説明

多結晶シリコンインゴット製造装置、多結晶シリコンインゴットの製造方法及び多結晶シリコンインゴット

【課題】底部における酸素濃度が局所的に高くなる部分を少なくして、多結晶シリコンの生産歩留まりを大幅に向上させることができる多結晶シリコンインゴット製造装置、多結晶シリコンインゴットの製造方法及び多結晶シリコンインゴットを提供する。
【解決手段】断面矩形状をなす坩堝20と、この坩堝20の上方に配設された上部ヒータ43と、坩堝20の下方に配設された下部ヒータ33と、を有し、坩堝20内に貯留されたシリコン融液3を、その底面21から上方に向けて一方向凝固させる多結晶シリコンインゴット製造装置10であって、坩堝20の底面21側において坩堝20の側壁部22の少なくとも一部を加熱する補助ヒータ50を備えていることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、坩堝内に貯留されたシリコン融液を一方向凝固させることにより、多結晶シリコンインゴットを製出する多結晶シリコンインゴット製造装置、多結晶シリコンインゴットの製造方法、及び、この製造方法によって得られる多結晶シリコンインゴットに関するものである。
【背景技術】
【0002】
前述の多結晶シリコンインゴットは、例えば特許文献1に記載されているように、所定の厚さにスライスされて多結晶シリコンスライスとされ、この多結晶シリコンスライスを所定サイズに切り出すことによって多結晶シリコンウェハとされる。この多結晶シリコンウェハは主に太陽電池用基板の素材として利用されている。ここで、太陽電池においては、太陽電池用基板の素材である多結晶シリコンインゴットの特性が、変換効率等の性能を大きく左右することになる。
特に、多結晶シリコンに含有される酸素量や不純物量が多いと、太陽電池の変換効率が大幅に低下するため、太陽電池用基板となる多結晶シリコン中の酸素量や不純物量を低減する必要がある。
【0003】
ここで、坩堝内で一方向凝固させた多結晶シリコンインゴットでは、凝固開始部分である底部及び凝固終了部分である頂部において、酸素量や不純物量が高くなる傾向にあるため、これら底部及び頂部を切断除去している。
詳述すると、坩堝内でシリコン融液を上方に向けて一方向凝固させた場合、固相から液相に向けて不純物が排出されることから、固相部分の不純物量が低くなり、凝固終了部分である頂部において不純物量が非常に高くなるのである。
【0004】
また、シリカ製坩堝内にシリコン融液を貯留した際に、シリカ(SiO)からシリコン融液へと酸素が混入する。一方、シリコン融液内の酸素は、SiOガスとして液面から放出される。ここで、凝固開始時には、坩堝の底面及び側面から酸素が混入することから、凝固開始時点ではシリコン融液内の酸素量が高くなる。そして、底面側での凝固が進行すると、側面からのみ酸素が混入することになるため、徐々に酸素量は低減していき、シリコン融液内の酸素量は安定することになる。よって、凝固開始部分である底部において酸素量が高くなるのである。
【0005】
このような多結晶シリコンインゴットは、例えば特許文献2、3に記載された鋳造装置を用いた一方向凝固法によって製造される。
特許文献2に記載された鋳造装置は、坩堝の上方に上部ヒータが配設され、坩堝の下方に下部ヒータが配設されたものである。上部ヒータ及び下部ヒータによって加熱することにより、坩堝内のシリコン原料を溶解してシリコン融液を生成する。その後、下部ヒータを停止し、坩堝の底部側から熱を放散することにより、坩堝内のシリコン融液を坩堝の底面から上方に向けて一方向凝固させる。
【0006】
また、特許文献3に記載された鋳造装置は、坩堝の側面に対向するように配置されたサイドヒータを備えている。まず、坩堝のサイドヒータによって加熱することで坩堝内のシリコン原料を溶解してシリコン融液を生成する。その後、坩堝を下方に向けて移動させることにより、坩堝の底面側を低温化して温度勾配を設け、坩堝内のシリコン融液を坩堝の底面から上方に向けて一方向凝固させる。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開平10−245216号公報
