説明

回転電機

【課題】フィードバック制御とそのための相対角度検出を不要とし、2組の界磁磁極部の相対角度を直接目標値に正確に調整でき、さらなる広範囲高効率運転が達成できる可変界磁式の回転電機を提供する。
【解決手段】固定子巻線と固定子鉄心を設置した固定子と、界磁用磁石が設置された複数の磁極部が2組に分かれて相対的に回動する回転子と、2組の磁極部を相対的に回動する機構を有する回転電機において、前記機構は、シャフトに対して回動する磁極部を支持する部材とねじ嵌合し、シャフトの外側を軸方向に移動自在な部材と、前記軸方向に移動自在な部材を軸方向に移動させるための送りねじ機構と、前記送りねじ機構と回転子とともに回転する部材を連結するベアリングと、前記送りねじ機構を回転させる制御モータとを有することを特徴とする回転電機。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、回転電機などに関する。
【背景技術】
【0002】
従来の可変界磁式の回転電機には、埋込磁石構造の回転子の磁極部を軸方向に3分割し、各々を相対回動することで、回転子の界磁の強さを変化させるものがある(例えば、特許文献1参照)。
特許文献1の図1には、軸方向に3分割され、シャフトに固定された両側の磁極部と、前記磁極部に対し相対回動する中央の磁極部を有し、各々の磁極部には永久磁石が装着された回転電機が示されている。
反負荷側ブラケットの軸受部には、油圧制御部が設けられ、回転する回転子内部に設けられた油圧機構に油圧を供給し、界磁の強さを変化させることができる。
このように、特許文献1の可変界磁式の回転電機は、回転子の界磁の強さを変化させることで、可変速範囲の拡大とより高い効率での運転を可能にしている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2010−074975号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、さらに広範囲高効率運転を推進するため、可変界磁式の回転電機の最大効率ベクトル制御を実現するには、特に運転状態での界磁の強さを正確に制御する必要がある。界磁の強さは2組の界磁磁極部の相対角度を油圧で変化させることにより決定されるため、相対角度をフィードバックして油圧制御を行うことが必要になる。
【0005】
上記回転電機は、回転子の回転位置を検出する手段としてシャフトの端部にエンコーダが取り付けられているものの、2組の界磁磁極部の相対角度を直接検出していない。そのため、油圧制御をもって2組の界磁磁極部の相対角度を、目標値に精密に調整することは困難であった。
【0006】
そこで、本発明は、フィードバック制御とそのための相対角度検出を不要とし、2組の界磁磁極部の相対角度を直接目標値に正確に調整でき、さらなる広範囲高効率運転が達成できる可変界磁式の回転電機を提供することを目的とする。
【課題を解決するための手段】
【0007】
上記課題を解決するため、本発明の一の観点によれば、固定子巻線と固定子鉄心を設置した固定子と、界磁用磁石が設置された複数の磁極部が2組に分かれて相対的に回動する回転子と、2組の磁極部を相対的に回動する機構を有する回転電機において、前記機構は、シャフトに対して回動する磁極部を支持する部材とねじ嵌合し、シャフトの外側を軸方向に移動自在な部材と、前記軸方向に移動自在な部材を軸方向に移動させるための送りねじ機構と、前記送りねじ機構と回転子とともに回転する部材を連結するベアリングと、前記送りねじ機構を回転させる制御モータとを有することを特徴とする回転電機が適用される。
【発明の効果】
【0008】
本発明によれば、2組の界磁磁極部の相対角度を正確に調整することで、さらなる広範囲高効率運転が達成できる可変界磁式の回転電機を提供することができる。
【図面の簡単な説明】
【0009】
【図1】本発明の第1実施形態に係る回転電機の軸方向断面図である。
【図2】同実施形態に係る中央の界磁磁極部における回転電機の径方向断面図である。
【図3】可変界磁の原理説明図である。
