説明

寸法計測システム

【課題】多段径を有する回転体形状の被測定物を対象として、回転軸心に沿って径を連続的に高精度で自動計測でき、被測定物の種類毎に計測手順を制御装置に入力・教示する必要がなく、被測定物を計測位置に設置するだけで非接触で迅速に計測が完了し、作業者の負担を著しく軽減し得る寸法計測システムを提供する。
【解決手段】一軸ロボット1により上下方向に駆動する昇降枠2に、水平方向に幅を持つLEDの平行光Rを投射する投光部3と、ライン状の受光素子4aを備えた受光部4とが水平方向に対向して取り付けられ、平行光Rの通過域に多段径を有する回転体形状の被測定物Wを垂直に設置し、昇降枠2を連続的に移動させながら平行光Rを被測定物Wに照射することにより、受光部4において被測定物Wによる陰影Sの境界位置を検出し、検出データに基づいて被測定物Wの径を連続的に計測する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、多段径を有する丸軸状や円筒状等の回転体形状の被測定物を対象として、その回転軸心に沿う径を連続的に自動計測する寸法計測システムに関する。
【背景技術】
【0002】
従来、例えばプレス用パンチのような多段径を有する丸軸状や円筒状等の被測定物について、その寸法誤差が製品としての許容範囲に入るか否かを判定するために、径や長さをμm単位の高精度で計測する場合、専ら熟練の作業者がマイクロメーターを用いて手作業で行っていた。しかるに、このような計測作業には高度の技量が求められるため、適任の作業者を育成するのに長期間を要する上、作業者によって計測値にバラツキが生じるといった課題があった。また、計測に高度の技量を要しても、行うこと自体は単純作業の反復になるため、作業者に多大な精神的苦痛を与えるという問題もあった。
【0003】
そこで、近年においては、ロボット等を利用した寸法計測の自動化が種々検討されているが、特に多品種で少量ロットの被測定物を対象とした場合、各品種毎に異なるサイズ及び形態に対応した計測手順を策定し、その計測手順を制御装置に入力・教示するのに多大な手間を要するため、作業能率と経済性の面で実現が困難であった。
【発明の開示】
【発明が解決しようとする課題】
【0004】
本発明は、上述の情況に鑑み、特に多段径を有する回転体形状の被測定物を対象として、その回転軸心に沿う径を連続的に高精度で自動計測でき、且つ被測定物の種類毎に計測手順を制御装置に入力・教示する必要がない上、被測定物を計測位置に設置するだけで非接触で迅速に計測が完了し、作業者の負担を著しく軽減し得る寸法計測システムを提供することを目的としている。
【課題を解決するための手段】
【0005】
上記目的を達成するための手段を図面の参照符号を付して示せば、本発明の請求項1に係る寸法計測システムは、一軸ロボット1により上下方向に数値制御駆動する昇降枠2に、水平方向に幅を持つLED(Light Emitting Diode)の平行光Rを投射する投光部3と、この平行光Rを受光するライン状の受光素子4aを備えた受光部4とが水平方向に対向して取り付けられ、前記平行光Rの通過域に回転体形状の被測定物Wを回転軸心方向が垂直になるように設置し、前記昇降枠2を連続的に移動させながら前記平行光Rを被測定物Wに照射することにより、受光部4において被測定物Wによる陰影Sの境界位置を検出し、この検出データに基づいて被測定物Wの径を計測することを特徴としている。
【0006】
請求項2の発明は、上記請求項1の寸法計測システムにおいて、被測定物Wが多段径(D1〜Dn)を有する構成としている。
【0007】
請求項3の発明は、上記請求項1又は2の寸法計測システムにおいて、被測定物Wが水平面上で回転軸心方向を垂直にして自立し得る形態を備え、該被測定物Wを計測位置(計測テーブル8上)に直立載置して前記計測を行う構成としている。
【0008】
