説明

排気温度制御装置

【課題】空燃比による制限を受けることなく内燃機関の排気温度を制御できるようにした、排気温度制御装置を提供する。
【解決手段】内燃機関10の気筒内に供給される新気量を制御する新気量制御手段2,16及び18と、内燃機関10の排気通路20と吸気通路14とを連通する還流通路24を流通する還流ガス量を制御する還流ガス量制御手段3及び25と、を備える。新気量制御手段2,16及び18が、吸気通路14に供給される新気量を一定量に保持し、還流ガス量制御手段3及び25が、新気量制御手段2,16及び18によって新気量が一定量に保持されている状態で還流ガス量を変化させる流量制御を実施する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、内燃機関の排気の温度を制御する排気温度制御装置に関する。
【背景技術】
【0002】
従来、内燃機関(以下、エンジンともいう)の排気中に含まれる特定物質(例えば、炭化水素や窒素酸化物等)を浄化するための触媒装置を排気通路上に介装した排気浄化システムが知られている。例えば、特許文献1には、特定物質の一つである窒素酸化物(以下、NOxという)を処理するNOx吸蔵触媒(NOxトラップ触媒,NOx吸蔵還元型触媒ともいう)を備えた排気浄化装置が記載されている。NOx吸蔵触媒は、リーン雰囲気下でNOxを吸蔵し、リッチ雰囲気下で吸蔵したNOxを還元して排気浄化処理を行うものである。
【0003】
また、特許文献2には、内燃機関から排出される炭化水素を吸着又は脱離する吸蔵材(HC吸着材)と三元触媒とを組み合わせてなる吸蔵触媒(HCトラップ触媒)が記載されている。この技術では、吸蔵触媒の触媒温度が比較的低温であるときに炭化水素を吸着(トラップ)し、触媒温度が比較的高温であるときに炭化水素を脱離させつつ酸化させ、排気を浄化している。
【0004】
上記のように、排気通路上の触媒装置を用いた排気の浄化処理では、触媒上での化学反応が触媒近傍の雰囲気(酸素濃度や酸化,還元成分の濃度)や触媒温度に応じて進行するため、排気空燃比と排気温度とをともに適切に制御することが要求される。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2010−24957号公報
【特許文献2】特開2005−240726号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、従来の排気浄化システムでは、排気空燃比の制御と排気温度の制御とが相互に影響を及ぼし合うため、これらの双方をともに適切に制御することが難しいという課題がある。
【0007】
例えば、排気空燃比の制御に関して、空燃比をリッチにする(すなわち、空燃比を低下させる)ための典型的な手法としては、燃料噴射量を増加させることが考えられる。しかし、燃料量の増加に伴ってシリンダー内で発生する熱量が増加するため、排気温度が所望の温度以上まで上昇してしまう場合がある。なお、燃料がシリンダー内で燃焼しないように燃料噴射のタイミングを大幅に遅らせる技術や、排気通路内に燃料を添加する技術も存在するものの、これらの技術は未燃燃料を触媒上で反応させることで還元雰囲気を生成するものであり、シリンダー内の場合と同様に触媒温度の制約がある上、応答性にも乏しい。
【0008】
一方、シリンダー内に供給する空気量を減少させることでも、理論上は空燃比をリッチにすることが可能である。しかしこの場合、エンジン出力が低下することになるため、車両の運転状態や負荷の状況によっては実施することができない。また、空気量を過度に減らすとスモークが発生してしまうため、空気量を変更することで空燃比を調節するのには限界がある。
【0009】
上記の通り、排気温度と燃料量との間には相関が認められ、燃料量が増えれば燃料から受ける熱量が増えて排気温度が上昇し、燃料量が少なければその分熱量が減少して排気温度が低下する。このような相関の存在によって、排気空燃比及び排気温度の何れか一方のみを自在に変更することができず、このことが排気空燃比及び排気温度の双方をともに適切な状態に制御することを困難にしているという実情がある。
【0010】
本件はこのような課題に鑑み案出されたもので、空燃比による制限を受けることなく内燃機関の排気温度を制御できるようにした、排気温度制御装置を提供することを目的とする。
なお、この目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本件の他の目的として位置づけることができる。
【課題を解決するための手段】
【0011】