【特許文献2】特開2004−058075号公報
【特許文献3】特開2008−303113号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
ところで、矩形断面状をなす多結晶シリコンインゴットを製造する際において、坩堝内のシリコン融液の高さを高く設定した場合には、坩堝の底面側に位置する部分で酸素濃度が局所的に高い部分が発生することが確認されている。
従来の多結晶シリコンインゴットについて、所定の高さ位置(凝固方向位置)における矩形断面内の酸素濃度を測定した結果を図6に示す。この図6によれば、高さ位置10mm、50mmの断面において、周縁部の一辺の中央部分(図6の測定点3)の酸素濃度が局所的に高くなっていることが確認される。
【0009】
ここで、高さ位置50mmの断面においては、断面中心部(図6の測定点5)及び断面コーナ部(図6の測定点1)における酸素濃度が5×1017atm/cm以下とされているものの、局所的(図6の測定点3)に酸素濃度が5×1017atm/cmを超えていることから、多結晶シリコンスライスとして製品化することができない。このため、多結晶シリコンインゴットのうち製品化可能な部分が少なくなり、製品の製造効率が低下するといった問題があった。
【0010】
特に、最近では、多結晶シリコンインゴットから太陽電池用基板を効率良く生産するために、多結晶シリコンインゴットの大型化、すなわち、多結晶シリコンスライスの大面積化(例えば一辺の長さが680mm以上)や、多結晶シリコンインゴットの高さを高くすることが試みられている。
しかしながら、このように多結晶シリコンインゴットを大型化した場合には、上述のように坩堝の底面側に位置する部分で酸素濃度が局所的に高い部分が発生しやすくなる傾向にあるため、多結晶シリコンインゴットの底部側を大きく切断除去することになり、多結晶シリコンウェハを効率良く生産することができなかった。
【0011】
本発明は、上述した状況に鑑みてなされたものであって、底部における酸素濃度が局所的に高くなる部分を少なくして、多結晶シリコンの生産歩留まりを大幅に向上させることができる多結晶シリコンインゴット製造装置、多結晶シリコンインゴットの製造方法及び多結晶シリコンインゴットを提供することを目的とする。
【課題を解決するための手段】
【0012】
上記課題を解決するために、本発明者が鋭意研究した結果、坩堝内の温度分布が局所的な酸素濃度の増加と関連していることを見出した。具体的には、図6及び図7に示すように、坩堝内において温度が低下している箇所で酸素濃度が高くなっているのである。
このことから、断面における温度分布を改善することにより、局所的な酸素濃度の増加を抑制可能であるとの知見を得た。
【0013】
本発明は上述の知見に基づいてなされたものであり、本発明に係る多結晶シリコンインゴット製造装置は、断面矩形状をなす坩堝と、この坩堝の上方に配設された上部ヒータと、前記坩堝の下方に配設された下部ヒータと、を有し、前記坩堝内に貯留されたシリコン融液を、その底面から上方に向けて一方向凝固させる多結晶シリコンインゴット製造装置であって、前記坩堝の底面側において前記坩堝の側壁部の少なくとも一部を加熱する補助ヒータを備えていることを特徴としている。
【0014】
一方向凝固の初期段階においては、坩堝の底面側からの熱の放散に対して坩堝の側壁部からの熱の放散の割合が大きいため、断面の表層側部分で温度低下しやすくなる。
そこで、本発明に係る多結晶シリコンインゴット製造装置においては、前記坩堝の底面側において前記坩堝の側壁部の少なくとも一部を加熱する補助ヒータを備えていることから、この補助ヒータによって坩堝内の温度分布を改善することが可能となり、局部的な酸素濃度の増加を抑制することができる。よって、多結晶シリコンインゴットの底部側を大きく切断除去する必要がなくなり、多結晶シリコンウェハを効率良く生産することが可能となる。
