説明

可変減衰力ダンパ

【課題】電磁コイルに対する通電量の増大を招くことなく、発生減衰力の調整幅を拡張することのできる可変減衰力ダンパを提供する。
【解決手段】シリンダ2にピストン5を摺動自在に収容し、シリンダ2の内部を伸び側液室7と縮み側液室8に隔成する。ピストン5には、電磁コイル12を設けるとともに、電磁コイル12の径方向外側と内側に第1のオリフィス通路9Aと第2のオリフィス通路9Bを夫々設ける。シリンダ2内には磁性流体を充填し、電磁コイル12の通電制御によって両オリフィス通路9A,9Bを通過する磁性流体の粘性を変化させる。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、車両用サスペンション等に用いられ、液体の流通抵抗を利用して減衰力を得るダンパに関し、とりわけ、発生減衰力を任意に調整することのできる可変減衰力ダンパに関するものである。
【背景技術】
【0002】
車両のサスペンションに用いられる一般的なダンパは液体が充填されたシリンダの内部にピストンが摺動自在に収容され、ピストンによって隔成された液室間がオリフィス通路によって連通している。そして、ピストンとシリンダが相対移動すると、オリフィス通路内を液体が流通し、その際に減衰力を発生する。
【0003】
また、この種のダンパとして、シリンダ内に磁性流体を充填し、磁性流体の粘性を制御することによって発生減衰力を可変制御するものが知られている(例えば、特許文献1参照)。
この可変減衰力ダンパは、具体的には、例えば、ピストンのオリフィス通路の近傍に電磁コイルが設けられ、この電磁コイルの発生磁界を制御することによってオリフィス通路を通過する磁性流体の粘性を調整するようになっている。
【特許文献1】米国特許第6260675号明細書
【特許文献2】特開昭60−113711号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
ところで、現在、この種の可変減衰力ダンパに対しては、発生減衰力の調整幅を広げたいという要望があり、種々の改善が試みられている。
【0005】
例えば、電磁コイルへの通電をオフにしたときの発生減衰力を小さくする場合には、オリフィス通路の断面積を大きくする必要があり、そのため、オリフィス通路の断面をピストンの円周方向に拡張する等の試みが行われている。しかし、オリフィス通路のピストン円周方向の拡張には限界があり、減衰力の調整幅のさらなる拡張が難しいというのが実状である。
【0006】
即ち、オリフィス通路の断面積を広げることだけを考えるならば、オリフィス通路をピストンの半径方向に拡張すれば良いが、オリフィス通路をピストンの半径方向に拡張すると、電磁コイルの発生磁界が及びにくくなり、電磁コイルへの通電をオンにしたときにおける発生減衰力を高めるためには、電磁コイルの通電量を増大させざるを得なくなる。
【0007】
そこで、この発明は、電磁コイルに対する通電量の増大を招くことなく、発生減衰力の調整幅を拡張することのできる可変減衰力ダンパを提供しようとするものである。
【課題を解決するための手段】
【0008】
上記の課題を解決する請求項1に記載の発明は、内部に磁性流体を充填したシリンダ(例えば、後述の実施形態におけるシリンダ2)と、このシリンダ内に摺動自在に収容されてシリンダ内を2つの液室に隔成するピストン(例えば、後述の実施形態におけるピストン5)と、を備え、前記ピストンに、前記2つの液室間の磁性流体の流通を許容するオリフィス通路(例えば、後述の実施形態における第1,第2のオリフィス通路9A,9B)と、このオリフィス通路を通過する磁性流体の粘性を制御する電磁コイル(例えば、後述の実施形態における電磁コイル12)が設けられた可変減衰力ダンパにおいて、前記オリフィス通路を前記電磁コイルの径方向外側と内側に夫々配置したことを特徴とする。