請求項4の発明は、上記請求項1〜3のいずれかの寸法計測システムにおいて、一軸ロボット1の頂端近傍に、下向きにレーザ光Lを出射し、その反射光によって反射面までの距離を測定するレーザ距離センサー6が付設され、被測定物Wの頂部で該レーザ光Lを反射させることより、前記径の計測に加えて、反射面までの距離から被測定物Wの軸方向長さを計測する構成としている。
【0009】
請求項5の発明は、上記請求項4の寸法計測システムにおいて、被測定物Wが非平面状の頂部Waを有し、この被測定物Wの頂部Waに、水平な頂面7aを備えて頂部肉厚が既知の計測補助キャップ7を被せ、該計測補助キャップ7の頂面7aで前記レーザ光Lを反射させることによって当該被測定物Wの軸方向長さを計測する構成としている。
【0010】
請求項6の発明は、上記請求項4の寸法計測システムにおいて、計測位置に、水平姿勢を維持しつつ垂直ガイド(ガイドピン11…)に沿って昇降自在で厚さが既知の補助計測板13を備えた計測補助器10を配置し、その補助計測板13を前記昇降枠2に設けた受け具14によって上位で支承すると共に、該補助計測板13の下方に非平面状の頂部Waを有する被測定物Wを設置し、計測に際して昇降枠2を下降させることにより、該補助計測板13を自重によって垂直ガイドに沿って下降させ、水平姿勢を保持しながら前記受け具14から被測定物Wの頂部Waに移載し、該補助計測板13の上面で前記レーザ光Lを反射させることによって当該被測定物Wの軸方向長さを計測する構成としている。
【発明の効果】
【0011】
本発明の効果について図面の参照符号を付して示せば、請求項1の寸法計測システムにでは、被測定物Wを回転軸心方向が垂直になるように計測位置に設置して計測を開始すれば、自動的に昇降枠2が連続的に昇降しつつLEDの平行光Rを該被測定物Wに照射し、受光部4において被測定物Wによる陰影Sの境界位置が明暗差から検出され、この検出データに基づく演算処理で被測定物Wの径が計測される。従って、熟練を要さずに高能率で高精度の計測を行える上、計測手順を予め策定してコンピュターに入力・教示する必要がないから、特に多品種で少量ロットの被測定物Wを計測対象とする場合に、計測手順の策定とコンピュターへの入力・教示のための膨大な手間が不要となり、しかも被測定物Wは平行光Rの通過域に入るように設置すればよく、厳密な位置決めが不要であるから、作業者の負担が著しく軽減されることになる。
【0012】
請求項2の発明によれば、多段径(D1〜Dn)を有する被測定物Wを対象として、その各段の径を連続的に高精度で容易に計測できる。
【0013】
請求項3の発明によれば、被測定物Wが水平面上で回転軸心方向を垂直にして自立し得る形態を備えるから、該被測定物Wを計測位置に直立に載置するだけで前記計測を容易に行える。
【0014】
請求項4の発明によれば、上記の寸法計測システムにおいて、被測定物Wの前記径の計測に加え、一軸ロボット1の頂端近傍に設けたレーザー距離センサー7により、被測定物Wの軸方向長さも同時に計測できる。
【0015】
請求項5の発明によれば、被測定物Wが非平面状の頂部Waを有する場合に、その頂部Waに計測補助キャップ7を被せることにより、当該被測定物Wの頂端位置(軸心O)がレーザー距離センサー6のレーザ光Lの光軸から多少ずれていても、該計測補助キャップ9の水平頂面9aにさえレーザ光Lが当たっておれば、支障なく該被測定物Wの軸方向長さを計測できる。
【0016】
請求項6の発明によれば、被測定物Wが非平面状の頂部Waを有する場合に、その頂部Waに上方から下降させた計測補助板13を載せることにより、当該被測定物Wの頂端位置(軸心O)がレーザー距離センサー6のレーザ光Lの光軸からずれていても、該計測補助板13の上面でレーザ光Lが反射するため、支障なく該被測定物Wの軸方向長さを計測できる。
【発明を実施するための最良の形態】
【0017】