【0015】
ここで、前記補助ヒータは、前記側壁部がなす矩形環状の各一辺の中央領域を加熱する構成とされており、この中央領域の前記底面に沿った方向の長さlは、前記側壁部のうち前記一辺の全長Lに対して、0.3×L≦l≦0.7×Lの範囲内に設定されていることが好ましい。
通常、坩堝の周囲には断熱材が配設されていることから、断面コーナ部では断熱材による保温効果によって温度低下が阻害されるが、側壁部の各一辺の中央領域では断熱材による保温効果が少なくなり、局部的に温度低下するものと考えられる。よって、前記補助ヒータを、前記側壁部の各一辺の中央領域(前記側壁部のうち前記一辺の全長Lに対して、0.3×L≦l≦0.7×Lの範囲内の領域)を加熱する構成とすることによって、確実に坩堝内の温度分布を改善することが可能となり、局部的な酸素濃度の増加を抑制することができる。
【0016】
また、前記補助ヒータは、前記坩堝の底面側において前記坩堝の側壁部に対向して配設されており、その高さhは、前記坩堝の全高さHPに対して、0.1×HP≦h≦0.3×HPの範囲内に設定されていることが好ましい。
坩堝内において、凝固が上方に向けて進行すると、底面側からの熱の放散の割合が大きくなり側壁部からの熱の放散の影響が少なくなる。よって、坩堝の底面側部分においてのみ温度分布を改善すればよいことになる。そこで、補助ヒータを、前記坩堝の側壁部に対向して配設し、その高さを坩堝の全高さHPに対して、0.1×HP≦h≦0.3×HPの範囲内に設定することにより、温度分布を改善する必要がある部分のみを加熱することが可能となる。
【0017】
本発明に係る多結晶シリコンインゴットの製造方法は、上述の多結晶シリコンインゴット製造装置を用いた多結晶シリコンインゴットの製造方法であって、前記坩堝内に装入されたシリコン原料を溶融して前記シリコン融液を生成する溶解工程と、前記下部ヒータを停止して、前記坩堝内に貯留された前記シリコン融液に上下方向に温度差を設けて、前記坩堝内に貯留された前記シリコン融液を前記坩堝の底面側から上方に向けて一方向凝固させる凝固工程と、を備えており、前記凝固工程においては、前記補助ヒータを用いて前記坩堝の側壁部の少なくとも一部を加熱することを特徴としている。
【0018】
この構成の多結晶シリコンインゴットの製造方法によれば、前記坩堝内に貯留された前記シリコン融液を前記坩堝の底面側から上方に向けて一方向凝固させる凝固工程において、前記補助ヒータを用いて前記坩堝の側壁部の少なくとも一部を加熱する構成としているので、坩堝内における温度分布を改善することができ、局所的な酸素濃度の増加を抑制することができる。よって、多結晶シリコンインゴットの底部側を大きく切断除去する必要がなくなり、多結晶シリコンウェハを効率良く生産することが可能な多結晶シリコンインゴットを製出することができる。
【0019】
ここで、前記凝固工程のうち前記坩堝の底面から高さXまでの初期領域において、前記補助ヒータを用いて前記坩堝の側壁を加熱する構成とされており、前記初期領域の高さXは、前記坩堝内の前記シリコン融液の湯面高さHMに対して、X≦0.3×HMの範囲内に設定されていることが好ましい。
前記凝固工程のうち前記坩堝の底面から高さXまでの初期領域(坩堝内の前記シリコン融液の湯面高さHMに対してX≦0.3×HMの範囲内)においては、坩堝の側壁部からの熱の放散の割合が比較的大きいため、局所的な温度低下が発生するおそれがある。そこで、本発明では、この初期領域において、補助ヒータを用いて坩堝の側壁部を加熱する構成としているので、坩堝内の温度分布を確実に改善することが可能となる。
【0020】
本発明に係る多結晶シリコンインゴットは、上述の多結晶シリコンインゴットの製造方法によって製造された多結晶シリコンインゴットであって、凝固方向に直交する断面が矩形面状をなし、この矩形面の一辺の長さが550mm以上とされており、前記坩堝の底面に接触していた底部から高さ50mmの部分の断面において、前記矩形面の辺稜部の一辺の中央部分における酸素濃度が5×1017atm/cm以下とされていることを特徴としている。