これにより、ピストン上のオリフィス通路は電磁コイルを挟んで径方向外側と内側に並列に配置され、オリフィス通路全体の断面積が拡張される。この結果、電磁コイルへの通電をオフにした状態でピストンが作動すると、オリフィス通路で発生する減衰力が小さくなる。また、電磁コイルへの通電をオンにした状態でピストンが作動すると、電磁コイルで発生する磁界が各オリフィスを流通する磁性流体に夫々作用し、オリフィス通路の断面積の拡張による発生減衰力の低下が抑制される。
【0009】
請求項2に記載の発明は、外筒(例えば、後述の実施形態における外筒102b)と内筒(例えば、後述の実施形態における内筒102a)の二重の筒から成り、内部に磁性流体が充填された複筒型のシリンダ(例えば、後述の実施形態におけるシリンダ102)と、このシリンダの内筒内に摺動自在に収容されて前記内筒内を2つの液室に隔成するピストン(例えば、後述の実施形態におけるピストン105)と、前記内筒内の一方の液室に臨む位置に配置された通路ブロック(例えば、後述の実施形態における通路ブロック43)と、を備え、前記通路ブロックに、磁性流体の流通を許容するオリフィス通路(例えば、後述の実施形態における第1,第2のオリフィス通路109A,109B)と、このオリフィス通路を通過する磁性流体の粘性を制御する電磁コイル(例えば、後述の実施形態における電磁コイル12)が設けられ、前記2つの液室が前記通路ブロックのオリフィス通路と、前記外筒と内筒の間の通路(例えば、後述の実施形態における環状通路40)を介して導通する可変減衰力ダンパにおいて、前記オリフィス通路を前記電磁コイルの径方向外側と内側に夫々配置したことを特徴とする。
これにより、通路ブロック上のオリフィス通路は電磁コイルを挟んで径方向外側と内側に並列に配置され、オリフィス通路全体の断面積が拡張される。この結果、電磁コイルへの通電をオフにした状態でピストンが作動すると、オリフィス通路で発生する減衰力が小さくなる。また、電磁コイルへの通電をオンにした状態でピストンが作動すると、電磁コイルで発生する磁界が各オリフィスを流通する磁性流体に夫々作用し、オリフィス通路の断面積の拡張による発生減衰力の低下が抑制される。
【発明の効果】
【0010】
請求項1,2に記載の発明によれば、いずれもオリフィス通路が電磁コイルの径方向外側と内側に夫々配置されることから、電磁コイルの通電時における発生減衰力の低下を招くことなく、電磁コイルへの通電のオフ時における発生減衰力を充分に小さくすることができる。したがって、電磁コイルに対する通電量の増大を招くことなく、発生減衰力の調整幅を拡張することができる。
【発明を実施するための最良の形態】
【0011】
以下、この発明の各実施形態を図面に基づいて説明する。
最初に、図1,図2に示す第1の実施形態について説明する。
図1は、この発明にかかる可変減衰力ダンパ1の断面図を示すものである。この可変減衰力ダンパ1は、車両のサスペンションに用いられる単筒型のダンパであり、シリンダ2の内部に作動液として磁性流体が充填されるとともに、ピストンロッド4に連結されたピストン5がシリンダ2内に摺動自在に収容されている。
【0012】
ピストンロッド4は、有底円筒状のシリンダ2の端部にロッドガイド6を介して摺動自在に支持され、ピストン5は、シリンダ2の内部を伸び側液室7と縮み側液室8とに隔成している。ピストン5には、シリンダ2内の伸び側液室7と縮み側液室8を連通する後述する第1,第2のオリフィス通路9A,9Bが設けられ、シリンダ2とピストン5が相対移動する際に磁性流体がこれらのオリフィス通路9A,9Bを通過するようになっている。この可変減衰力ダンパ1は、シリンダ2とピストン5間に加わる振動や衝撃を両オリフィス通路9A,9Bを通過する磁性流体の流通抵抗によって減衰する。なお、図中30は、ロッドガイド6のシリンダ内側の内周縁部に設けられた液体封止用のシール部材であり、31は、ロッドガイド6のシリンダ外側の内周縁部に設けられたダストシールである。
【0013】