【図4】中央の界磁磁極部を回動させる構造の説明図である。
【図5】回転子の構造を示す軸方向断面図である。
【図6】制御モータの取付けを示す説明図である。
【図7】センサマグネットの説明図である。
【図8】2組の界磁磁極部の相対角度と界磁の強さとの特性図である。
【図9】本実施形態に係る回転電機の最大効率ベクトル制御時の制御数値マップ測定例である。
【図10】最大効率ベクトル制御を再現するマップ制御の説明図である。
【図11】本発明の第2実施形態に係る回転電機の軸方向断面図である。
【図12】同実施形態に係る反負荷側側面図である。
【発明を実施するための形態】
【0010】
以下、本発明の実施の形態について図を参照して説明する。なお、同一の構成については同一の符号を付することにより、重複説明を適宜省略する。
【0011】
<第1実施形態>
まず、図1を参照しつつ、本発明の第1実施形態に係る回転電機の構成について説明する。図1は、車両駆動用電動機または発電機に供する、本発明の第1実施形態に係る回転電機の軸方向断面図である。
【0012】
図1に示すように、本実施形態に係る可変界磁式の回転電機は、固定子巻線12と固定子鉄心13を設置した固定子10と、界磁用磁石が設置された複数の磁極部が2組に分かれて相対的に回動する回転子30と、回転子の内部に2組の磁極部を相対的に回動する機構と、フレーム17の反負荷側の外部に設けられ前記機構を作動する制御モータ49(図6参照)と、回転子の反負荷側側面に設けられたセンサマグネット20と、前記センサマグネットに対向して設けられた回転位置検出部25とを有する。
固定子巻線12は固定子鉄心13に装着され、固定子鉄心13は、負荷側ブラケット16に、固定子締結ボルト14をもって締結され、フレーム17はボルト11で、負荷側ブラケット16に締結されている。
回転子30は、回転子シャフト34に設置された負荷側軸受18と反負荷側軸受19をもって回転自在に保持され、反負荷側ブラケット17に設置された回転位置検出器25をもって、回転子の回転位置を検出する。
【0013】
回転子30の界磁磁極部は、軸方向に3分割され、シャフトに固定された負荷側界磁磁極部46と反負荷側界磁磁極部48に対し、中央の界磁磁極部47を制御モータで回動させる構造となっている。
制御モータがウォームギヤ27を回転させると、ギヤホイール23が回転し、送りおねじ42が送りめねじ43に対して軸方向に移動する。送りおねじ42の負荷側端部には可動軸受け36が装着され、回転子の回転を遮断しながらピン36とピンホルダ28を軸方向に移動させる。ピン36はシャフトの外側のスライダ37を軸方向に移動させ、スライダの外側はハブ32と捩れスプラインで契合しているため、スライダ37が軸方向に移動すれば、ハブ32とそれに契合された中央の界磁磁極部47をシャフトに固定された負荷側界磁磁極部46と反負荷側界磁磁極部48に対し回動させる。
【0014】
負荷側界磁磁極部46と反負荷側界磁磁極部48はボルト35をもってシャフト34に固定されている。
ハブ32の両側には、Oリング15が装着され前記機構に充填されたグリスの飛散を防止している。
送りおねじ42と送りめねじ43は台形ねじ加工がなされている。ギヤホイール23は軸受け26で回転自在に支持されている。送りおねじ42は、六角穴を有し、ギヤホイール23の六角シャフトに契合しているため、軸方向に移動可能に回転が伝達される。
送りおねじ42に装着された可動軸受け40にはアンギュラベアリングが2個向かい合わせで用いられ、軸受けホルダ44とボルト45をもって固定されている。
送りめねじ43に装着された固定軸受け41にもアンギュラベアリングが2個向かい合わせで用いられ、ナット29をもって固定されている。
【0015】
図2は、本実施形態に係る中央の界磁磁極部における回転電機の径方向断面図である。
図2に示すように、固定子10は、12個に分割された固定子鉄心13の各々に空芯コイルである固定子巻線12を装着して構成されている。
軸方向に3分割された各々の界磁磁極部は、回転子鉄心38に設けられた略V字形状をなす永久磁石装着孔に永久磁石36が着磁方向を対面、または背面するように装着され、10極の磁極を構成している。