【0021】
この構成の多結晶シリコンインゴットによれば、前記坩堝の底面に接触していた底部から高さ50mmの部分の断面において、前記矩形面の一辺の中央部分(すなわち、断面において最も酸素濃度が高くなる傾向にある部分)における酸素濃度が、5×1017atm/cm以下とされているので、この底部から高さ50mmの部分を多結晶シリコンウェハの素材として製品化することができる。
【発明の効果】
【0022】
このように、本発明によれば、底部における酸素濃度が局所的に高くなる部分を少なくして、多結晶シリコンの生産歩留まりを大幅に向上させることができる多結晶シリコンインゴット製造装置、多結晶シリコンインゴットの製造方法及び多結晶シリコンインゴットを提供することができる。
【図面の簡単な説明】
【0023】
【図1】本発明の実施形態である多結晶シリコンインゴット製造装置の概略説明図である。
【図2】図1に示す多結晶シリコンインゴット製造装置の坩堝近傍の断面説明図である。
【図3】本発明の実施形態である多結晶シリコンインゴットの概略説明図である。
【図4】実施例における多結晶シリコンインゴット内の酸素量測定結果を示すグラフである。
【図5】実施例における坩堝内(底面から高さ50mm位置)の温度分布を示す図である。
【図6】従来例における多結晶シリコンインゴット内の酸素量測定結果を示すグラフである。
【図7】従来例における坩堝内(底面から高さ50mm位置)の温度分布を示す図である。
【発明を実施するための形態】
【0024】
以下に、本発明の実施形態である多結晶シリコンインゴット製造装置、多結晶シリコンインゴットの製造方法及び多結晶シリコンインゴットについて、添付した図面を参照にして説明する。
【0025】
本実施形態である多結晶シリコンインゴット製造装置10は、内部を気密状態に保持するチャンバ11と、シリコン融液3が貯留される坩堝20と、この坩堝20が載置されるチルプレート31と、このチルプレート31の下方に位置する下部ヒータ33と、坩堝20の上方に位置する上部ヒータ43と、坩堝20の開口部に対向するように配設された蓋部41と、を備えている。また、坩堝20の外周側には、断熱壁12が配設されており、上部ヒータ43の上方に断熱天井13が配設され、下部ヒータ33の下方に断熱床14が配設されている。すなわち、坩堝20、上部ヒータ43、下部ヒータ33等を囲繞するように、断熱材(断熱壁12、断熱天井13、断熱床14)が配設されているのである。
【0026】
坩堝20は、図2に示すように、水平断面形状が角形(矩形状)とされており、本実施形態では、水平断面形状が正方形をなしている。この坩堝20は、石英で構成されており、チルプレート31に接触する底面21と、この底面21から上方に向けて立設された側壁部22と、を備えている。この側壁部22は、水平断面が矩形環状をなしており、その一辺の長さLPは、550mm≦LP≦1080mmとされ、本実施形態では、LP=680mmとされている。また、坩堝20(側壁部22)の高さHPは、500mm≦HP≦700mmとされ、本実施形態では、HP=600mmとされている。
【0027】
上部ヒータ43及び下部ヒータ33は、それぞれ電極棒44,34によって支持されている。上部ヒータ43を支持する電極棒44は、断熱天井13を貫通して挿入されており、電極棒44の一部がチャンバ11の外側に露出されている。下部ヒータ33を支持する電極棒34は、断熱床14を貫通して挿入されている。
坩堝20が載置されるチルプレート31は、下部ヒータ33に挿通された支持部32の上端に設置されている。このチルプレート31は、中空構造とされており、支持部32の内部に設けられた供給路(図示なし)を介して内部にArガスが供給される構成とされている。
【0028】
蓋部41は、上部ヒータ43に挿通された支持軸42の下端部に接続されている。この蓋部41は、シリコンカーバイドあるいはカーボンで構成されており、坩堝20の開口部に対向するように配設されている。
