説明

半導体層の製造方法および光電変換装置の製造方法

【課題】 光電変換効率の高い半導体層およびそれを用いた光電変換装置を提供すること。
【解決手段】 半導体層の製造方法は、金属元素を含む皮膜を、カルコゲン蒸気を含む第1の雰囲気において加熱した後、カルコゲン化水素を含む第2の雰囲気において加熱することによって、金属カルコゲナイドを含む半導体層にすることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、金属カルコゲナイドを含む半導体層の製造方法およびそれを用いた光電変換装置の製造方法に関するものである。
【背景技術】
【0002】
太陽電池として、金属カルコゲナイドから成る半導体層を具備する光電変換装置を用いたものがある。金属カルコゲナイドとしては、CISやCIGSのようなI−III−VI族化合物、CZTSのようなI−II−IV−VI族化合物、あるいは、CdTeのようなII−VI族化合物等がある。
【0003】
このような半導体層の作製方法としては、以下のような方法が開示されている。まず、金属元素であるI−B族元素およびIII−B族元素が、電極上に個別にまたは同時に堆積されて前駆体層が形成される。そして、この前駆体層が、カルコゲン元素であるVI−B族元素を含むガスを供給しながら加熱されることによって、I−III−VI化合物半導体が形成される。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平5−267704号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
近年、光電変換装置の需要は増加傾向にあり、光電変換装置のさらなる光電変換効率の向上が望まれている。光電変換装置の光電変換効率を高めるためには、金属カルコゲナイドを含む半導体層と電極層との電気的な接続を良好にするとともに、金属カルコゲナイドの結晶化を促進することが有効である。
【0006】
よって、本発明の目的は、光電変換効率の高い半導体層およびそれを用いた光電変換装置を提供することである。
【課題を解決するための手段】
【0007】
本発明の一実施形態に係る半導体層の製造方法は、金属元素を含む皮膜を、カルコゲン蒸気を含む第1の雰囲気において加熱した後、カルコゲン化水素を含む第2の雰囲気において加熱することによって、金属カルコゲナイドを含む半導体層にすることを特徴とする。
【0008】
本発明の一実施形態に係る光電変換装置の製造方法は、上記半導体層の製造方法によって第1の半導体層を作製する工程と、該第1の半導体層に電気的に接続された、該第1の半導体層とは異なる導電型の第2の半導体層を作製する工程とを具備することを特徴とする。
【発明の効果】
【0009】
本発明によれば、光電変換効率の高い半導体層および光電変換装置を提供することが可能となる。
【図面の簡単な説明】
【0010】
【図1】本発明の一実施形態に係る半導体層の製造方法および本発明の一実施形態に係る光電変換装置の製造方法を用いて作製した光電変換装置の一例を示す斜視図である。
【図2】図1の光電変換装置の断面図である。
【発明を実施するための形態】
【0011】
以下に本発明の実施形態に係る半導体層の製造方法および光電変換装置の製造方法について図面を参照しながら詳細に説明する。
【0012】
<<(1)光電変換装置の構成>>
図1は、本発明の一実施形態に係る半導体層の製造方法および本発明の一実施形態に係る光電変換装置の製造方法を用いて作製した光電変換装置を示す斜視図であり、図2はこの光電変換装置の断面図である。光電変換装置11は、基板1と、第1の電極層2と、金属カルコゲナイドを含む第1の半導体層3と、第2の半導体層4と、第2の電極層5とを含んでいる。
【0013】
第1の半導体層3と第2の半導体層4は導電型が異なっており、第1の半導体層3と第2の半導体層4とで光照射により生じた正負のキャリアの電荷分離を良好に行うことができる。例えば、第1の半導体層3がp型であれば、第2の半導体層4はn型である。あるいは、第2の半導体層4が、バッファ層と第1の半導体層3とは異なる導電型の半導体層とを含む複数層であってもよい。本実施形態では、第1の半導体層3が一方導電型の光吸収層であり、第2の半導体層4がバッファ層と他方導電型半導体層とを兼ねている例を示している。
【0014】
また、本実施形態における光電変換装置11は第2の電極層5側から光が入射されるものを示しているが、これに限定されず、基板1側から光が入射されるものであってもよい。