【0016】
図3は、可変界磁の原理説明図である。
図3( a )に示す状態は、中央の界磁磁極部47が右回りしきった状態であり、中央の界磁磁極部47が、負荷側界磁磁極部46と反負荷側界磁磁極部48に磁極を並べ、界磁は最も強い状態となっている。
図3( b )に示す状態は、中央の界磁磁極部47が左回りしきった状態であり、中央の界磁磁極部47が、負荷側界磁磁極部46と反負荷側界磁磁極部48に対し相対的に大きく回動しているため、磁極同士が相殺して固定子巻線を鎖交する界磁は最も弱い状態となっている。
制御モータを作動させることにより、図3( a )から図3( b )の間を随意に調整することができ、界磁の強さを変化させることができる。
【0017】
図4は、中央の界磁磁極部を回動させる構造の説明図である。
シャフト34にはピン36が貫通する溝部34b を除き、角形スプライン部34aが設けられ、スライダ37と契合している。スライダ37の外側はハブ32と捩れスプラインで契合しているため、スライダを軸方向に移動させると、ハブ32とそれに契合された中央の界磁磁極部47をシャフトに固定される負荷側界磁磁極部46と反負荷側界磁磁極部48に対し回動できる。
スライダ37はピン36をもって軸方向に移動させる。シャフト34にはピン34が軸方向に移動できる範囲の長穴34bが設けられている。シャフトの角形スプライン部34aには、負荷側界磁磁極部46と反負荷側界磁磁極部48を固定するためのボルト穴34cが設けられている。
【0018】
図5は、回転子の構造を示す軸方向断面図である。
図1に示した、スライダ37を負荷側に移動させ界磁を弱めた状態に対し、本図はスライダを反負荷側に移動させ界磁を強めた状態を示している。
スライダ37とハブ32とが契合する捩れスプラインは、円周方向に対して垂直に近いリード角とすることで、小さな軸方向推力で大きな回動トルクを発生でき、逆に大きな回動トルクや駆動トルクが作用しても軸方向推力には作用しにくい工夫がなされている。
固定軸受け41をシャフトに固定しているため、制御モータにより発生させる軸方向推力が回転子の負荷側軸受け18と反負荷側軸受け19に作用して軸受けの寿命を低下させことはない。また、可動軸受け40と固定軸受け41をシャフトの内側に設置したため、本実施例の回転電機の軸方向長を小さく構成できている。
【0019】
図6は、制御モータの取付けを示す説明図である。
制御モータ49の回転速度は、ウォームギヤ27とギヤホイール23からなるウォーム減速機で減速されて、図5に示した送りおねじ42を回転させる。制御モータ49は回転軸を回転電機のシャフトと直角になるように取り付けられているため、本実施例の回転電機の軸方向を小型に構成できている。
【0020】
図7は、センサマグネットの説明図である。センサマグネット20は耐熱性の高い樹脂を素材とした永久磁石であり、回転子の界磁磁極と同数の磁極が着磁されている。センサマグネット20の磁極は、図5に示したように反負荷側プレート33の側面に、両側の界磁磁極部に合わせて装着されているため、センサマグネット20の磁極の位置を検出すれば、両側の界磁磁極部の磁極の位置を検出できる。
【0021】
両側の界磁磁極部は、回転子の回転方向に回動することにより2組の界磁磁極部の相対角度が小さくなるように設置されている。車両駆動用電動機または発電機に供する可変界磁式の回転電機の最大効率ベクトル制御を実現するには、後で示すように、小さなトルク指令状態では相対角度を大きくすることが要求され、大きなトルク指令状態では相対角度を小さくすることが要求される。
例えば、車両駆動用回転電機の回転子が右回りに電動機状態で運転している状態を図3に示したとすれば、無負荷に近い小さなトルク指令状態では、2組の界磁磁極部のN極とS極が引き合い、制御モータは小さなトルクで図3( b )に示した2組の界磁磁極部の相対角度が大きい状態に近づけることができる。加速を要する大きなトルク指令状態では、固定子が発する回転電磁力に回動可能な中央の界磁磁極部47が引かれるため、その分制御モータは小さなトルクで図3( a )に示した2組の界磁磁極部の相対角度が小さい状態に近づけることができる。