(1)ここで開示する排気温度制御装置は、内燃機関の気筒内に供給される新気量を制御する新気量制御手段と、前記内燃機関の排気通路と吸気通路とを連通する還流通路を流通する還流ガス量を制御する還流ガス量制御手段と、を備える。
前記新気量制御手段が、前記吸気通路に供給される前記新気量を一定量に保持し、前記還流ガス量制御手段が、前記新気量制御手段によって前記新気量が一定量に保持されている状態で前記還流ガス量を変化させる流量制御を実施することを特徴としている。
すなわち、還流ガス量制御手段は、排気温度を低下させたい場合は還流ガス量を増加させ、排気温度の低下を防ぎたい場合は還流ガス量を減少させる。
【0012】
(2)前記内燃機関の気筒内に燃料を噴射する燃料噴射弁と、前記燃料噴射弁から噴射される追加燃料量を制御する燃料噴射制御手段と、を備え、前記燃料噴射制御手段が前記追加燃料量の変化に応じて、前記還流ガス量制御手段が前記流量制御を実施することが好ましい。なお、追加燃料とは、動力を得るための主噴射の後にさらに噴射される燃料を意味し、この追加燃料は、排気の空燃比を小さくする目的や排気の温度を高温にする目的に用いられる。また、前記流量制御手段とは、新気量が一定量に保持されている状態で還流ガス量を変化させる制御のことである。燃料噴射制御手段により追加燃料量を増加させたときは還流ガス量制御手段により還流ガス量を増加させ、追加燃料量を減少させたときは還流ガス量を減少させることが好ましい。
【0013】
(3)前記還流ガス量制御手段が、前記燃料噴射制御手段により噴射される前記追加燃料量の増加に伴い前記還流ガス量を増加させることが好ましい。
(4)前記還流ガス量制御手段が、前記燃料噴射制御手段による前記追加燃料の噴射開始時は前記還流ガス量をゼロにすることが好ましい。
(5)前記内燃機関の排気通路を流通する排気の温度を検出する排気温度検出手段を備え、前記還流ガス量制御手段が、前記排気温度検出手段により検出された前記排気温度が所定の制限温度に達したら前記還流ガス量を増加させることが好ましい。
【0014】
(6)前記新気量制御手段が、前記吸気通路と前記還流通路との接続部よりも上流側の前記吸気通路と、前記排気通路と前記還流通路との接続部よりも下流側の前記排気通路とにまたがって介装された過給流量を調整可能な過給機であることが好ましい。
(7)前記新気量制御手段が、前記吸気通路と前記還流通路との接続部よりも上流側の前記吸気通路に設けられたスロットルバルブであることが好ましい。
【発明の効果】
【0015】
本発明の排気温度制御装置によれば、還流ガス量制御手段により、新気量が一定(このとき、燃料量は必要空燃比に応じた所定量)に保持されている状態で、還流通路を流通して温度が低下した還流ガス量を変化させる流量制御が実施されるため、内燃機関の排気温度を制御することができる。つまり、空燃比の制限を受けることなく(言い換えると、空燃比から独立して)排気温度を制御することができる。
【図面の簡単な説明】
【0016】
【図1】一実施形態に係る排気温度制御装置の全体構成図である。
【図2】一実施形態に係る排気温度制御装置による排気温度制御を説明するグラフであり、(a)は還流ガス量と空燃比との関係、(b)は還流ガス量とインマニ圧との関係、(c)は還流ガス量と新気量との関係をそれぞれ示し、(d)は図2(a)に示す関係に制御した場合に得られる排気温度の変化を示す。
【図3】一実施形態に係る排気温度制御装置を用いた空燃比制御を説明するグラフであり、(a)はポスト噴射量、(b)は還流ガス量、(c)は排気温度の変化を示す。
【図4】一実施形態に係る排気温度制御装置の制御手順を説明するフローチャートである。
【発明を実施するための形態】
【0017】
以下、図面により実施の形態について説明する。なお、以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。
【0018】
[1.装置構成]
本実施形態の排気温度制御装置は、図1に示すように、排気浄化装置23を有するエンジン(内燃機関)10に適用される。エンジン10は、ここでは直噴式ディーゼルエンジンであり、エンジン10の各気筒には燃料噴射弁11が設けられている。各燃料噴射弁11には、コモンレール12から加圧燃料が供給される。燃料噴射弁11は、この高圧の燃料を気筒内に噴射する。また、エンジン10には、エンジン回転数センサ27が設けられており、エンジン回転数センサ27で検出されたエンジン回転数は、後述するECU1へ伝達される。
【0019】