【0015】
図1において、光電変換装置11は複数個の光電変換セル10が並べられて形成されている。光電変換セル10は、第1の半導体層3の基板1側に第1の電極層2と離間して設けられた第3の電極層6を具備している。そして、第1の半導体層3に設けられた接続導体7によって、第2の電極層5と第3の電極層6とが電気的に接続されている。図1においては、この第3の電極層6は、隣接する光電変換セル10の第1の電極層2が延伸されたものである。この構成により、隣接する光電変換セル10同士が直列接続されている。また、一つの光電変換セル10内において、接続導体7は第1の半導体層3および第2の半導体層4を貫通するように設けられており、第1の電極層2と第2の電極層5とで挟まれた第1の半導体層3と第2の半導体層4とで光電変換が行なわれる。
【0016】
基板1は、第1の半導体層3および第2の半導体層4を支持するためのものである。基板1に用いられる材料としては、例えば、ガラス、セラミックス、樹脂および金属等が挙げられる。
【0017】
第1の電極層2および第3の電極層6は、Mo、Al、TiおよびAu等から選ばれる導電体が用いられ、基板1上にスパッタリング法および蒸着法等から選ばれる方法で形成される。
【0018】
第1の半導体層3は金属カルコゲナイドを主に含んだ半導体層である。金属カルコゲナイドとは、金属元素とカルコゲン元素との化合物である。また、カルコゲン元素とは、VI−B族元素(16族元素ともいう)のうちのS、Se、Teをいう。金属カルコゲナイドとしては、例えば、II−VI族化合物、I−III−VI族化合物、I−II−IV−VI族化合物等が挙げられる。
【0019】
II−VI族化合物とは、II−B族元素(12族元素ともいう)とVI−B族元素との化合物であり、例えば、CdTe等が挙げられる。
【0020】
I−III−VI族化合物とは、I−B族元素(11族元素ともいう)とIII−B族元素(13族元素ともいう)とVI−B族元素との化合物であり、例えば、Cu(In,Ga)Se(CIGSともいう)、Cu(In,Ga)(Se,S)(CIGSSともいう)、およびCuInSe(CISともいう)等が挙げられる。なお、Cu(In,Ga)Seとは、CuとInとGaとSeとから主に構成された化合物をいう。また、Cu(In,Ga)(Se,S)とは、CuとInとGaとSeとSとを主成分として含む化合物をいう。
【0021】
I−II−IV−VI族化合物とは、I−B族元素とII−B族元素とIV−B族元素(14族元素ともいう)とVI−B族元素との化合物であり、例えば、CuZnSn(Se,S)等が挙げられる。
【0022】
第2の半導体層4は上記第1の半導体層3上に形成されている。本実施形態では、第1の半導体層3が一方導電型の光吸収層であり、第2の半導体層4がバッファ層と他方導電型半導体層とを兼ねている例を示している。リーク電流の低減という観点からは、第2の半導体層4は抵抗率が1Ω・cm以上であってもよい。第2の半導体層4としては、CdS、ZnS、ZnO、InSe、In(OH,S)、(Zn,In)(Se,OH)、および(Zn,Mg)O等が挙げられる。第2の半導体層4は、例えばケミカルバスデポジション(CBD)法等で形成される。なお、In(OH,S)とは、InとOHとSとを主成分として含む化合物をいう。(Zn,In)(Se,OH)は、ZnとInとSeとOHとを主成分として含む化合物をいう。(Zn,Mg)Oは、ZnとMgとOとを主成分として含む化合物をいう。第2の半導体層4は、第1の半導体層3の吸収効率を高めるため、第1の半導体層3が吸収する光の波長領域に対して高い光透過性を有するものであってもよい。
【0023】
また、第2の半導体層4は、その厚みが10〜200nmである。第2の半導体層4上に第2の電極層5がスパッタリング等で製膜される際のダメージが抑制される観点から言えば、第2の半導体層4の厚みは100〜200nmとされ得る。
【0024】
第2の電極層5は、ITO、ZnO等の0.05〜3.0μmの厚みを有する透明導電膜である。第2の電極層5は、スパッタリング法、蒸着法または化学的気相成長(CVD)法等で形成される。第2の電極層5は、第2の半導体層4よりも抵抗率の低い層であり、第1の半導体層3で生じた電荷を取り出すためのものである。電荷を良好に取り出すという観点からは、第2の電極層5の抵抗率が1Ω・cm未満でシート抵抗が50Ω/□以下であってもよい。