【0022】
図8は、2組の界磁磁極部の相対角度と界磁の強さとの特性図である。
2組の界磁磁極部が並んだ、界磁が最も強い状態における誘起電圧定数の大きさを100%とし、2組の界磁磁極部が相対的に回動した状態での誘起電圧定数の割合を界磁率と呼ぶことにすれば、2組の界磁磁極部の相対角度θに対する界磁率αの特性は、図6に示すようになる。2組の界磁磁極部の相対角度θを0〜120°まで変化させることで、界磁率αは100〜30%まで変化できることを示している。
【0023】
図9は、本実施形態に係る回転電機の最大効率ベクトル制御時の制御数値マップ測定例である。
回転速度と出力割合をそれぞれ横軸と縦軸に取り、( a )は、界磁率を示し、( b )は、2組の界磁磁極部が総合して作り出す磁極位置に対する固定子巻線に通電する3相電流の電流の位相角を示している。電流の位相角が大きくなるほど、回転子の磁極に対し固定子が発する回転電磁力が進角するとともに、弱め界磁力が強まる。
図9に示すように、例えば16000rev/min,70%出力時には、界磁率は69%となるように2組の界磁磁極部の相対角度を調整し、電流の位相角は78°で通電すれば、本実施例の回転電機の効率は最大となる。
このマップより次のことが明らかである。可変界磁式の回転電機効率を最大とするには、界磁率は回転速度に対しては高回転ほど、出力の大きさに対しては低出力ほど小さくするとともに、電流の位相角は回転速度に対しては高回転ほど、出力の大きさに対しては高出力ほど大きくする制御とすれば良い。
【0024】
図10は、最大効率ベクトル制御を再現するマップ制御の説明図である。
車両駆動用可変界磁式の回転電機の実際の制御においては、便宜上出力をトルク指令に置き換えて、マップ制御を行う。アクセルペダルの踏込みの大きさをトルク指令の大きさに対応させて、回転電機の回転速度Nとトルク指令Tより、界磁率α,電流の位相角βと電流Iが読み出され、それを目標値としてフィードバック制御により設定された誤差以内に実現する。
具体的には、回転電機の回転速度がNmからNm+1の間にあり、トルク指令がTnからTn+1の間にあれば、Dmnの場所からデータが読み出される。Dmnは界磁率αmn,電流の位相角βmnと電流Imnの3つのデータを格納している。回転速度がNm-1からNmの間に下がると、Dm-1nの場所からデータが読み出される。制御のためのデータは、回転電機が運転される全ての回転速度とトルク指令に対して準備されている。
【0025】
<第2実施形態>
以上、本発明の第1実施形態に係る回転電機について説明した。次に、図11を参照しつつ、本発明の第2実施形態に係る回転電機について説明する。図11は、車両駆動用電動機または発電機に供する、本発明の第2実施形態に係る回転電機の軸方向断面図である。第1実施形態に係る回転電機が軸方向に小型な構成であったのに対し、第2実施形態に係る回転電機は径方向に小型な構成とするに適する。車両駆動用電動機または発電機として、積載形状の要求に対応できるようにするため、軸方向に小型なものと径方向に小型なものを準備した。
【0026】
図11に示すように、この第2実施形態に係る回転電機は、2組の磁極部を相対的に回動させるための送りねじ機構をシャフトの外部に設置した点で、第1実施形態に係る可変界磁式の回転電機と異なり、他の構成は同様に構成される。従って、以下では、説明の便宜上、重複説明を適宜省略し、第1実施形態と異なる点を中心に説明することとする。
本実施形態の回転電機では、送りおねじ82と送りめねじ83からなる送りねじ機構は、シャフトの反負荷側外部に設置されている。また、制御モータは回転軸を回転電機の回転子のシャフトと平行に、出力軸を回転電機の反負荷側に向けて設置されている。制御モータの出力軸にはピニオンギヤ67が取り付けられ、ギヤホイール63を減速して駆動する。ギヤホイール63が回転すると、送りおねじ82が送りめねじ83に対して軸方向に移動する。送りおねじ82の負荷側端部には可動軸受け80が装着され、回転子の回転を遮断しながらピン76とピンホルダ68を軸方向に移動させる。
