説明

流体圧ポンプの流量制御弁

【課題】熱膨張による圧抜けを抑制できる流量制御弁を提供すること。
【解決手段】流体圧ポンプとしてのベーンポンプ101から吐出された作動油を油圧機器10に導く供給通路12に介装され、油圧機器10に供給される作動油の流量を制御する流量制御弁100であって、流体制御弁100の本体を構成するバルブボディ27と、バルブボディ27に嵌入され、内周にスプール孔31を形成するスリーブ25と、スプール孔31に摺動自在に挿入され、ベーンポンプ101から吐出された作動油の圧力に応じて移動し、ベーンポンプ101から吐出された作動油の一部をベーンポンプ101の吸込側に連通する戻り通路33へと環流するスプール30とを備え、スリーブ25はバルブボディ27にすきま嵌めで嵌入され、バルブボディ27とスリーブ25との間をシールし、スリーブ25の軸方向への移動を規制する移動規制手段を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、流体圧ポンプから流体圧機器に供給される作動流体の流量を制御する流量制御弁に関する。
【背景技術】
【0002】
従来より、自動車等の車両には流体圧を利用して駆動する流体圧機器が利用されている。流体圧ポンプはエンジンの回転によって作動流体を吐出するため、作動流体の流量はエンジン回転数に比例して増加する。そこで、流体圧ポンプが吐出した圧油の流量が過剰なときに流体圧機器に供給される作動流体の流量の最適化を図るために、流体圧機器への作動流体の供給量を調整する流量制御弁を設けている。流量制御弁としては、吸込及び吐出のポートを有する円筒形のスリーブの中を円柱形のスプールが移動することによって弁作用を得るものが広く用いられている。
【0003】
ところで、流量制御弁には、軽量化のためにアルミボディを使用し、アルミボディの中に鉄製のスリーブを圧入することにより高圧の作動流体によるエロージョン(erosion:浸食)の発生を抑制し、耐久性を向上させているものがある。
【0004】
特許文献1には、アルミ製のバルブボディを使用し、加工容易な他の金属でできた筒スリーブをハウジングに打ち込み固定する流量制御弁が開示されている。
【0005】
また、高熱に熱して熱膨張させたアルミ製のバルブボディに鉄製のスリーブを圧入する、いわゆる焼き嵌めによる圧入方法も知られている。
【特許文献1】特開平5−87061号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、スリーブをバルブボディに焼き嵌めにより圧入した場合、冷却後にはスリーブはバルブボディからの圧縮荷重を受けている状態であり、このときのスリーブの内径がスプールの外径と対応する。ところが、流量制御弁の温度が上昇するとスリーブを押さえつけていたバルブボディが熱膨張し、スリーブは内部応力により内径が広がるように変形する。これにより、スリーブとスプールとの間に隙間が生じ、そこから作動油が漏れることに起因するいわゆる圧抜けが発生するという問題があった。
【0007】
上記の問題に鑑みて、本発明では熱膨張による圧抜けを抑制できる流量制御弁を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明は、流体圧ポンプから吐出された作動流体を流体圧機器に導く供給通路に介装され、流体圧機器に供給される作動流体の流量を制御する流量制御弁であって、当該流体制御弁の本体を構成するバルブボディと、前記バルブボディに嵌入され、内周にスプール孔を形成するスリーブと、前記スプール孔に摺動自在に挿入され、前記流体圧ポンプから吐出された作動流体の圧力に応じて移動し、前記流体圧ポンプから吐出された作動流体の一部を、前記流体圧ポンプの吸込側に連通する戻り通路へと還流するスプールと、を備え、前記スリーブは前記バルブボディにすきま嵌めで嵌入され、前記バルブボディと前記スリーブとの間をシールすると共に、前記スリーブの軸方向への移動を規制する移動規制手段を備えることを特徴とする。
【発明の効果】
【0009】
本発明によれば、バルブボディに対してスリーブをすきま嵌めで嵌入するため、組み付け時に圧入する場合のように、スリーブに内部応力は発生しない。よって、熱膨張によるスリーブの変形量は小さくなり、スプールとスリーブとの間から作動流体が漏れることを抑制できる。
【0010】
ここで、バルブボディに対してスリーブをすきま嵌めで嵌入した際には、バルブボディとスリーブとの間に隙間が存在する。しかし、移動規制手段がスリーブの軸方向への移動を規制すると共に、バルブボディとスリーブとの間の作動流体をシールするため、作動流体の漏洩を防止できる。
【0011】
したがって、熱膨張による圧抜けを抑制できる流量制御弁を得ることができる。