【0025】
第2の電極層5としては、第1の半導体層3の吸収効率を高めるため、第1の半導体層3の吸収光に対して高い光透過性を有するものが用いられてもよい。光透過性を高めると同時に光反射ロス低減効果および光散乱効果を高め、さらに光電変換によって生じた電流を良好に伝送するという観点から、第2の電極層5は0.05〜0.5μmの厚さであってもよい。また、第2の電極層5と第2の半導体層4との界面での光反射ロスを低減する観点からは、第2の電極層5と第2の半導体層4の屈折率は略等しくてもよい。
【0026】
光電変換セル10は、複数個が並べられて電気的に接続され、光電変換装置11と成る。隣接する光電変換セル10同士を容易に直列接続するために、図1に示すように、光電変換セル10は、第1の半導体層3の基板1側に第1の電極層2と離間して設けられた第3の電極層6を具備している。そして、第1の半導体層3に設けられた接続導体7によっ
て、第2の電極層5と第3の電極層6とが電気的に接続されている。
【0027】
図1において、接続導体7は、第1の半導体層3、第2の半導体層4および第2の電極層5を貫通する溝内に、導電性ペースト等の導体が充填されて形成されている。接続導体7はこれに限定されず、第2の電極層5が延長されて形成されていてもよい。
【0028】
また、図1のように、第2の電極層5上に集電電極8が設けられていてもよい。集電電極8は、第2の電極層5の電気抵抗を小さくするためのものである。第2の電極層5上に集電電極8が設けられることにより、第2の電極層5の厚さを薄くして光透過性を高めるとともに第1の半導体層3で発生した電流が効率よく取り出される。その結果、光電変換装置11の発電効率が高められる。
【0029】
集電電極8は、例えば、図1に示すように、光電変換セル10の一端から接続導体7にかけて線状に形成されている。これにより、第1の半導体層3の光電変換により生じた電荷が第2の電極層5を介して集電電極8に集電され、接続導体7を介して隣接する光電変換セル10に良好に伝達される。
【0030】
集電電極8の幅は、第1の半導体層3への光を遮るのを低減するとともに良好な導電性を有するという観点からは、50〜400μmとされ得る。また、集電電極8は、枝分かれした複数の分岐部を有していてもよい。
【0031】
集電電極8は、例えば、Ag等の金属粉を樹脂バインダー等に分散させた金属ペーストがパターン状に印刷され、これが硬化されることによって形成される。
【0032】
<<(2)第1の半導体層の製造方法>>
金属カルコゲナイドを含む第1の半導体層3は、次のようにして作製される。先ず、第1の電極層2を有する基板1上に、蒸着、スパッタリング等の方法により第1の半導体層3を構成する金属元素が供給されて皮膜が形成される。あるいは第1の電極層2を有する基板1上に、金属元素を含む原料溶液がスピンコータ、スクリーン印刷、ディッピング、スプレー、ダイコータ等によって膜状に被着されることによって皮膜が形成される。これらの皮膜はVI−B族元素を含んでいても良い。また、これらの皮膜は、異なる組成比の複数の積層体であってもよい。また、これらの皮膜中に有機成分が含まれる場合、皮膜が窒素ガス等の不活性ガス雰囲気下で加熱されることによって有機成分が熱分解されてもよい。
【0033】
次に、上記の皮膜が、カルコゲン蒸気を含む第1の雰囲気において加熱される。この第1の雰囲気は、窒素ガス等の不活性ガスあるいは水素ガス等の還元ガスにカルコゲン蒸気が含まれている。カルコゲン蒸気を含む第1の雰囲気は、上記不活性ガスまたは還元ガス中で固体のカルコゲン単体が加熱されることによって調製される。このようなカルコゲン蒸気は、カルコゲン単体のクラスター状となっているため、比較的反応性が低く、皮膜の金属元素のカルコゲン化を緩やかに進行させて皮膜を金属カルコゲナイドにすることができる。そのため、生成した金属カルコゲンナイドの膜の応力が緩和され、金属カルコゲナイドの膜と第1の電極層2との密着性が良好となる。
【0034】
第1の雰囲気におけるカルコゲン蒸気の比率は、皮膜のカルコゲン化を良好に行なうとともに、金属カルコゲナイドと第1の電極層2との密着性を良好にするという観点から、体積比で2〜50ppmであってもよい。なお、第1の雰囲気におけるカルコゲン蒸気の比率は四重極ガス質量分析計を用いることによって測定可能である。
【0035】
また、第1の雰囲気における皮膜の加熱温度は、金属カルコゲナイドの生成率を高める
という観点から、200〜500℃であってもよい。