支持軸42には、内部にガス供給路(図示なし)が設けられており、支持軸42の先端(図1において下端)に設けられた開口孔から坩堝20内のシリコン融液3に向けてAr等の不活性ガスが供給されるように構成されている。
この支持軸42及び蓋部41は、上下動可能に構成されており、坩堝20内のシリコン融液3の湯面との距離が調整可能とされている。
【0029】
そして、この多結晶シリコンインゴット製造装置10においては、上部ヒータ43及び下部ヒータ33とは別に、坩堝20の底面21側において坩堝20の側壁部22の少なくとも一部を加熱する補助ヒータ50が配設されている。本実施形態では、図1に示すように、補助ヒータ50は、坩堝20の側壁部22に対向するように配設されており、補助ヒータ50の高さhは、坩堝20の高さHPに対して、0.1×HP≦h≦0.3×HPの範囲内となるように設定されている。
【0030】
また、この補助ヒータ50は、図2に示すように、坩堝20の側壁部22がなす矩形の一辺の中央領域に対向するように配設されている。中央領域の長さl(すなわち、補助ヒータ50の幅l)は、坩堝20の側壁部22一辺の長さLPに対して、0.3×LP≦l≦0.7×LPの範囲内に設定されている。
この補助ヒータ50は、輻射式ヒータとされており、坩堝20の側壁部22のうち補助ヒータ50が対向配置された部分を局所的に加熱する構成とされている。なお、補助ヒータ50の出力は、下部ヒータ33の出力の10〜50%程度と、比較的低く設定されている。
【0031】
次に、本実施形態である多結晶シリコンインゴット1の製造方法について説明する。本実施形態では、前述した多結晶シリコンインゴット製造装置10を用いて多結晶シリコンインゴット1を製出する。
【0032】
まず、坩堝20内に、シリコン原料を装入する(シリコン原料装入工程S01)。ここで、シリコン原料としては、11N(純度99.999999999)の高純度シリコンを砕いて得られた「チャンク」と呼ばれる塊状のものが使用される。この塊状のシリコン原料の粒径は、例えば、30mmから100mmとされている。
【0033】
次に、坩堝20内に装入されたシリコン原料を、上部ヒータ43及び下部ヒータ33に通電することによって加熱し、シリコン融液3を生成する(溶解工程S02)。このとき、補助ヒータ50にも通電してシリコン原料の加熱を促進させてもよい。このとき、坩堝20内のシリコン融液3の湯面は、坩堝20の側壁部22の上端より低い位置に設定されることになる。
【0034】
次に、坩堝20内のシリコン融液3を凝固させる(凝固工程S03)。まず、下部ヒータ33への通電を停止し、チルプレート31の内部に供給路を介してArガスを供給する。これにより、坩堝20の底部を冷却する。このとき、上部ヒータ43の通電を継続したままとすることにより、坩堝20内には底面21から上方に向けて温度勾配が発生し、この温度勾配により、シリコン融液3が上方に向けて一方向凝固することになる。さらに、上部ヒータ43への通電を徐々に減少させることにより、坩堝20内のシリコン融液3が上方に向けて凝固し、多結晶シリコンインゴット1が生成されることになる。
【0035】
そして、この凝固工程S03のうち、固相の高さが坩堝20の底面21から高さXまでの初期領域において、補助ヒータ50を用いて坩堝20の側壁部22の一部を加熱する構成とされている。ここで、初期領域の高さXは、坩堝20内のシリコン融液3の湯面高さHMに対して、X≦0.3×HMの範囲内に設定されている。すなわち、補助ヒータ50は、凝固工程S03の初期領域において作動され、この初期領域を超えた時点で停止されるように構成されているのである。
【0036】
このようにして、図3に示す多結晶シリコンインゴット1が、一方向凝固法によって成形されるのである。この多結晶シリコンインゴット1は、太陽電池用基板として使用される多結晶シリコンウエハの素材となる。
【0037】