エンジン10の吸気側には、インテークマニホールド(以下、インマニと略称する)13が装着されている。インマニ13には、車両の外部から供給された空気(新気)が流通する吸気通路14と、気筒から排出された空気(排気)が還流する還流通路24とが接続されている。吸気通路14には、上流側から、空気中のゴミや塵埃等を除去するエアフィルタ15,新気を圧縮する過給機16のコンプレッサ16a,圧縮された空気を冷却するインタークーラ17,及び吸気通路14を流通する新気の量を調節するスロットルバルブ18が設けられている。
【0020】
また、エンジン10の排気側には、エキゾーストマニホールド(以下、エキマニと略称する)19が装着されている。エキマニ19には、排気を車両の外部に導いて排出するための排気通路20と還流通路24とが接続されている。排気通路20には、上流側から、排気通路20を流通する排気の空燃比を検出する空燃比センサ21,排気の温度を検出する排気温度センサ22,過給機16のタービン16b,及び排気を浄化する排気浄化装置23が設けられている。
【0021】
還流通路24は、上流端がエキマニ19に接続され、下流端がインマニ13に接続されて、吸気側と排気側とを連通するいわゆる排気再循環(Exhaust Gas Recirculation、EGR)通路である。すなわち、還流通路24は、排気を再度吸気系へ戻して循環させて利用するための通路である。なお、ここでは、還流通路24はインマニ13とエキマニ19とを連通するように接続されているが、吸気通路14と排気通路20とを連通するように構成されていてもよい。
【0022】
還流通路24内の下流側には、還流通路24内を流通する排気(以下、還流ガスと呼ぶ)の流量を調節する還流ガス量制御弁(還流ガス量制御手段)25が設けられている。還流ガス量制御弁25は、後述するECU1の還流ガス量制御部3によりその開度が制御されて還流ガス量を調節する。また、還流通路24の途中には、還流ガスクーラ26が介装されており、エキマニ19から還流通路24へ流れてくる高温の排気(還流ガス)を冷却する。なお、還流通路24は通常エンジンルームの外側に配設され、ある程度の長さを有しているため、還流ガスは還流通路24内を流通すれば自然に放熱される。そのため、還流ガスクーラ26が介装されていない場合であっても、還流ガスの温度は低下する。
【0023】
このような構成により、エンジン10の気筒から排出された高温の排気は、エキマニ19から、排気通路20を流通し外部へ排出される排気と、還流通路24を流通し還流通路24や還流ガスクーラ26により冷却されてインマニ13へ導かれる還流ガスとに分かれて流出する。また、インマニ13には、車両の外部から供給され吸気通路14を流通した新気と、還流通路24を流通し還流ガス量制御弁25によって流量制御された還流ガスとが流入する。
【0024】
過給機(新気量制御手段)16は、吸気系(ここではインマニ13)と還流通路24との接続部よりも上流側の吸気通路14と、排気系(ここではエキマニ19)と還流通路24との接続部よりも下流側の排気通路20とにまたがって介装されている。排気通路20に設けられたタービン16bは、排気通路20を流通する排気のエネルギ(運動エネルギ及び熱エネルギ)により高速回転する。タービン16bと同軸上で吸気通路14に設けられたコンプレッサ16aは、タービン16bの回転を利用して駆動され、吸気を圧縮し、圧縮した空気を下流へ送る(すなわち過給する)。なお、本実施形態では、過給機16は圧縮する空気量(過給流量)を調節することができる可変容量ターボ(Variable Geometry Turbo、以下、VGターボという)16として構成されている。
【0025】
VGターボ16は、タービン16bのタービンブレードの開口面積を変化させて、コンプレッサ16aの過給効率を変化させることができるものである。つまり、タービン16bの回転速度を変化させることによりコンプレッサ16aを制御し、過給する空気量(新気量)を制御する。一般的にVGターボ16は、エンジン10の回転数に応じてタービンブレードの開口面積が変化するように制御される。すなわち、エンジン10が高回転時のときは排気流量が多く流速も速いため、十分な速度でタービン16bは回転する。そのため、高回転時はタービンブレードの開口面積を大きくし、過給効率を高める。反対にエンジン10が低回転時のときは、排気流量が少なく流速も遅いため、タービンブレードの開口面積を小さくして排気流速を加速させて、タービン16bを高速回転させて過給効率を高める。
【0026】
本実施形態では、VGターボ16は、エンジン回転数によらず過給効率を変化させることができるように構成されている。つまり、VGターボ16は、後述するECU1の新気量制御部2によりタービン16bが制御され、コンプレッサ16aにより圧縮される空気量(新気量)を調節する新気量制御手段として構成されている。
