16を介してInGaAs光吸収層2に接続されている。金属膜17はアノード電極12及びカソード電極13とは電気的に接続されていない。
【0016】
続いて、上記の半導体受光素子の動作を説明する。まず、上方向からアノード電極12で覆われていないp型不純物拡散領域11に光が入射される。この光はp型不純物拡散領域11を透過した後、InGaAs光吸収層7に達し、光の一部はInGaAs光吸収層7で吸収されて正孔と電子を発生する。
【0017】
APDには25Vから50V程度の高い逆バイアスが印加されているので、InGaAs光吸収層7、p型InP電界緩和層6及びAlInAs増倍層5は空乏化しており、発生した電子は空乏層の中をn型InP基板1に向かって流れる。高電界がかかるAlInAs増倍層5でアバランシェ増倍を起こして、新たな多数の電子と正孔を発生させる。この結果、光信号が増倍された電流信号としてAPDから取り出される。取り出された電流信号は、増倍が生じない場合の数十倍程度の大きさになる。
【0018】
InGaAs光吸収層7で吸収されなかった光は多重反射層3に達する。多重反射層3の反射率は100%でないため、光は多重反射層3を透過し、InGaAs光吸収層2に達する。
【0019】
この光をInGaAs光吸収層2が吸収するため、n型InP基板1を透過しカソード電極13で反射する反射戻り光が無くなる。従って、受光素子内部での共振が抑制され、受信感度の波長及び温度依存性が無くなり、光送受信機の最小受信感度は使用温度範囲内で一定となり、安定動作をすることができる。
【0020】
ただし、InGaAs光吸収層2を設けただけでは、InGaAs光吸収層2が光を吸収することで発生した電子と正孔が自然に再結合して熱に変わるため、入射光量が増加した場合に発熱による特性劣化が生じる。そこで、InGaAs光吸収層2をp型不純物拡散領域16を通して金属膜17に短絡させている。このため、InGaAs光吸収層2で発生した電子と正孔は強制的に消滅させらされる。従って、特性劣化が生じないため光過入力耐性が向上する。
【0021】
また、多重反射層3とInGaAs光吸収層7との間に、InGaAs光吸収層2,7より大きいバンドギャップを持つInP障壁層4が設けられている。このため、InGaAs光吸収層2で発生した電子や正孔が再結合をする前にInGaAs光吸収層7へ拡散するのを防ぐことができる。また、InGaAs光吸収層2及びInP障壁層4は、キャリア濃度が高く、殆ど空乏化していないので、InGaAs光吸収層2で発生した電子や正孔がInP障壁層4を乗り越えることもない。
【0022】
また、InP障壁層4とInGaAs光吸収層7との間にAlInAs増倍層5が設けられている。このAlInAs増倍層5に達した電子がアバランシェ増倍を起こす。これにより、高速応答に対応することができる。
【0023】
図3は、本発明の実施の形態1に係る半導体受光素子の変形例1を示す平面図である。図4は、本発明の実施の形態1に係る半導体受光素子の変形例2を示す平面図である。変形1ではp型不純物拡散領域16をメサ溝14の外側全てに設け、変形例2ではp型不純物拡散領域16をメサ溝14の外側に局所的に設けている。そして、両者とも金属膜17を局所的に設けている。このように局所的に設けた金属膜17をチップ番号等のチップ目印として用いることができる。
【0024】
実施の形態2.
図5は、本発明の実施の形態2に係る半導体受光素子を示す断面図である。n型InP基板1上に、InGaAs光吸収層2、多重反射層3、InP障壁層4、InGaAs光吸収層7、InGaAsPグレーディッド層8、n型InP電界緩和層18、InP窓層9、及びInGaAsコンタクト層10が順に積層されている。p型不純物拡散領域11の周辺に、キャリア濃度の低いp型のガードリング領域19が設けられている。その他の構成は実施の形態1と同様である。
【0025】
本実施の形態はp型不純物拡散領域11の下方のInP窓層9を増倍領域20とするAPDである。この増倍領域20内で正孔がアバランシェ増幅を起こし、増倍された電流信号が取り出される。その他、実施の形態1と同様の効果を得ることができる。
【0026】
実施の形態3.