以下、第1実施形態に係る回転電機と同様に、ピン76がシャフトの外側のスライダ77を軸方向に移動させ、ハブ72とそれに契合された中央の界磁磁極部87をシャフトに固定された負荷側界磁磁極部86と反負荷側界磁磁極部88に対し回動させる。
【0027】
負荷側界磁磁極部86と反負荷側界磁磁極部88はシャフト74に契合固定されている。
ハブ32の両側には、Oリング15が装着され前記機構に充填されたグリスの飛散を防止している。送りおねじ82は、六角穴を有し、ギヤホイール63の六角シャフトに契合しているため、軸方向に移動可能に回転が伝達される。
送りおねじ82に装着された可動軸受け80にはアンギュラベアリングが2個向かい合わせで用いられ、ナット51をもって固定されている。
送りめねじ83に装着された固定軸受け81にもアンギュラベアリングが2個向かい合わせで用いられ、反負荷側ブラケット66とに挟まれて固定されている。固定軸受け81は、回転子の反負荷側軸受けを兼ねている。
【0028】
図12は、本実施形態に係る反負荷側側面図である。
図12に示すように、制御モータ89は回転子軸の上方に取り付けられ、ピニオンギヤ67を回転させることで、ギヤホイール63を駆動する。ピニオンギヤ67とギヤホイール63からなる減速機はグリスで潤滑され、減速機を保護するためにカバー64が設置されている。
【0029】
以上説明したように、本実施形態に係る可変界磁式の回転電機は、制御モータにより2組の界磁磁極部の相対角度を正確に調整することで、さらなる広範囲高効率運転が達成でき、車両駆動用可変界磁式の回転電機の電気消費率を従来以上に向上することができる。
【0030】
以上、本発明の実施形態について説明した。ただし、いわゆる当業者であれば、本発明の趣旨を逸脱しない範囲内で、上記実施形態から適宜変更が可能であり、また、上記実施形態と変更例による手法を適宜組み合わせて利用することも可能である。すなわち、このような変更等が施された技術であっても、本発明の技術的範囲に含まれることは言うまでもない
【0031】
例えば、上記実施形態では、界磁を可変するための制御モータは回転電機の反負荷側に設置されているが、制御モータをシャフトの負荷側に設置し、シャフトの負荷側端部に2組の磁極部を相対的に回動させるための軸方向推力部材を設置する場合もある。
【0032】
本発明の回転電機は、広範囲高効率運転が可能となるため、車両駆動用に限らず工作機主軸用を初めとする他の一般産業用回転電機用途にも適用できる。
【符号の説明】
【0033】
10 固定子 11 ボルト 12 固定子巻線
13 固定子鉄心
14 ボルト
15 Oリング
16 負荷側ブラケット
17 フレーム
18 負荷側軸受
19 反負荷側軸受
20 センサマグネット
21 結線部
22 軸受けカバー
23 ギヤホイール
24 カバー
25 回転位置検出部
26 軸受け
27 ウォームギヤ
28 ピンホルダ
29 ナット
30 回転子
31 負荷側プレート
32 ハブ
33 反負荷側プレート
34 シャフト
35 ボルト
36 ピン
37 スライダ
38 回転子鉄心
39 永久磁石
40 可動軸受け
41 固定軸受け
42 送りおねじ
43 送りめねじ
44 軸受けホルダ
45 ボルト
46 負荷側界磁磁極部
47 中央の界磁磁極部
48 反負荷側界磁磁極部
49 制御モータ
50 固定子
51 ナット
52 ナット
55 Oリング
56 負荷側ブラケット
57 フレーム
58 負荷側軸受
59 軸受
60 センサマグネット
62 軸受けカバー
63 ギヤホイール
64 カバー
65 回転位置検出部
66 反負荷側ブラケット
67 ピニオンギヤ
68 ピンホルダ
69 ナット
70 回転子
71 負荷側プレート
72 ハブ
73 反負荷側プレート
74 シャフト
76 ピン
77 スライダ
80 可動軸受け
81 固定軸受け
82 送りおねじ
83 送りめねじ
84 モータホルダ
85 ボルト