スロットルバルブ(新気量制御手段)18は、VGターボ16の下流側でインマニ13の上流側に設けられ、バルブ開度によって吸気通路14を流通する新気量を調節するものである。バルブ開度はECU1の新気量制御部2により制御される。
【0027】
空燃比センサ21は、ここではタービン16bの上流側の排気通路20に設けられ、排気通路20内を流通する排気の空燃比(A/F)を検出し、その検出結果をECU1へ伝達する。なお、排気の空燃比を検出する手段として、空燃比センサ21の代わりに酸素濃度センサ(O2センサ)を設け、酸素濃度センサによる検出結果と燃料噴射弁11から筒内へ噴射する燃料量とから空燃比を算出するように構成してもよい。
排気温度センサ(排気温度検出手段)22は、ここではタービン16bの上流側の排気通路20に設けられ、排気通路20内を流通する排気の温度を検出し、検出結果をECU1へ伝達する。
【0028】
排気浄化装置23は、タービン16bの下流側の排気通路20に設けられ、排気を外部へ排出する前に排気中に含まれる物質を除去する装置である。ガソリンエンジンやディーゼルエンジン等の内燃機関から排出される排気には、粒子状物質(Particulate Matter、以下、PMという)や窒素酸化物(以下、NOxという)が含有されている。これらの物質を排気中から除去するために、排気浄化装置23は、パティキュレートフィルタ(Diesel Particulate Filter、以下、フィルタという)や酸化触媒、NOx吸蔵触媒等を備える。
【0029】
フィルタは、排気中のPMを捕集するとともに捕集したPMを酸化させて除去する。酸化触媒は、排気中に含まれるNOからPMを燃焼させるための酸化剤となるNO2を生成する。また、酸化触媒は、フィルタでPMを強制的に燃焼させる際に排気温度を昇温させる機能も有する。
【0030】
NOx吸蔵触媒は、例えば白金(Pt)やロジウム(Rh)等の貴金属とバリウム(Ba)やカリウム(K)等のNOx吸蔵剤とを担持させて構成される。NOx吸蔵触媒は、排気の空燃比が大きいリーン雰囲気(酸化雰囲気)下でNOxを捕捉、吸蔵する。そして、排気の空燃比が小さいリッチ雰囲気(還元雰囲気)下で吸蔵したNOxを放出し、還元剤としての炭化水素(HC)や一酸化炭素(CO)と反応させて還元する。なおNOx吸蔵触媒は硫黄分(S)吸着によりNOx浄化性能が低下するため、定期的なS再生(すなわち、還元雰囲気且つ適度な高温状態における吸着Sの放出)が必要となる。
【0031】
次に、ECU1の構成について説明する。ECU1は、各種演算処理を実行するCPU、その制御に必要なプログラムやデータの記憶されたROM、CPUでの演算結果等が一時的に記憶されるRAM、外部との間で信号を入出力するための入出力ポート等を備えて構成されたコンピュータである。図1に示すように、ECU1の入力側には、空燃比センサ21,排気温度センサ22及びエンジン回転数センサ27が接続され、ECU1の出力側には、各気筒の燃料噴射弁11,VGターボ16のタービン16b,スロットルバルブ18及び還流ガス量制御弁25が接続されている。
【0032】
[2.制御構成]
[2−1.排気温度制御]
ECU1は、新気量制御部2としての機能要素と、還流ガス量制御部3としての機能要素と、燃料噴射制御部4としての機能要素とを有している。本排気温度制御装置は、新気量制御部2及び還流ガス量制御部3で行われる各制御により排気温度を制御する。まず、新気量制御部2及び還流ガス量制御部3で行われる各制御内容を説明し、次に新気量制御部2及び還流ガス量制御部3による排気温度制御について、図2を用いて説明する。
【0033】
新気量制御部(新気量制御手段)2は、タービン16bのタービンブレードの開口面積及びスロットルバルブ18の開度をそれぞれ制御することにより、車両の外部から吸気通路14へ供給される新気の流量を制御するものである。本実施形態では、新気量制御部2は、エンジン10の気筒内に供給される新気量を一定量に保持する制御を実施する。以下、この制御を保持制御という。
【0034】
この保持制御は、新気量制御部2が、エンジン10の回転数によって変化する排気の流量や流速に応じてVGターボ16の過給効率(過給流量)を制御し、さらにスロットルバルブ18の開度を制御することによって実施される。なお、保持制御はVGターボ16とスロットルバルブ18のいずれか一方によっても実施可能である。
【0035】