図6は、本発明の実施の形態3に係る半導体受光素子を示す断面図である。n型InP基板1上に、InGaAs光吸収層2、多重反射層3、InP障壁層4、InGaAs光吸収層7、InP窓層9、及びInGaAsコンタクト層10が順に積層されている。その他の構成は実施の形態1と同様である。本実施の形態はPDであるため、増倍層によるアバランシェ増倍はないが、実施の形態1と同様の効果を得ることができる。
【0027】
実施の形態4.
図7は、本発明の実施の形態4に係る半導体受光素子を示す断面図である。実施の形態1では受光面側にメサ溝14とp型不純物拡散領域16と金属膜17を設けているが、実施の形態4では基板裏面側にメサ溝21とp型不純物拡散領域16と金属膜17を設けている。その他の構成は実施の形態1と同様である。
【0028】
具体的には、p型不純物拡散領域11の外側においてn型InP基板1にメサ溝21が設けられている。メサ溝21の外側の周辺領域、即ちメサ溝14を挟んでp型不純物拡散領域11の反対側において、n型InP基板1及びInGaAs光吸収層2にp型不純物拡散領域16が設けられている。金属膜17は、n型InP基板1の裏面に設けられ、p型不純物拡散領域16を介してInGaAs光吸収層2に接続されている。金属膜17はアノード電極12及びカソード電極13とは電気的に接続されていない。
【0029】
このように基板裏面側にメサ溝21とp型不純物拡散領域16と金属膜17を設けた場合でも、実施の形態1と同様の効果を得ることができる。なお、本実施の形態はAlInAs増倍層を使うAPDであるが、これに限らず、InP増倍層を使うAPD及びPDや多重反射層を用いないAPD及びPDなどにも本実施の形態の構成を適用することができる。
【符号の説明】
【0030】
1 n型InP基板(半導体基板)
2 InGaAs光吸収層(第1の光吸収層)
3 多重反射層
4 InP障壁層(障壁層)
5 AlInAs増倍層
7 InGaAs光吸収層(第2の光吸収層)
9 InP窓層(窓層)
11 p型不純物拡散領域(第1の不純物拡散領域)
12 アノード電極(上部電極)
13 カソード電極(下部電極)
14,21 メサ溝
16 p型不純物拡散領域(第2の不純物拡散領域)
17 金属膜

【特許請求の範囲】
【請求項1】
第1導電型の半導体基板と、
前記半導体基板上に順に積層された第1の光吸収層、多重反射層、第2の光吸収層、及び、前記第1及び第2の光吸収層より大きいバンドギャップを持つ窓層と、
前記窓層の一部に設けられた第2導電型の第1の不純物拡散領域と、
前記第1の不純物拡散領域上に設けられ、光が入射する開口を持つ上部電極と、
前記半導体基板の下面に設けられた下部電極と、
前記第1の不純物拡散領域の外側に設けられたメサ溝と、
前記メサ溝を挟んで前記第1の不純物拡散領域の反対側に設けられ、前記第1の光吸収層に達する第2の不純物拡散領域と、
前記第2の不純物拡散領域を介して前記第1の光吸収層に接続された金属膜とを備えることを特徴とする半導体受光素子。
【請求項2】
前記金属膜は前記第1及び第2の電極とは電気的に接続されていないことを特徴とする請求項1に記載の半導体受光素子。
【請求項3】
前記メサ溝は、前記第2の光吸収層及び前記窓層に設けられ、
前記第2の不純物拡散領域は、前記第1の光吸収層、前記多重反射層、前記第2の光吸収層、及び前記窓層に設けられていることを特徴とする請求項1又は2に記載の半導体受光素子。
【請求項4】
前記メサ溝は、前記半導体基板に設けられ、
前記第2の不純物拡散領域は、前記半導体基板及び前記第1の光吸収層に設けられていることを特徴とする請求項1又は2に記載の半導体受光素子。
【請求項5】
前記多重反射層と前記第2の光吸収層との間に設けられ、前記第1及び第2の光吸収層より大きいバンドギャップを持つ障壁層を更に備えることを特徴とする請求項1〜4の何れか1項に記載の半導体受光素子。
【請求項6】
前記障壁層と前記第2の光吸収層との間に設けられたAlInAs増倍層を更に備えることを特徴とする請求項5に記載の半導体受光素子。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2013−51338(P2013−51338A)
【公開日】平成25年3月14日(2013.3.14)
【国際特許分類】
【出願番号】特願2011−189212(P2011−189212)
【出願日】平成23年8月31日(2011.8.31)
【出願人】(000006013)三菱電機株式会社 (33,312)
【Fターム(参考)】