【0036】
次に、上記の皮膜が、カルコゲン化水素を含む第2の雰囲気において加熱される。この第2の雰囲気は、窒素ガス等の不活性ガスあるいは水素ガス等の還元ガスにカルコゲン化水素が含まれている。カルコゲン化水素は、例えば、HSやHSe、HTeである。このようなカルコゲン化水素は活性力が高く、皮膜の金属元素のカルコゲン化を促進することができる。そのため、第1の雰囲気での加熱に続いて、第2の雰囲気での加熱が行なわれることによって、金属カルコゲナイドと第1の電極層2との密着性が良好に維持されながら、金属カルコゲナイドの結晶成長が良好に行なわれる。その結果、第1の半導体層3と電極層と第1の電極層2との電気的な接続が良好になるとともに、第1の半導体層3の結晶粒径が大きくなって、光電変換効率の高い第1の半導体層3と成る。
【0037】
第2の雰囲気におけるカルコゲン化水素の比率は、第1の半導体層3と第1の電極層2との電気的な接続を良好にするとともに、金属カルコゲナイドを効率よく結晶化するという観点から、体積比で10〜100ppmであってもよい。なお、第2の雰囲気におけるカルコゲン化水素の比率は、FTIR法、ガス検知管法、または四重極ガス質量分析計を用いたガス分析法によって測定可能である。
【0038】
また、第2の雰囲気における皮膜の加熱温度は、金属カルコゲナイドをより効率よく結晶化するという観点から、300〜600℃であってもよい。また、金属カルコゲナイドの結晶化率をより高めるという観点から、第2の雰囲気における皮膜の加熱温度は、第1の雰囲気における皮膜の加熱温度よりも10〜200℃程度、高く設定されてもよい。
【0039】
第1の半導体層3の結晶化を良好に行なうという観点から、第1の雰囲気での加熱工程と第2の雰囲気での加熱工程は連続して行なわれてもよい。つまり、第1の雰囲気での加熱工程の途中からカルコゲン蒸気の比率を徐々に減少させるとともにカルコゲン化水素の比率を徐々に増加させることによって、第1の雰囲気での加熱工程に続けて第2の雰囲気での加熱工程が行なわれる。
【0040】
なお、第1の雰囲気にカルコゲン化水素が含まれていてもよいが、この場合、カルコゲン蒸気とカルコゲン化水素との合計体積に対するカルコゲン蒸気の体積比率が80%以上であれば、第1の半導体層3と第1の電極層2との密着性を高めることができる。また、第2の雰囲気にカルコゲン蒸気が含まれてもよいが、この場合、カルコゲン蒸気とカルコゲン化水素との合計体積に対するカルコゲン化水素の体積比率が30%以上であれば、第1の半導体層3の結晶化を高めることができる。
【0041】
なお、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更が施されることは何等差し支えない。
【符号の説明】
【0042】
1:基板
2:第1の電極層
3:第1の半導体層(金属カルコゲナイドを含む半導体層)
4:第2の半導体層
5:第2の電極層
6:第3の電極層
7:接続導体
8:集電電極
10:光電変換セル
11:光電変換装置

【特許請求の範囲】
【請求項1】
金属元素を含む皮膜を、カルコゲン蒸気を含む第1の雰囲気において加熱した後、カルコゲン化水素を含む第2の雰囲気において加熱することによって、金属カルコゲナイドを含む半導体層にすることを特徴とする半導体層の製造方法。
【請求項2】
前記第2の雰囲気における前記皮膜の温度を前記第1の雰囲気における前記皮膜の温度よりも高くする、請求項1に記載の半導体層の製造方法。
【請求項3】
前記金属元素としてI−B族元素およびIII−B族元素を用いて、前記金属カルコゲナイドにI−III−VI族化合物を含ませる、請求項1または2に記載の半導体層の製造方法。
【請求項4】
請求項1乃至3のいずれかに記載の半導体層の製造方法によって第1の半導体層を作製する工程と、
該第1の半導体層に電気的に接続された、該第1の半導体層とは異なる導電型の第2の半導体層を作製する工程と
を具備することを特徴とする光電変換装置の製造方法。


【図1】
image rotate

【図2】
image rotate


【公開番号】特開2013−21231(P2013−21231A)
【公開日】平成25年1月31日(2013.1.31)
【国際特許分類】
【出願番号】特願2011−154943(P2011−154943)
【出願日】平成23年7月13日(2011.7.13)
【出願人】(000006633)京セラ株式会社 (13,660)
【Fターム(参考)】