例えばスロットルバルブ18のみで保持制御を実施するときは、スロットルバルブ18の開度を制御し、インマニ13内へ供給される新気量を一定量になるように制御すればよく、VGターボ16のみで保持制御を実施する場合は、排気の流量等に応じてVGターボ16の過給効率を制御し、コンプレッサ16aで圧縮されて吸気通路14へ送られる新気量を一定量に保持すればよい。このとき、エンジン10の回転数とVGターボ16の過給効率との関係を予め取得してマップ化したものを記憶しておき、エンジン回転数センサ27の検出結果を用いて保持制御を実施してもよい。また、吸気通路14や排気通路20に図示しない流量センサを設け、流量センサにより検出された排気流量の値を用いてVGターボ16を制御して保持制御を実施してもよい。
【0036】
還流ガス量制御部(還流ガス量制御手段)3は、還流ガス量制御弁25の開度を制御することにより、還流通路24を流通する還流ガスの流量を制御するものである。還流ガス量制御部3は、新気量制御部2による保持制御が実施されているときに、還流ガス量を変化させる制御を実施する。すなわち、還流ガス量制御部3による制御は、新気量制御部2による保持制御とともに行われる。以下、この制御を流量制御という。
【0037】
図2は、排気温度制御を説明するグラフである。新気量制御部2は、図2(a)に示すように、還流ガス量がゼロのときの新気量をQN0とする。このときのインマニ13内の圧力(以下、インマニ圧という)は、図2(b)に示すようにP0であり、空燃比は、図2(c)に示すようにA/F0であり、排気温度は、図2(d)に示すようにT0である。新気量制御部2は、新気量を一定量QN0に保持する保持制御を実施する。ここで、新気量が一定量QN0で保持されているため、燃料噴射弁11から筒内に噴射される燃料量が一定の場合、排気通路へ流れる排気の空燃比A/Fは還流ガス量の多少に関わらず、空燃比A/F0のまま一定値となる。
【0038】
還流ガス量制御部3は、図2(a)に示すように、新気量制御部2による保持制御が実施されているときに、還流ガス量をゼロから徐々に増加させていく。これによりインマニ13には、新気に加え還流ガスが流入するため、図2(b)に示すようにインマニ圧はP0から徐々に増加する。また、インマニ13内に流入した新気及び還流ガスは混合気となって気筒内へ供給されて燃焼される。このとき、還流ガス中の不活性ガス(H2O,CO2)や残存酸素によってエンジン燃焼は若干の影響を受けるものの、新気が所定量保持されているため、大幅な燃焼悪化は起こりにくい。また、還流ガスは、還流通路24及び還流ガスクーラ26によって冷却されている。そのため、図2(d)に示すように、還流ガス量の増加に伴ってエンジン廃熱を希釈する総流体量が増加すること、及び還流ガスが冷却されていることの効果によって、排気温度は還流ガス量がゼロのときの温度T0から徐々に低下する。
【0039】
このように、新気量制御部2により保持制御を実施した(新気量を一定量に保持した)状態で、還流ガス量のみを増加させることで、排気温度が低下する。反対に、新気量を一定量に保持した状態で還流ガス量を減少させることで、排気温度が上昇する。言い換えると、新気量と還流ガス量とを同時に制御することで、排気温度のみが変化する。
【0040】
[2−2.空燃比制御]
次に、上記した排気温度制御装置を用いた空燃比制御を説明する。ここでは、上記の排気温度制御を図1に示す排気浄化装置23における空燃比制御と組み合わせた例を説明する。
【0041】
図1に示すように、燃料噴射制御部(燃料噴射制御手段)4は、燃料噴射弁11によって噴射される燃料量や噴射タイミングを制御するものである。本実施形態では、燃料噴射制御部4は、動力(トルク)を得るための主噴射の後に、いわゆるポスト噴射と呼ばれる噴射を実施する。このポスト噴射とは、主噴射の後にさらに燃料を噴射すること(すなわち、追加噴射)であり、後から噴射された燃料(以下、追加燃料という)は、エンジン10内で燃焼はするものの、主噴射と比べ動力になる割合が少ないため、所望の動力を得る目的とは別に、排気の空燃比を小さくする目的や排気の温度を高温にする目的に用いられる。このポスト噴射は、上記したNOx吸蔵触媒による排気浄化処理において利用される。
【0042】
NOx吸蔵触媒による排気浄化処理では、空燃比制御が重要となってくる。これは、NOxを触媒に吸蔵させるためには空燃比を大きくする必要があり、吸蔵させたNOxを還元するためには空燃比を小さくする必要があるからである。燃料噴射制御部4は、ポスト噴射の燃料量(追加燃料量)を制御して空燃比制御を実施する。すなわち、空燃比を小さくするときは追加燃料量を増加させ、空燃比を大きくするときは追加燃料量を減少させる。
【0043】