また、シリンダ2の底部側には、フリーピストン10が摺動自在に収容され、シリンダ2の内部を液室(伸び側液室7及び縮み側液室8)とガス室11とに隔成している。フリーピストン10は、シリンダ2に対するピストンロッド4の進退部容積の増減に応じてシリンダ2内を移動し、それによってピストンロッド4の自由な進退変位を許容する。
【0014】
ここで、第1のオリフィス通路9Aと第2のオリフィス通路9Bは、ピストン5の軸心を中心とした径の異なる2つの円の円周に沿うように夫々設けられ、第1のオリフィス通路9Aは第2のオリフィス通路9Bの径方向外側に配置されている。また、ピストン5内には磁性流体に磁界を作用させるための環状の電磁コイル12が設けられている。この電磁コイル12は、ピストン5内の第1のオリフィス通路9Aと第2のオリフィス通路9Bの略中間径位置に設けられ、通電によって発生した磁界を両オリフィス通路9A,9B内を流通する磁性流体に同様に作用させるようになっている。なお、図1中32は、ピストンロッド4の軸心孔33を通して電磁コイル12に接続された配線である。
【0015】
オリフィス通路9A,9Bと電磁コイル12の上記の配置は、ピストン5が、例えば、以下のような構成とされることによって実現されている。
即ち、ピストン5は、図2にも示すように、シリンダ2の内周壁に摺動自在に嵌合される円筒壁13と、この円筒壁13の内側に同軸に配置された円柱状のピストンコア14と、円筒壁13とピストンコア14の軸方向の端部同士を結合する円板状のエンドプレート15,15と、を備えている。
【0016】
ピストンコア14はピストンロッド4の端部に一体に形成され、その外周面と円筒壁13の内周面との間に円筒状の隙間16(以下、「円筒隙間16」と呼ぶ。)が設けられている。両エンドプレート15,15には、この円筒隙間16に連続する複数の円弧状の開口17…(以下、「外側開口17…」と呼ぶ。)が設けられている。円筒隙間16と両エンドプレート15の外側開口17…は、ピストン5を軸方向に貫通して第1のオリフィス通路9Aを構成している。
【0017】
また、ピストンコア14には、軸方向に貫通する断面円弧状の通路孔18…が複数設けられている。この通路孔18…はピストンコア14の軸心回りに円形をなすように配置されている。また、両エンドプレート15,15の通路孔18…に対応する位置には、これらの通路孔18…に連続する複数の円形状の開口19…(以下、「内側開口19…」と呼ぶ。)が設けられている。このピストンコア14の通路孔18…と両エンドプレート15,15の内側開口19はピストン5を軸方向に貫通して第2のオリフィス通路9Bを構成している。
【0018】
そして、ピストンコア14の外周面には、図1に示すように、設定幅の環状溝20が形成され、その環状溝20内に電磁コイル12が装着されている。
このピストン5は、以上のような構成であるため、電磁コイル12を第1のオリフィス通路9Aと第2のオリフィス9Bの間に配置することができる。
【0019】
以上の構成において、この可変減衰力ダンパ1に振動や衝撃の入力があり、ピストンロッド4とシリンダ2が軸方向に相対移動すると、第1のオリフィス通路9Aと第2のオリフィス通路9Bを通して伸び側液室7と縮み側液室8の間で磁性流体の流通が生じ、その際に発生する減衰力によって振動や衝撃が減衰される。そして、この可変減衰力ダンパ1では、電磁コイル12の磁界を制御することで第1のオリフィス通路9Aと第2のオリフィス通路9Bを通過する磁性流体の粘性を変え、例えば、磁界を強めて粘性を高めることによって発生減衰力を増大させ、逆に磁界を弱めて(磁界をゼロにする場合も含む。)粘性を低くすることによって発生減衰力を減少させる。
【0020】
ここで、オリフィス通路9A,9Bでの発生減衰力は、電磁コイル12への通電をオフにしたときに最小になり、電磁コイル12の通電電流の増大に応じて増大することになるが、この可変減衰力ダンパ1の場合、径方向に二重に配置された第1のオリフィス通路9Aと第2のオリフィス通路9Bによって大きな通路断面積が確保されているため、電磁コイル12への通電をオフにしたときにおける発生減衰力は充分に小さくなる。