以下、本発明に係る寸法計測システムの実施形態について、図面を参照して具体的に説明する。図1は本寸法計測システムに用いる計測装置の構成例、図2は本寸法計測システムによる径測定の原理、図3は本寸法計測システムによる計測状態、図4は計測値補正データを得るための多段径マスターワーク、図5は補正データの補間方法、図6は尖端状の頂部を有する被測定物の高さ計測方法、をそれぞれ示す。
【0018】
図1において、1は上下移動用の一軸ロボット、2は該一軸ロボット1によって上下方向に数値制御駆動する昇降枠、3は該昇降枠2の正面視左側に取り付けられた投光部、4は同左側に取り付けられて投光部3と水平方向に対向配置した受光部、5は上面を水平に設定する定盤、6は該定盤5上の後部寄りに立設されて一軸ロボット1を垂直に保持する支持基枠、7は支持基枠6の頂端から前方突出するブラケット61の前端に取り付けられたレーザー距離センサー、8は定盤5上に載置された縦円筒状の計測テーブル、Wは計測テーブル8上に直立させた多段径を有する丸軸状の被測定物である。
【0019】
図2に示すように、投光部3は、LED発光素子3aより出射されたLED光を、コリメータレンズ3bによって水平方向に幅を持つ平行光Rに変換して投射するようになっている。一方、受光部4は、入射する平行光Rをテレセントリック光学系の如き受光レンズ系4bを通してCCD(電荷結合素子)の如きライン状の受光素子4aの表面に結像させ、その光情報を該受光素子4aによって電気信号に変換してコンピュターCに入力するようになっている。しかして、図示のように、平行光Rの通過域に被測定物Wが存在することにより、該平行光Rの一部が遮断されて陰影Sを生じ、この陰影Sの両側の境界位置が明暗エッジとして検出されるから、その情報を含む電気信号に基づいてコンピュターCで所要の演算処理が行われ、被測定物Wの径が高精度で計測されると共に各段における表示出力として最大値、中央値(段中央部の値)、平均値等の必要とする値が求められて表示装置Gに表示される。
【0020】
因みに、このようなLED投光部及びCCD受光部を備える寸法測定器の好適な市販品として、キーエンス社製のデジタル寸法測定器LS−7000シリーズ(緑色LED使用)がある。なお、他の寸法測定器として、半導体レーザより出射されるレーザー光をモーターで回転するポリコンミラーに照射し、測定範囲をスキャンして受光素子に入力するレーザー光の明暗の時間差に基づいて外径等の寸法を計測する、レーザースキャン方式のものがあるが、高速・高精度の計測を行うにはモーター能力等より耐久性及び安定性に問題がある。
【0021】
本発明の寸法計測システムでは、出射する平行光Rの幅方向が水平になる姿勢とした投光部3と受光部とを水平方向に対向配置した状態で、一軸ロボットを利用して上下方向に数値制御駆動するように設定する一方、定盤5上の計測テーブル8の上に、回転体形状の被測定物Wを回転軸心方向が垂直になるように設置することにより、昇降する投光部3から出射されるLEDの平行光Rを該被測定物Wの下端から上端までの全長にわたって照射できるようにしている。
【0022】
多段径(呼び径D1〜Dn)を有する被測定物Wの各段の径を細かく高精度で計測するには、昇降枠2を連続的に上方又は下方へ移動させながら、投光部3から出射されるLEDの平行光Rを連続的に被測定物Wに照射し、その所定の短い時間間隔(通常は数10ミリ秒)で計測値をコンピュターCに取り込む。しかして、既述のように表示装置Gでは計測の目的に応じて格段の最大値、中央値、平均値等を表示するため、コンピュターCにおいて計測値の演算を行うと共に多数の計測値から表示値を求める。
【0023】