ここで、NOx吸蔵触媒を還元処理する場合を考えると、燃料噴射制御部4は、ポスト噴射の燃料量(すなわち追加燃料量、以下、これをポスト噴射量ともいう)を増加させて、排気の空燃比を小さくするが、ポスト噴射量の増加により排気温度も上昇する。ターボチャージャーやNOx吸蔵触媒等の排気系装置は、高温の排気に耐え得る耐熱性を有しているものの、所定の制限温度(上限温度)TMが予め定められているため、排気温度をこの制限温度以下に抑える必要がある。ポスト噴射量を増加させて空燃比を小さくしていった場合、あるところで排気温度が制限温度TMに達すると、それ以上ポスト噴射量を増加させることができないため、所望の空燃比を得ることができないことが考えられる。
【0044】
このとき、ポスト噴射による空燃比制御とは別に、本排気温度制御装置による排気温度制御を実施する。図3は、空燃比制御に併せて排気温度制御を行ったときの状態であり、(a)はポスト噴射量を増加させたときの空燃比の変化、(b)は空燃比の変化に対する還流ガス量の変化、(c)は空燃比の変化に対する排気温度の変化をそれぞれ示す。なお、図3(a)〜(c)の中にはそれぞれ三つのグラフ(図中のA,B,C)が含まれており、図中のA,B,Cはそれぞれ対応する。また、ここでは新気の保持制御が前提となり、図3には図示していないがA,B,Cとも新気量は同量の一定量に制御されている。
【0045】
図3(a)に示すように、ポスト噴射量がゼロの時の空燃比をA/F0とする。また、NOx還元処理を行うために必要な空燃比を所望の空燃比A/FTとする。所望の空燃比A/FTを得るために、図3(a)に示すようにポスト噴射量を徐々に増加させる(図中矢印A)。ポスト噴射量が増加されると、図3(c)に示すように排気温度も上昇する(図中A)。そして、排気温度は空燃比がA/F1になったときに制限温度TMに達し、これ以上ポスト噴射量を増加させることができなくなる。
【0046】
そこで、図3(b)に示すように、空燃比がA/F1になったときに還流ガス量を増加させる(図中B)。なお、ポスト噴射開始時(空燃比がA/F0)から空燃比がA/F1になるまでの間は、還流ガス量はゼロに制御されている(図中A)。還流ガス量の増加により、排気温度は一気に低下して制限温度TMよりも低くなるため、ポスト噴射量をさらに増加させることができ、空燃比が所望の空燃比A/FTにより近づく(図中矢印B)。
【0047】
ポスト噴射量の増加により、排気温度が再び制限温度TMに達したら、還流ガス量をさらに増加させる(図中C)。これにより、排気温度は再び低下するため、ポスト噴射量をさらに増加させて、空燃比を小さくする(図中矢印C)。このように、ポスト噴射量の増加により空燃比を小さくしながら、上昇する排気温度は還流ガス量の増加により低下させる。これにより、ポスト噴射を継続して実施することができ、所望の空燃比A/FTを得ることができる。なお、図3では、所望の空燃比A/FTになったときの排気の温度は制限温度TM未満のTCである。
【0048】
この手法により還流ガス量とポスト噴射量とを調整すれば、温度を耐久制限内に収められるだけでなく(すなわち、温度の制限制御に限られず)、NOx吸蔵触媒のS再生等、空燃比と触媒温度とをともに適切な状態にすることもできる(すなわち、空燃比と触媒温度とをともに制御可能である)。
【0049】
図3(a)〜(c)に示す排気温度制御の手順を図4のフローチャートを用いて説明する。図4に示すフローチャートは、所定の周期(例えば、数[ms]周期)で動作する。また、下記の各ステップは、コンピュータのハードウェアに割り当てられた各機能(手段)が、ソフトウェア(コンピュータプログラム)によって動作することによって実施される。
【0050】
本排気温度制御装置は、排気温度を制御したい場合に以下の制御フローをスタートする。ここでは、NOx吸蔵触媒を還元処理するための空燃比制御と併せて排気温度制御を行う場合を説明する。
【0051】
図4に示すように、ステップS10では、排気温度センサ22により排気温度Tを検出する。この温度情報はECU1へ伝達され、ステップS20において検出された排気温度Tが所定の制限温度TMよりも高いか否かが判定される。排気温度が未だ制限温度TMに達していない場合は、NOルートからステップS30へ進み、燃料噴射制御部4によりポスト噴射量を増加させる。ポスト噴射量の増加により空燃比が小さくなるため、ステップS50において、空燃比センサ21により空燃比A/Fを検出する。そして、ステップS60では、検出された空燃比A/Fが所望の空燃比A/FTに達したか否かが判定される。所望の空燃比A/FTに達していればフローを終了し、所望の空燃比A/FTに達していなければリターンして、ステップS10からのステップを繰り返す。