【0021】
また、この可変減衰力ダンパ1の場合、第1のオリフィス通路9Aと第2のオリフィス通路9Bが電磁コイル12の径方向外側と内側に夫々配置され、両オリフィス通路9A,9B内の磁性流体に磁界が充分に及ぶようになっているため、電磁コイル12への通電をオンにしたとき(例えば、通電電流を最大にしたとき。)における発生減衰力は、オリフィス通路9A,9Bの総断面積の増大に拘わらず充分に大きなものとなる。
【0022】
図3は、この発明にかかる可変減衰力ダンパ1と、オリフィス通路を電磁コイル12の径方向外側と内側の一方のみに配置した比較例のダンパの、電磁コイル12への通電をオフにしたときとオンにしたとき(ただし、両ダンパの通電電流は一定。)の減衰力特性を示すものである。この特性図に示す例の場合、この発明にかかる可変減衰力ダンパ1は、比較例に対して、電磁コイル12への通電のオフ時の発生減衰力を小さくし、かつオン時の発生減衰力を大きくすることができる。
【0023】
したがって、以上のように、この発明にかかる可変減衰力ダンパ1においては、電磁コイル12に対する通電量の増大を招くことなく、発生減衰力の調整幅を拡張することができる。
【0024】
また、この実施形態の可変減衰力ダンパ1の場合、ピストンコア14の外周面にボビン状に設定幅の環状溝20を形成し、その環状溝20内に電磁コイル12を装着した構造を採用しているため、電磁コイル12の配置が容易になり、生産性が向上するという利点がある。
【0025】
なお、上記の実施形態においては、ピストンコア14の外周面に円筒隙間16(第1のオリフィス通路9A)に臨むように環状溝20を形成して、その環状溝20内に電磁コイル12を装着したが、ピストンコア14に第1のオリフィス通路9Aと第2のオリフィス通路9Bに臨む環状の空間部を設け、その環状の空間部に電磁コイル12を装着するようにしても良い。この場合、電磁コイル12が第1のオリフィス通路9Aと第2のオリフィス通路9Bに直接面し、電磁コイル12の径方向にピストンコア14による磁路が存在しないことになるため、電磁コイル12で発生した磁界のほぼ総てがオリフィス通路9A,9B内を通過し、その結果、電磁コイル12の磁界の利用効率が高まり、さらなる省電力化が可能になる。
【0026】
次に、図4〜図6に示す第2の実施形態について説明する。なお、第1の実施形態と同一部分には同一符号を付し、重複する説明を省略するものとする。
図4は、この発明にかかる可変減衰力ダンパ101の部分断面斜視図を示すものである。この可変減衰力ダンパ101は、車両のサスペンションに用いられる複筒式のダンパであり、シリンダ102が内筒102aと外筒102bの二重の筒によって構成されている。
【0027】
内筒102aと外筒102bは同軸に配置されており、外筒102bの軸方向の両端部が内筒102aの外周面に接合され、両筒102a,102b間が環状通路40(通路)を構成するようになっている。内筒102aの軸方向両端部の近傍には、内筒102aの内側空間と外側の環状通路40を連通する連通孔41a,41bが夫々形成されている。内筒102aは、一端が封止プラグ42に結合され、他端がロッドガイド6に結合されている。
【0028】
ロッドガイド6には、ピストンロッド4が摺動自在に嵌挿され、ピストンロッド4の端部にはピストン105が一体に結合されている。このピストン105は、内筒102a内に摺動自在に嵌合され、内筒102a内を伸び側液室7と縮み側液室8とに隔成している。また、内筒102a内の封止プラグ42側にはフリーピストン10が摺動自在に収容され、内筒102aの内部を液室とガス室11とに隔成している。そして、シリンダ102の内部のガス室11を除く部分には磁性流体が充填されている。
【0029】