【発明を実施するための最良の形態】
【0012】
(第1実施形態)
以下では、図1を参照しながら本発明の第1の実施の形態に係る流量制御弁100について説明する。図1は、流量制御弁100の側面を断面で示した図である。本実施の形態では、流体圧として油圧を使用する。
【0013】
流量制御弁100は、油圧供給源である流体圧ポンプから油圧機器10に供給される作動流体の流量が所定の特性となるように制御するものである。本実施の形態では、流体圧ポンプは車両のエンジンによって駆動されるベーンポンプ101である場合について説明する。また、油圧機器10は、例えば車両に搭載されるパワーステアリング装置や変速機等である。この油圧機器10が流体圧機器に該当する。
【0014】
ベーンポンプ101は、図示しないが、駆動軸の端部にエンジンの動力が伝達され、駆動軸に連結されたロータが回転するものである。ベーンポンプ101は、ロータに対して径方向に往復動可能に設けられる複数のベーンと、ロータを収容すると共にロータの回転に伴って内周のカム面にベーンの先端部が摺動するカムリングとを備える。カムリングは、内周のカム面が楕円形状をした環状の部材であり、カムリングの内部には、隣り合うベーンによって仕切られた複数のポンプ室が画成される。カムリングは、ポンプ室の容積を拡張する吸込領域と、ポンプ室の容積を収縮する吐出領域とを有する。
【0015】
ベーンポンプ101は、吸込領域では、油室の容積が徐々に拡張することで内部の圧力が下がることを利用して作動油を吸入する。また、吐出領域では、油室の容積が徐々に収縮することで内部の圧力が上がることを利用して作動油を吐出する。
【0016】
流量制御弁100は、ベーンポンプ101から吐出された作動油を油圧機器10に導く供給通路12に介装され作動油に抵抗を付与する可変絞り20と、可変絞り20の前後差圧に応じて供給通路12の作動油をポンプ吸込側に戻すスプール弁21と、可変絞り20より下流側に設けられたリリーフ弁22とを備える。
【0017】
可変絞り20、スプール弁21、及びリリーフ弁22は、バルブボディ27の内部に収装され、バルブボディ27の開口部にはキャップ28が螺着される。
【0018】
バルブボディ27は、流量制御弁100の本体を構成し、軽量化のためにアルミ等の軽量な材質で形成される。本実施形態では、バルブボディ27はアルミ製である。バルブボディ27には、ベーンポンプ101と連通し、ベーンポンプ101から吐出された作動油が流入するポンプポート32が周方向に貫通して形成され、ポンプポート32から流入した作動油の全部または一部を油圧機器10に供給する供給ポート29から軸方向に貫通する貫通孔37が形成される。バルブボディ27には、スプール孔31を構成するスリーブ25が嵌入される。
【0019】
スリーブ25は、バルブボディ27に形成された開口部から嵌入される円筒形の部材である。スリーブ25は、バルブボディ27に対してすきま嵌めで嵌入される。スリーブ25は、スプール孔31に高圧の作動油が衝突してもエロージョンが発生しないように、鉄等の耐浸食性に優れた材質で形成される。本実施形態では、スリーブ25は鉄製である。つまり、スリーブ25よりもバルブボディ27の方が熱膨張率が高い材料で形成される。
【0020】
アルミ製のバルブボディ27に鉄製のスリーブ25を圧入する方法として、焼き嵌めによって圧入する方法が広く用いられている。鉄よりもアルミの方が熱膨張率が大きいことを利用して、大きく熱膨張したアルミ製のバルブボディ27にスリーブ25を容易に圧入できるためである。
【0021】
しかし、大きく熱膨張していたアルミ製のバルブボディ27が冷却後に収縮することにより、スリーブ25はバルブボディ27からの圧縮荷重を受けることとなる。これにより、スリーブ25を焼き嵌めによってバルブボディ27に圧入した場合には、圧入された後で冷却されるとスリーブ25はバルブボディ27によって圧縮され微小な変形を生じるため、冷却後にスリーブ25の内径を設計寸法に仕上げるとともに、戻りポート33に通じる戻り孔36を加工する必要がある。これは、焼き嵌めによる圧入ではスリーブ25にあらかじめ戻り孔36を形成しても、戻り孔36とバルブボディ27の戻りポート33との位置を合わせることが困難であるため、圧入した後で加工する必要があることによる。
【0022】
これに対して、スリーブ25をすきま嵌めでバルブボディ27に嵌入することにより、内周を仕上げるための加工が不要となる。スリーブ25はバルブボディ27からの圧縮荷重を受けることは無く、嵌入後のスリーブ25の内径は嵌入前と同一であるためである。よって、圧入工程が無くなり、また内周の仕上げ加工の工程が無くなることから、流量制御弁100を製造に必要な工数が削減され、コストダウンを図れる。