【0052】
一方、ステップS20において、検出された排気温度が制限温度TMに達している場合は、そのままポスト噴射量を増加させることができないため、ステップS40において、還流ガス量制御部3により還流ガス量を増加させる。還流ガス量の増加により、排気温度は低下する。そして、ステップS50及びS60において空燃比A/Fの判定を行う。このような制御フローにより、図3(c)に示すような温度変化のグラフが得られる。
【0053】
[3.効果]
したがって、本排気温度制御装置によれば、還流ガス量制御部3により、新気量が一定(燃料量は必要空燃比に応じた所定量)に保持されている状態で、還流通路24を流通して温度が低下した還流ガス量を変化させる(増加させる又は減少させる)流量制御が実施されるため、エンジン10の排気温度を制御する(低下させる又は上昇させる)ことができる。つまり、空燃比の制限を受けることなく(言い換えると、空燃比から独立して)、排気温度のみを制御することができる。
【0054】
また、燃料噴射制御部4による空燃比制御と併せて排気温度制御を実施すると、空燃比はポスト噴射量(追加燃料量)により制御し、ポスト噴射量により高温となった排気温度は新気量制御部2及び還流ガス量制御部3により制御することができるため、排気の温度を適切な温度範囲内に収めながら空燃比制御を実施することができる。言い換えると、排気温度のみを自在に制御することができるため、所望の空燃比を確実に得ることができる。
【0055】
また、還流ガス量をポスト噴射量の増加に伴い増加させるため、ポスト噴射量の増加によって排気温度が上昇したら排気温度を低下させることができる。これにより、所望の空燃比を得るための追加燃料を噴くことができる。つまり、排気温度の過昇温を防止しながら、所望の空燃比を得ることができる。
【0056】
また、還流ガス量制御部3により制御される還流ガス量を、ポスト噴射開始時はゼロにし、ポスト噴射量の増加に伴って増加させていくため、還流ガス量の変化量(言い換えると、増加量や振れ幅)を大きくすることができる。これにより、排気温度の変化量を最大にすることができる。
【0057】
また、排気温度が所定の制限温度TMに達したら、還流ガス量を増加させて排気温度を低下させるため、排気温度を確実に所定の範囲内に抑えることができ、排気温度の過昇温による排気浄化装置等の排気効率の低下や故障等を防ぐことができる。また、排気温度センサ22により検出された排気温度を用いて還流ガス量を制御するため、制御構成が簡素である。
また、VGターボ16により新気を過給しながら一定量に保つ場合、多くの新気を吸気通路14に供給することができ、エンジン10の熱効率を高めながら、排気温度を独立して制御することができる。
【0058】
また、スロットルバルブ18の開度を調節することによって新気量を一定量に保つ場合、装置構成が簡素であり、装置の小型化を実現でき、コストを低減させることができる。
なお、VGターボ16とスロットルバルブ18とを用いて新気量を一定量に保つ場合は、VGターボ16により過給して新気量を増加させながら、スロットルバルブ18により微妙な調節をすることで確実に新気量を一定にすることができる。
【0059】
[4.その他]
以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形することが可能である。
例えば、上記実施形態では、図3(b)に示すように、排気温度が制限温度に達してから還流ガス量を増加させている(言い換えると、還流ガス量を段階的に増加させている)が、還流ガス量の増加は、排気温度が制限温度に達してからではなく、ポスト噴射を開始してから連続的に増加させてもよい。これにより、排気温度を緩やかに上昇させることができる。
【0060】
また、還流ガスは、還流通路24を流通するだけでも温度が低下するため、還流通路24に還流ガスクーラ26が介装されていなくてもよい。
また、空燃比センサ21等の排気の空燃比(排気濃度)を検出する手段は必須ではなく、燃料噴射量と空気量とから計算によって推定してもよい。
【0061】
また、エンジンは直噴式ディーゼルエンジンに限られず、ガソリンエンジンであってもよい。
また、上記実施形態では、排気温度を低下させる場合について説明したが、排気温度を上昇させたい場合は、上記と逆の制御を行えばよい。すなわち、新気量を一定量に保持する保持制御を実施しているときに、還元ガス量を減少させればよい。
【0062】