また、内筒102a内のピストン105の縮み側のストロークエンド位置と連通孔41aの間には、断面円形状の通路ブロック43が嵌合固定され、内筒102aの底部側の液室が通路ブロック43を挟んで縮み側液室8と通路室44とに隔成されるようになっている。
【0030】
通路ブロック43には、縮み側液室8と通路室44を連通する後述する第1,第2のオリフィス通路109A,109Bが設けられ、シリンダ102とピストン105が相対移動する際に磁性流体がこれらのオリフィス通路109A,109Bを通過するようになっている。つまり、シリンダ102とピストン105が相対移動すると、伸び側作動室7と縮み側作動室8の間に圧力差ができ、それにより、磁性流体が連通孔41a,41bと環状通路40を通って一方の液室7(または8)から他方の液室8(または7)へとの流動しようとし、このとき、通路ブロック43上のオリフィス通路109A,109Bを磁性流体が通過するようになる。したがって、この可変減衰力ダンパ101においては、シリンダ102とピストン105間に加わる振動や衝撃を両オリフィス通路109A,109Bを通過する磁性流体の流通抵抗によって減衰する。
【0031】
第1のオリフィス通路109Aと第2のオリフィス通路109Bは、通路ブロック43の軸心を中心とした径の異なる2つの円の円周に沿うように夫々設けられ、第1のオリフィス通路109Aは第2のオリフィス通路109Bの径方向外側に配置されている。第1のオリフィス通路109Aと第2のオリフィス通路109Bは、具体的には、図5に示すように通路ブロック43を軸方向に貫通する断面円弧状の複数の通路孔50a…と50b…によって夫々構成されている。
【0032】
また、通路ブロック43内の第1のオリフィス通路109Aと第2のオリフィス通路109Bの略中間径位置には、両オリフィス通路109A,109Bを通過する磁性流体に磁界を作用させるための電磁コイル12が設けられている。
【0033】
ところで、ここでは詳細な図示は省略するが、通路ブロック43は、例えば、軸方向の略中間位置で分割された2ブロックによって構成し、内部に電磁コイル12を組み込んだ後に両ブロックを結合することにより、両オリフィス通路109A,109B間に電磁コイル12を配置することができる。
【0034】
以上の構成において、この可変減衰力ダンパ101に振動や衝撃の入力があり、ピストンロッド4とシリンダ102が軸方向に相対移動すると、前述のように通路ブロック43の第1のオリフィス通路109Aと第2のオリフィス通路109Bで磁性流体の流通が生じ、その際に発生する減衰力によって振動や衝撃が減衰される。そして、この可変減衰力ダンパ101の場合も、電磁コイル12の磁界を制御することで両オリフィス通路109A,109Bを通過する磁性流体の粘性を変え、それによって発生減衰力を制御することができる。
【0035】
この可変減衰力ダンパ101の場合も、第1のオリフィス通路109Aと第2のオリフィス通路109Bが通路ブロック43の径方向の外側と内側に二重に配置されているため、電磁コイル12への通電をオフにしたときにおける発生減衰力を充分に小さく設定することができる。そして、第1のオリフィス通路109Aと第2のオリフィス通路109Bが電磁コイル12の径方向の外側と内側に配置されるため、電磁コイル12をオンにしたときには、図6に示すように磁界Hが両オリフィス通路109A,109B内の磁性流体に同様に充分に及ぶようになり、その結果、充分に高い発生減衰力を得ることが可能となる。
したがって、この発明にかかる可変減衰力ダンパ101においては、電磁コイル12に対する通電量の増大を招くことなく、発生減衰力の調整幅を拡張することができる。
【0036】