上記の計測中、平行光Rの照射位置が被測定物Wの異なる段部に移ったことを識別するには、例えば1段目の呼び径D1に属する第1番目の取り込み値d1と次回以降の取り込み値dnの差の絶対値が予め設定していた値Δx1を超えた時、照射位置が次の2段目の呼び径D2に属する領域に移行したものとする。その時の取り込み値dnをd2とし、同様にd2と次回以降の取り込み値dnの差が設定値Δx2を超えた時、2段目の領域から3段目の呼び径D3に属する領域に移行したものとし、以降同様にして次段の呼び径領域への移行を識別すればよい。なお、各段の呼び径間で極端な径差がない場合は、前記設定値を単一の値Δxにしても支障なく上記同様の識別を行える。また、計測における昇降枠2の移動速度は、通常1〜20mm/秒程度であるが、一定に限らず、被測定物Wの多段径の形状に応じて、例えば多段の径の移行部分がテーパー状をなす領域で低速にする等、適宜変更してもよい。
【0024】
なお、この計測においては、被測定物Wを平行光Rの通過域に入るように設置すればよく、厳密な位置決めが不要であるから、作業者の負担が著しく軽減される。しかして、計測対象の被測定物Wとしては、図1,図3で例示した多段径を有するものに限らず、回転体形状であればよいが、特にその回転軸心方向を垂直にして自立し得る形態であれば、計測位置の水平面上に単に直立させて置くだけで済むから、より操作が楽になる。ただし、下端部が細くて倒れ易い形状であったり、底面が凸状で自立できない被測定物Wでも、適当な補助治具を利用して回転軸心方向を垂直に保持できれば、測定に支障はない。例えば、被測定物Wが球体であっても、図9に示すように、上面に逆円錐状の凹部15aを有する載置台15を用い、その凹部15a上に載せるだけで計測が可能となる。
【0025】
ところで、このようなLEDの投光部3と受光部4による寸法計測では、同じ計測装置による計測値のバラツキは殆ど生じないが、個々の計測装置毎に固有の計測値のずれが存在する。これは、光学系のレンズ収差の僅かな違いや光学系及び装置全体の組立・取付時の歪み等による、言わば計測装置毎の癖であるが、高精度の計測を行う上で、その固有のずれ度合を予め検知しておき、そのずれ度合に応じて計測値の校正を行うことが望ましい。この校正の具体的手段として次の方法がある。
【0026】
まず、個々の計測装置に固有の計測値の揺らぎを求めるために、例えば図4に示すような多段径(呼び径D1〜D5)を有するマスターワークMを作製する。このマスターワークMは、当該計測装置での通常の径測定範囲を想定して、D1を最小測定レンジ近辺の径、D5を最大測定レンジ近辺の径とし、D2〜D4はD1とD5の間の径差を均等に分割する径とする。そして、これら呼び径D1〜D5の精密な値を信頼性の高い別途の高精度計測手段で計測しておき、これを絶対径D1s〜D5sとする。次に、本発明に用いるLEDの投光部3と受光部4を有する計測装置により、該マスターワークMの呼び径D1〜D5を測定し、これを計測径D1m〜D5mとして絶対径D1s〜D5sとの差(呼び径D1ではD1s−D1m、呼び径D2〜D5も同様)を求め、この差を補正値Δa〜Δeとする。すなわち、次のとおりである。
【0027】
呼び径・・・・・D1 D2 D3 D4 D5
絶対径・・・・・D1s D2s D3s D4s D5s
計測径・・・・・D1m D2m D3m D4m D5m
補正値・・・・・Δa Δb Δc Δd Δe
【0028】
従って、この補正値を用いて計測径を校正し、例えば計測径D1mでは補正値Δaを加えたD1sとして出力する。しかして、図5で示すように、例えば計測径DmがD2mとD3mの間に入る値であれば、補正値ΔbとΔcの間を補間して補正値Δpを求め、出力をDm+Δpとすればよい。すなわち、X=D3m−D2m、Y=Δc−Δbとして、
Δp≒Y(Dm−D2m)/X
となる。
【0029】
なお、上記校正方法では計測径D2mとD3mとの間を内挿して補正値Δpを求めているが、前後3点以上の既知補正値を用いて最小2乗2次近似によって適正補正値を求めてもよい。また、マスターワークMの多段径の数は、例示した5以外に種々設定でき、多いほど正確な校正を行える。しかして、これらの補正値による校正方法は、被測定物Wの各呼び径領域の軸方向長さの計測値の補間にも適用できる。
【0030】