86 負荷側界磁磁極部
87 中央の界磁磁極部
88 反負荷側界磁磁極部
89 制御モータ

【特許請求の範囲】
【請求項1】
固定子巻線と固定子鉄心を設置した固定子と、界磁用磁石が設置された複数の磁極部が2組に分かれて相対的に回動する回転子と、2組の磁極部を相対的に回動する機構を有する回転電機において、前記機構は、シャフトに対して回動する磁極部を支持する部材とねじ嵌合し、シャフトの外側を軸方向に移動自在な部材と、前記軸方向に移動自在な部材を軸方向に移動させるための送りねじ機構と、前記送りねじ機構と回転子とともに回転する部材を連結するベアリングと、前記送りねじ機構を回転させる制御モータとを有することを特徴とする回転電機。
【請求項2】
前記制御モータを回転させることで2組の磁極部を相対的に回動させることを特徴とする請求項1記載の回転電機。
【請求項3】
前記回転子とともに回転する部材と前記送りねじ機構を連結するベアリングは、アンギュラベアリングであることを特徴とする請求項1または2に記載の回転電機。
【請求項4】
前記回転子とともに回転する部材と前記送りねじ機構を連結するベアリングは2組あり、一方は前記送りねじ機構のめねじに固定され、もう一方は前記送りねじ機構のおねじに固定されることを特徴とする請求項1から3のいずれかに記載の回転電機。
【請求項5】
シャフトに対して回動する磁極部を支持する部材と、シャフトの外側を軸方向に移動自在な部材は、ねじりスプラインで嵌合することを特徴とする請求項1から4のいずれかに記載の回転電機。
【請求項6】
シャフトの外側を軸方向に移動自在な部材が軸方向に移動すると、2組の磁極部の一方がシャフトに対して回動することを特徴とする請求項1から5のいずれかに記載の回転電機。
【請求項7】
前記送りねじ機構をシャフトの内側に設置したことを特徴とする請求項1から6のいずれかに記載の回転電機。
【請求項8】
前記制御モータの回転速度は減速機で減速されて前記送りねじ機構を回転させることを特徴とする請求項1から7のいずれかに記載の回転電機。
【請求項9】
前記減速機は、ウォーム減速機であることを特徴とする請求項8記載の回転電機。
【請求項10】
制御モータは回転軸を回転電機のシャフトと直角になるように取り付けることを特徴とする請求項1から9のいずれかに記載の回転電機。
【請求項11】
制御モータは回転軸を回転電機のシャフトと平行に、回転電機と背面に取り付けることを特徴とする請求項1から10のいずれかに記載の回転電機。
【請求項12】
両側の界磁磁極部は、回転子の回転方向に回動することにより2組の界磁磁極部の相対角度を小さくすることを特徴とする請求項1から11のいずれかに記載の回転電機。
【請求項13】
2組の磁極の相対角度は、回転速度に対しては高回転ほど、トルク指令に対しては低トルクほど大きくすることを特徴とする請求項1から12のいずれかに記載の回転電機。
【請求項14】
ベクトル制御と界磁制御を行いながら運転することを特徴とする請求項1から13のいずれかに記載の回転電機。
【請求項15】
電流の位相角は、回転速度に対しては高回転ほど、トルク指令に対しては高トルクほど大きくすることを特徴とする請求項1から14のいずれかに記載の回転電機。
【請求項16】
回転速度とトルク指令より、2組の界磁磁極部の相対角度と電流と位相角の目標値をマップ制御で再現することを特徴とする請求項1から15のいずれかに記載の回転電機。
【請求項17】
前記機構は回転子のシャフトの内部に設置され、前記機構を回転させる制御モータを回転子の外部に設置したことを特徴とする請求項1から16のいずれかに記載の回転電機。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2013−46440(P2013−46440A)
【公開日】平成25年3月4日(2013.3.4)
【国際特許分類】
【出願番号】特願2011−180751(P2011−180751)
【出願日】平成23年8月22日(2011.8.22)
【出願人】(000006622)株式会社安川電機 (2,482)
【Fターム(参考)】