また、この実施形態の可変減衰力ダンパ101は、複筒型のシリンダ102の外筒102bと内筒102aの隙間を伸び側液室7と縮み側液室8を導通する通路にするとともに、内筒102aの底部側に第1,第2のオリフィス通路109A,109Bと電磁コイル12を有する通路ブロック43を配置した構造としたため、ピストン105にオリフィス通路を設ける必要がなく、その分ピストン105の構造の簡素化を図ることができる。即ち、ピストン105とピストンロッド4を別体部品で形成する場合には、ピストン105の軸心部に両者の結合部構造を設ける必要があり、ピストン105上の残余の領域にオリフィス通路を形成するとなると、ピストン105の構造が複雑になり、加工が難しくなるが、この可変減衰力ダンパ101においてはこのような不具合は生じない。
【0037】
さらに、この可変減衰力ダンパ101の場合、ピストン105に電磁コイル12を設けないため、ピストン105の慣性質量が軽くなり、減衰力制御時等における応答性が向上するという利点もある。
【0038】
なお、この発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。例えば、上記の第2の実施形態においては、通路ブロック43に複数の円弧状の通路孔50a…と50b…を夫々形成し、通路孔50a…と50b…の径方向中間位置に電磁コイル12を配置したが、第1の実施形態のピストン5におけるオリフィス通路9A,9Bと電磁コイル12の配置構造と同様の構造を通路ブロック43に採用することも可能である。
また、前述した第1の実施形態の変形例のように通路ブロック43に第1のオリフィス通路109Aと第2のオリフィス通路109Bに臨む環状の空間部を設け、その環状の空間部に電磁コイル12を装着するようにしても良い。
【図面の簡単な説明】
【0039】
【図1】この発明の第1の実施形態の可変減衰力ダンパの断面図。
【図2】同実施形態の可変減衰力ダンパの分解斜視図。
【図3】同実施形態と比較例の減衰力特性図。
【図4】この発明の第2の実施形態の可変減衰力ダンパの部分断面斜視図。
【図5】同実施形態の通路ブロックの部分断面斜視図。
【図6】同実施形態の通路ブロックの断面図。
【符号の説明】
【0040】
1,101…可変減衰力ダンパ
2,102…シリンダ
5,105…ピストン
7…伸び側液室(液室)
8…縮み側液室(液室)
9A,109A…第1のオリフィス通路(オリフィス通路)
9B,109B…第2のオリフィス通路(オリフィス通路)
12…電磁コイル
40…環状通路(通路)
43…通路ブロック
102a…内筒
102b…外筒

【特許請求の範囲】
【請求項1】
内部に磁性流体を充填したシリンダと、このシリンダ内に摺動自在に収容されてシリンダ内を2つの液室に隔成するピストンと、を備え、
前記ピストンに、前記2つの液室間の磁性流体の流通を許容するオリフィス通路と、このオリフィス通路を通過する磁性流体の粘性を制御する電磁コイルが設けられた可変減衰力ダンパにおいて、
前記オリフィス通路を前記電磁コイルの径方向外側と内側に夫々配置したことを特徴とする可変減衰力ダンパ。
【請求項2】
外筒と内筒の二重の筒から成り、内部に磁性流体が充填された複筒型のシリンダと、このシリンダの内筒内に摺動自在に収容されて前記内筒内を2つの液室に隔成するピストンと、前記内筒内の一方の液室に臨む位置に配置された通路ブロックと、を備え、
前記通路ブロックに、磁性流体の流通を許容するオリフィス通路と、このオリフィス通路を通過する磁性流体の粘性を制御する電磁コイルが設けられ、前記2つの液室が前記通路ブロックのオリフィス通路と、前記外筒と内筒の間の通路を介して導通する可変減衰力ダンパにおいて、
前記オリフィス通路を前記電磁コイルの径方向外側と内側に夫々配置したことを特徴とする可変減衰力ダンパ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2008−224001(P2008−224001A)
【公開日】平成20年9月25日(2008.9.25)
【国際特許分類】
【出願番号】特願2007−67271(P2007−67271)
【出願日】平成19年3月15日(2007.3.15)
【出願人】(000005326)本田技研工業株式会社 (23,863)
【Fターム(参考)】