一方、本実施形態の寸法計測システムでは、図3に示すように、一軸ロボット1の頂端近傍に設けたレーザー距離センサー7により、被測定物Wの軸方向長さも同時に計測できる。これは、レーザー距離センサー7から下向きで若干前後に斜め方向(図3は正面視のため、垂直に示される)にレーザ光Lを出射し、被測定物Wの頂部で該レーザ光Lを反射させ、その反射光を捉えて反射面までの距離を測定し、この距離と被測定Wの設置面の既知高さとから前記軸方向長さを計測するものである。
【0031】
しかして、被測定物Wの頂部が軸方向に対して垂直な平坦面であれば、該平坦面のどの位置に前記レーザ光Lが当たっても軸方向長さを精密に計測できるから、既述のように該被測定物Wを設置する際に厳密な位置決めが不要となる。これに対し、図6(A)に示すように、被測定物Wが尖端状等の非平面状の頂部Waを持つ場合、レーザー距離センサー7からのレーザ光Lの照射位置が被測定物Wの軸心Oから外れると、反射位置が頂部Waよりも距離eだけ低位にずれることになり、精密を計測を行えない。しかるに、該反射位置を頂部Waに厳密に一致させることは極めて困難である。
【0032】
そこで、尖端状の頂部Waを持つ被測定物Wの場合、図6(B)に示すように、その頂部Waに水平な頂面9aを備えて頂部肉厚tが既知の計測補助キャップ9を被せ、該計測補助キャップ7の頂面9aで前記レーザ光Lを反射させる。この場合、当該被測定物Wの軸心Oがレーザ光Lの光軸から多少ずれていても、該計測補助キャップ9の水平頂面9aにさえレーザ光Lが当たっておれば、支障なく該被測定物Wの軸方向長さ(高さ)を計測できるから、該被測定物Wを設置する際に厳密な位置決めが不要となる。
【0033】
ただし、上記の計測補助キャップ9は、内径を被測定物Wの頂部径に適合させるため、該頂部径毎に専用のものが必要になるから、多種の被測定物Wを計測対象とする場合には不向きである。そこで、これに代わる計測補助器として、厚さが既知の補助計測板を水平姿勢で昇降自在とするものを用いれば、被測定物Wの頂部径の違いに対応できる。
【0034】
図7に例示した計測補助器10は、正方形の計測台10aの四隅に垂直なガイドピン11…が立設され、これら4本のガイドピン11…の頂部が角環状の頂部枠12に連結されると共に、これらガイドピン11…を四隅のガイド筒部13a…(図8参照)に貫通させて水平状態で昇降自在な補助計測板13を備えており、計測装置の投光部3と受光部4との間で、且つ頂部枠12の内側がレーザー距離センサー7の直下に臨むように定盤5上に設置し、その計測台10a上に非平面状の頂部Waを有する被測定物Wを設置するようになっている。一方、計測装置側の昇降枠2の中央上部には、二股状に前方へ張出する受け具14が固着されている。
【0035】
計測に際しては、まず図8の仮想線で示すように、昇降枠2の受け具14を計測補助器10の後部側のガイドピン11,11間より前方へ突入させ、該受け具14によって補助計測板13を上位で支承する。そして、そのまま昇降枠2を下降させてゆくと、該補助計測板13も自重で受け具14と共に下降するが、その途上で被測定物Wの非平面状(図では円錐状)の頂部Waに載って水平姿勢を保持して止まり、受け具14は該補助計測板13から離れて昇降枠2と一体に下降を続けることになる。そこで、レーザー距離センサー7からのレーザ光Lを水平状態で停止している補助計測板13の上面に照射して反射させることにより、当該補助計測板13の既知厚み分を減じる形で該被測定物Wの軸方向長さ(高さ)を計測できる。この場合、計測対象の被測定物Wは、ガイドピン11…の内側に配置し得る太さであれば、頂部径の制約がない。また、昇降枠2の下降は、既述の径計測に伴う動作として行えばよい。
【0036】
なお、本発明の寸法計測システムに用いる計測装置としては、図1及び図7で例示した形態に限らず、各部の形状や大きさ、寸法比率等、細部構成については例示以外に種々設計変更可能である。
【図面の簡単な説明】
【0037】