また、上記実施形態では、ポスト噴射量の増加に伴って排気温度が上昇する場合に、還流ガス量を増加させて排気温度を低下させているが、ポスト噴射量の増加によらず排気温度が上昇した場合にも適用可能である。さらに、本排気温度制御装置は、NOx吸蔵触媒による還元処理の空燃比制御とともに実施される場合に限られず、排気温度を制御したい場合であれば実施可能である。
【0063】
また、上記実施形態では、還流通路24の上流端がエキマニ19に接続され、下流端がインマニ13に接続される場合について説明したが、コンプレッサ16aよりも上流の吸気通路14と排気浄化装置23よりも下流の排気通路20とを連通するように構成(いわゆる、低圧EGRシステムとして構成)されていてもよい。なお、この場合は、吸気通路14と排気通路20との間の圧力差が低く還流ガスが流れにくいため、還流通路と吸気通路との接続箇所よりも上流に還流ガス量調整用のスロットルバルブを備え、新気量一定化のためにスロットルバルブ18の上流にスーパーチャージャーや電動ターボ等の過給状態調整手段を備えることが好ましい。
【0064】
また、上記の低圧EGRシステムにおいて、還流通路と吸気通路とが接続される部分よりも排気上流側に、スロットルバルブ18とは別のバルブを設けて新気量を一定に制御してもよい。
【符号の説明】
【0065】
1 ECU(電子制御装置)
2 新気量制御部(新気量制御手段)
3 還流ガス量制御部(還流ガス量制御手段)
4 燃料噴射制御部(燃料噴射制御手段)
10 エンジン(内燃機関)
11 燃料噴射弁
12 コモンレール
13 インテークマニホールド(インマニ)
14 吸気通路
15 エアフィルタ
16 過給機(VGターボ,新気量制御手段)
16a コンプレッサ
16b タービン
17 インタークーラ
18 スロットルバルブ(新気量制御手段)
19 エキゾーストマニホールド(エキマニ)
20 排気通路
21 空燃比センサ
22 排気温度センサ(排気温度検出手段)
23 排気浄化装置
24 還流通路
25 還流ガス量制御弁(還流ガス量制御手段)
26 還流ガスクーラ
27 エンジン回転数センサ

【特許請求の範囲】
【請求項1】
内燃機関の気筒内に供給される新気量を制御する新気量制御手段と、
前記内燃機関の排気通路と吸気通路とを連通する還流通路を流通する還流ガス量を制御する還流ガス量制御手段と、を備え、
前記新気量制御手段が、前記吸気通路に供給される前記新気量を一定量に保持し、
前記還流ガス量制御手段が、前記新気量制御手段によって前記新気量が一定量に保持されている状態で前記還流ガス量を変化させる流量制御を実施する
ことを特徴とする、排気温度制御装置。
【請求項2】
前記内燃機関の気筒内に燃料を噴射する燃料噴射弁と、
前記燃料噴射弁から噴射される追加燃料量を制御する燃料噴射制御手段と、を備え、
前記燃料噴射制御手段が前記追加燃料量の変化に応じて、前記還流ガス量制御手段が前記流量制御を実施する
ことを特徴とする、請求項1記載の排気温度制御装置。
【請求項3】
前記還流ガス量制御手段が、前記燃料噴射制御手段により噴射される前記追加燃料量の増加に伴い前記還流ガス量を増加させる
ことを特徴とする、請求項2記載の排気温度制御装置。
【請求項4】
前記還流ガス量制御手段が、前記燃料噴射制御手段による前記追加燃料の噴射開始時は前記還流ガス量をゼロにする
ことを特徴とする、請求項3記載の排気温度制御装置。
【請求項5】
前記内燃機関の排気通路を流通する排気の温度を検出する排気温度検出手段を備え、
前記還流ガス量制御手段が、前記排気温度検出手段により検出された前記排気温度が所定の制限温度に達したら前記還流ガス量を増加させる
ことを特徴とする、請求項2〜4のいずれか1項に記載の排気温度制御装置。
【請求項6】
前記新気量制御手段が、前記吸気通路と前記還流通路との接続部よりも上流側の前記吸気通路と、前記排気通路と前記還流通路との接続部よりも下流側の前記排気通路とにまたがって介装された過給流量を調整可能な過給機である
ことを特徴とする、請求項1〜5のいずれか1項に記載の排気温度制御装置。
【請求項7】
前記新気量制御手段が、前記吸気通路と前記還流通路との接続部よりも上流側の前記吸気通路に設けられたスロットルバルブである
ことを特徴とする、請求項1〜6のいずれか1項に記載の排気温度制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2013−24225(P2013−24225A)
【公開日】平成25年2月4日(2013.2.4)
【国際特許分類】
【出願番号】特願2011−163040(P2011−163040)
【出願日】平成23年7月26日(2011.7.26)
【出願人】(000006286)三菱自動車工業株式会社 (2,892)
【Fターム(参考)】