この多結晶シリコンインゴット1は、図3に示すように、四角形柱状をなしており、その高さHは、200mm≦H≦350mmの範囲内に設定されており、本実施形態では、H=300mmに設定されている。また、水平断面における矩形面は正方形をなしており、その一辺の長さLが、550mm≦L≦1080mmの範囲内に設定されており、本実施形態では、L=680mmに設定されている。
ここで、この多結晶シリコンインゴット1の底部側部分Z1は酸素濃度が高く、多結晶シリコンインゴット1の頂部側部分Z2は不純物濃度が高いことから、これら底部側部分Z1及び頂部側部分Z2は切断除去され、製品部Z3のみが多結晶シリコンウェハとして製品化されることになる。
【0038】
そして、この多結晶シリコンインゴット1においては、底部から高さ50mmの部分の水平断面における酸素濃度の最大値が5×1017atm/cm以下となるように構成されている。すなわち、水平断面がなす矩形面の一辺の中央部分における酸素濃度が5×1017atm/cm以下とされているのである。なお、本実施形態では、この水平断面から5mm×5mm×5mm角の測定サンプルを採取し、フーリエ変換赤外線分光法(FI−IR)によって酸素濃度を測定した。
【0039】
以上のような構成とされた本実施形態である多結晶シリコンインゴット製造装置10、多結晶シリコンインゴット1の製造方法及び多結晶シリコンインゴット1によれば、坩堝20の側壁部22のうち底面21側に位置する部分に対向するように、補助ヒータ50が配設されているので、坩堝20の側壁部22から熱が放散されることによって生じる局所的な温度低下を抑制することが可能となる。よって、坩堝20の底面21側において水平断面における温度分布が改善され、局部的な酸素濃度の増加を抑制することができる。
【0040】
特に、側壁部22がなす矩形環状の各一辺の中央領域では断熱壁12による保温効果が少なく、局部的に温度低下し易い傾向になるが、本実施形態では、補助ヒータ50が、側壁部22の前記中央領域(側壁部22の一辺の全長Lに対して0.3×L≦l≦0.7×Lの範囲内の領域)を加熱する構成とされているので、確実に坩堝20内の水平断面における温度分布を改善することが可能となる。
【0041】
また、補助ヒータ50が、坩堝20の底面21側において坩堝20の側壁部22に対向して配設されており、その高さhは、坩堝20の側壁部22の全高さHPに対して、h≧0.1×HPに設定されているので、底面21側部分における側壁部22からの熱の放散を抑制することができ、水平断面における温度分布を改善することができる。また、補助ヒータ50の高さhが、坩堝20の側壁部22の全高さHPに対して、h≦0.3×HPに設定されているので、坩堝20の上部位置において上下方向の温度勾配に影響を与えることがなく、一方向凝固を促進することが可能となる。
【0042】
さらに、本実施形態では、坩堝20内にシリコン原料を装入する原料装入工程S01と、坩堝20内に装入されたシリコン原料を溶融してシリコン融液3を生成する溶解工程S02と、坩堝20内に貯留された前記シリコン融液3に上下方向に温度差を設けて、前記坩堝20内に貯留された前記シリコン融液3を前記坩堝20の底面21側から上方に向けて一方向凝固させる凝固工程S03と、を備えており、凝固工程S03の初期領域において坩堝20の側壁部22を加熱する構成とされているので、坩堝20の底面21側における水平断面の温度分布を改善することができ、局所的な酸素濃度の増加を抑制することができる。
【0043】
このように、本実施形態によれば、底部における酸素濃度が局所的に高くなる部分を少なくして、多結晶シリコンの生産歩留まりを大幅に向上させることができる多結晶シリコンインゴット製造装置10、多結晶シリコンインゴット1の製造方法及び多結晶シリコンインゴット1を提供することができる。
【0044】
以上、本発明の実施形態である多結晶シリコンインゴット製造装置、多結晶シリコンインゴットの製造方法及び多結晶シリコンインゴットについて説明したが、これに限定されることはなく、適宜設計変更することができる。
例えば、多結晶シリコンインゴットの大きさ等は、本実施形態に限定されることはなく、適宜設計変更してもよい。