【図1】本発明の一実施形態に係る寸法計測システムに用いる計測装置全体の斜視図である。
【図2】同寸法計測システムによる径測定の原理を示す模式図である。
【図3】同寸法計測システムによる計測状態を示す正面図である。
【図4】計測値補正データを得るための多段径マスターワークの正面図である。
【図5】補正データの補間方法を説明する計測値−補正値の相関図である。
【図6】非平面状の頂部を有する被測定物の高さ計測を示し、(A)は計測補助キャップ不使用時の縦断側面図、(B)計測補助キャップ使用時の縦断側面図である。
【図7】計測補助器を用いた非平面状の頂部を有する被測定物の計測状態を示す計測装置全体の斜視図である。
【図8】同計測補助器の使用状態を示す要部の縦断側面図である。
【図9】球状の被測定物の設置状態を示す縦断面図である。
【符号の説明】
【0038】
1 一軸ロボット
2 昇降枠
3 投光部
3a LED発光素子
4 受光部
4a ライン状の受光素子
5 定盤
7 レーザー距離センサー
9 計測補助キャップ
9a 頂面
10 計測補助器
11 ガイドピン(垂直ガイド)
13 補助計測板
14 受け具
t 頂部肉厚
C コンピュター
L レーザー光
R LEDの平行光
W 被測定物
Wa 非平面状の頂部

【特許請求の範囲】
【請求項1】
一軸ロボットにより上下方向に数値制御駆動する昇降枠に、水平方向に幅を持つLEDの平行光を投射する投光部と、この平行光を受光するライン状の受光素子を備えた受光部とが水平方向に対向して取り付けられ、前記平行光の通過域に回転体形状の被測定物を回転軸心方向が垂直になるように設置し、前記昇降枠を連続的に移動させながら前記平行光を被測定物に照射することにより、受光部において被測定物による陰影の境界位置を検出し、この検出データに基づいて被測定物の径を計測することを特徴とする寸法計測システム。
【請求項2】
被測定物が多段径を有する回転体形状である請求項1に記載の寸法計測システム。
【請求項3】
被測定物が水平面上で回転軸心方向を垂直にして自立し得る形態を備え、該被測定物を計測位置に直立載置して前記計測を行う請求項1又は2にに記載の寸法計測システム。
【請求項4】
一軸ロボットの頂端近傍に、下向きにレーザ光を出射し、その反射光によって反射面までの距離を測定するレーザ距離センサーが付設され、被測定物の頂部で該レーザ光を反射させることより、前記径の計測に加えて、反射面までの距離から被測定物の軸方向長さを計測する請求項1〜3のいずれかに記載の寸法計測システム。
【請求項5】
被測定物Wが非平面状の頂部を有し、この被測定物の頂部に、水平な頂面を備えて頂部肉厚が既知の計測補助キャップを被せ、該計測補助キャップの頂面で前記レーザ光を反射させることによって当該被測定物の軸方向長さを計測する請求項4に記載の寸法計測システム。
【請求項6】
計測位置に、水平姿勢を維持しつつ垂直ガイドに沿って昇降自在で厚さが既知の補助計測板を備えた計測補助器を配置し、その補助計測板を前記昇降枠に設けた受け具によって上位で支承すると共に、該補助計測板の下方に非平面状の頂部を有する被測定物を設置し、計測に際して昇降枠を下降させることにより、該補助計測板を前記受け具から被測定物の頂部に移載し、該補助計測板の上面で前記レーザ光を反射させることによって当該被測定物の軸方向長さを計測する請求項4に記載の寸法計測システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2009−216504(P2009−216504A)
【公開日】平成21年9月24日(2009.9.24)
【国際特許分類】
【出願番号】特願2008−59767(P2008−59767)
【出願日】平成20年3月10日(2008.3.10)
【出願人】(599163849)株式会社 ヤマシタワークス (16)
【出願人】(596132721)財団法人近畿高エネルギー加工技術研究所 (18)
【Fターム(参考)】