【0045】
また、補助ヒータを坩堝の側壁部に対向するように配置したものとして説明したが、これに限定されることはなく、下部ヒータの外周側に補助ヒータを配設し、チルプレートの下側から坩堝の側壁部の一部を加熱して、坩堝内の水平断面における温度分布を改善するように構成してもよい。
さらに、補助ヒータを、側壁部がなす矩形環状の一辺の中央領域に対向するように配設したもので説明したが、これに限定されることはなく、一辺の全体に対向するように(すなわち、側壁部を囲繞するように)補助ヒータを配設してもよい。
【実施例】
【0046】
本発明の効果を確認すべく行った確認実験の結果を示す。本実施形態で説明した多結晶シリコンインゴット製造装置を用いて、680mm角×高さ300mmの四角形柱状の多結晶シリコンインゴットを製出した。なお、この実施例では、補助ヒータの幅長さlを、l=400mmとし、補助ヒータの高さhを、h=100mmとした。
従来例として、補助ヒータを用いずに、上部ヒータと下部ヒータのみを使用して一方向凝固を実施した。なお、凝固速度を5mm/hとした。
本発明例として、凝固の初期領域においては、補助ヒータを用いて坩堝の側壁部を加熱して一方向凝固を実施した。なお、凝固速度を5mm/hとした。
【0047】
このようにして得られた従来例、本発明例の多結晶シリコンインゴットについて、高さ10mm,50mm,150mm,250mm,290mmの各5箇所において、図4 、図6に示す水平断面の各箇所から5mm×5mm×5mmの測定サンプルを採取し、フーリエ変換赤外線分光法(FI−IR)により、シリコン中の酸素濃度を測定した。本発明例の測定結果を図4に、従来例の測定結果を図6に示す。
【0048】
また、従来例と本発明例において、坩堝の底面から高さ50mmの位置におけるシリコン融液の温度を測定した。なお、坩堝の中心部の温度が1450℃となるように、下部ヒータ及び上部ヒータ(並びに補助ヒータ)の出力を制御した状態で、温度測定を実施し、坩堝の底面から高さ50mmの位置における水平断面の温度分布図を作成した。本発明例の温度分布図を図5に、従来例の温度分布図を図7に示す。
【0049】
従来例及び本発明例ともに、底面から高さ10mm位置では、水平断面のいずれの位置でも酸素濃度が5×1017atm/cmを超えている。
また、底面から高さ150mm位置、250mm位置、290mm位置では、水平断面のいずれの位置でも酸素濃度が5×1017atm/cm以下となっている。
【0050】
そして、従来例では、底面から高さ50mm位置において、水平断面のコーナ部及び中心部を除く位置で酸素濃度が5×1017atm/cmを超えている。特に、水平断面がなす矩形状の一辺の中央領域では酸素濃度が一層高くなっている。
これに対して、本発明例では、底面から高さ50mm位置において、水平断面のいずれの位置でも酸素濃度が5×1017atm/cm以下となっている。
【0051】
また、温度分布図をみると、従来例では、水平断面がなす矩形状の一辺の中央領域において温度が局所的に低い部分が存在している。
一方、補助ヒータを用いた本発明例では、局所的に温度が低い部分が存在せず、水平断面における温度分布が均一化されているのが確認される。
【0052】
ここで、前述の酸素濃度の測定結果から、酸素濃度が5×1017atm/cm以下となった部分を製品とした場合の、多結晶シリコンインゴットにおける製品歩留まりRについて算出した。なお、多結晶シリコンインゴットの頂部は不純物量が多いことから、頂部から10mmの部分を切断除去するものとして製品歩留まりRを計算した。
【0053】
従来例では、図6に示すように、底面から高さ50mmの位置において、局所的に酸素濃度が5×1017atm/cmを超えている部分が存在するため、製品として使用することができない。このことから底面側の切断代を150mmとした。すると、製品歩留まりRは、R=(300mm―(150mm+10mm))/300mm=46.7%であった。
【0054】
これに対して、本発明例においては、図4に示すように、底面から高さ50mmの位置において、水平断面の任意の位置で酸素濃度が5×1017atm/cm以下であったことから、この部分から製品化することが可能となる。底面側の切断代を50mmとした。すると、製品歩留まりRは、R=(300mm―(50mm+10mm))/300mm=80.0%であった。
【0055】
このように、本発明によれば、製品として多結晶シリコンの歩留まりを大幅に向上させることができることが確認された。
【符号の説明】
【0056】
1 多結晶シリコンインゴット
3 シリコン融液
10 多結晶シリコンインゴット製造装置
20 坩堝
21 底面
22 側壁部
33 下部ヒータ
43 上部ヒータ
50 補助ヒータ

【特許請求の範囲】
【請求項1】
断面矩形状をなす坩堝と、この坩堝の上方に配設された上部ヒータと、前記坩堝の下方に配設された下部ヒータと、を有し、前記坩堝内に貯留されたシリコン融液を、その底面から上方に向けて一方向凝固させる多結晶シリコンインゴット製造装置であって、
前記坩堝の底面側において前記坩堝の側壁部の少なくとも一部を加熱する補助ヒータを備えていることを特徴とする多結晶シリコンインゴット製造装置。
【請求項2】
前記補助ヒータは、前記側壁部がなす矩形環状の各一辺の中央領域を加熱する構成とされており、
この中央領域の前記底面に沿った方向の長さlは、前記側壁部のうち前記一辺の全長Lに対して、0.3×L≦l≦0.7×Lの範囲内に設定されていることを特徴とする請求項1に記載の多結晶シリコンインゴット製造装置。
【請求項3】
前記補助ヒータは、前記坩堝の底面側において前記坩堝の側壁部に対向して配設されており、その高さhは、前記坩堝の全高さHPに対して、0.1×HP≦h≦0.3×HPの範囲内に設定されていることを特徴とする請求項1または請求項2に記載の多結晶シリコンインゴット製造装置。
【請求項4】
請求項1から請求項3のいずれか一項に記載された多結晶シリコンインゴット製造装置を用いた多結晶シリコンインゴットの製造方法であって、
前記坩堝内に装入されたシリコン原料を溶融して前記シリコン融液を生成する溶解工程と、
前記下部ヒータを停止して、前記坩堝内に貯留された前記シリコン融液に上下方向に温度差を設けて、前記坩堝内に貯留された前記シリコン融液を前記坩堝の底面側から上方に向けて一方向凝固させる凝固工程と、を備えており、
前記凝固工程においては、前記補助ヒータを用いて前記坩堝の側壁部の少なくとも一部を加熱することを特徴とする多結晶シリコンインゴットの製造方法。
【請求項5】
前記凝固工程のうち前記坩堝の底面から高さXまでの初期領域において、前記補助ヒータを用いて前記坩堝の側壁を加熱する構成とされており、
前記初期領域の高さXは、前記坩堝内の前記シリコン融液の湯面高さHMに対して、X≦0.3×HMの範囲内に設定されていることを特徴とする請求項4に記載の多結晶シリコンインゴットの製造方法。
【請求項6】
請求項4または請求項5に記載された多結晶シリコンインゴットの製造方法によって製造された多結晶シリコンインゴットであって、
凝固方向に直交する断面が矩形面状をなし、この矩形面の一辺の長さが550mm以上とされており、
前記坩堝の底面に接触していた底部から高さ50mmの部分の断面において、前記矩形面の一辺の中央部分における酸素濃度が5×1017atm/cm以下とされていることを特徴とする多結晶シリコンインゴット。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−25612(P2012−25612A)
【公開日】平成24年2月9日(2012.2.9)
【国際特許分類】
【出願番号】特願2010−164774(P2010−164774)
【出願日】平成22年7月22日(2010.7.22)
【出願人】(000006264)三菱マテリアル株式会社 (4,417)
【出願人】(597065282)三菱マテリアル電子化成株式会社 (151)
【Fターム(参考)】