【0023】
また、すきま嵌めによる嵌入では、まずスリーブ25にあらかじめ形成した戻り孔36にバルブボディ27の戻りポート33から図示しないピンを挿入して位置決めをしておく。そして、位置決めしたままストッパリング60を圧入することによって、戻り孔36の位置を戻りポート33の位置に合わせることが可能である。
【0024】
また、運転中に作動油の油温が上昇すると、流量制御弁100の温度も上昇する。焼き嵌めによってスリーブ25を圧入した場合には、鉄製のスリーブ25よりもアルミ製のバルブボディ27の方が熱膨張率が大きいため、スリーブ25よりもバルブボディ27の方が大きく熱膨張する。そのため、バルブボディ27がスリーブ25を圧縮する力が弱まり、内部応力によってスリーブ25は大きく拡径する。よって、スプール30とスリーブ25との間から作動油が漏洩する、いわゆる圧抜けが生じる問題があった。
【0025】
これに対して、スリーブ25をすきま嵌めで嵌入する場合には、焼き嵌めによって圧入した場合よりも、温度上昇時のスリーブ25の拡径は小さくなる。スリーブ25はバルブボディ27からの圧縮荷重を受けることは無く、スリーブ25に内部応力は発生しないためである。よって、運転中に作動油の温度が上昇しても熱膨張によってスプール30とスリーブ25との間から作動油が漏れることに起因する圧抜けを抑制できる。
【0026】
スリーブ25の中空部は、ポンプポート32と戻りポート33とを連通するスプール孔31である。スプール孔31には、スプール30が摺動自在に挿入される。
【0027】
スリーブ25には、バルブボディ27に形成される戻りポート33に連通する戻り孔36が形成される。戻りポート33は、ベーンポンプ101から吐出された余剰な作動油をタンク34へ還流する戻り通路35に連通する。つまり、戻り孔36と戻り通路35とは、スプール孔31からバルブボディ27を貫通して外部に開口する。
【0028】
切欠き25bは、スリーブ25の端部内周に環状に形成される。切欠き25bが形成されたスリーブ25の端部には、環状の周壁25dが形成される。周壁25dの外径はスリーブ25と同一で、内径はスリーブ25の内径よりも切欠き25bの分だけ小さい。周壁25dの内周には、スリーブ25の開口部から押圧部材としてのストッパリング60が圧入される。このストッパリング60が移動規制手段に該当する。ストッパリング60が圧入される面積を確保するために、切欠き25bは軸方向の長さの方が径方向の厚さよりも大きく形成される。
【0029】
ストッパリング60の先端部60aは、切欠き25bの切欠き端部25cをスリーブ25の軸方向に押圧する。これによりスリーブ25は他方の端面がバルブボディ27に当接した状態で軸方向に押圧され、スリーブ25とバルブボディ27との間に配置されたOリング26aが圧縮される。このとき、戻りポート33と戻り孔36との位置が一致するように固定して、ストッパリング60を圧入する。
【0030】
ストッパリング60は、切欠き25bの内周から外周に向けて、即ち周壁25dをバルブボディ27に向けて周方向に押圧する。これにより、周壁25dはバルブボディ27に圧接され、スリーブ25の軸方向の移動が規制される。
【0031】
また、スリーブ25はバルブボディ27にすきま嵌めで嵌入されるため、その間には全周に渡って僅かな隙間がある。この僅かな隙間には作動油が流入するが、ストッパリング60が圧入され、周壁25dがバルブボディ27に圧接して隙間が閉塞されることによって、作動油はシールされる。
【0032】
ストッパリング60は、動作中に作動油の温度が上昇してバルブボディ27が熱膨張しても周壁25dとバルブボディ27との隙間を閉塞し、かつスリーブ25の軸方向への移動を規制できるような寸法で形成される。これにより、動作中の温度上昇によりストッパリング60の機能が損なわれることは無い。
【0033】
スプール30はスリーブ25内のスプール孔31を摺動するが、ストッパリング60はスプール30が摺動する軸方向の位置と重複しない位置に圧入される。そのため、スプール30の摺動に影響を及ぼすことは無い。また、ストッパリング60の内径は、スリーブ25の内径よりも小さく形成される。スプール30を挿入するときに干渉しないようにするためである。
【0034】
ストッパリング60の開口部からは、略円筒形で片端が閉塞されたキャップ28が螺合される。キャップ28の内部には、スプール30のリターンスプリング40が収装される。
【0035】
リターンスプリング40はキャップ28の閉塞端の内側をシート面として当接する。リターンスプリング40は、スプール30をキャップ28から軸方向に付勢する。
【0036】
スリーブ25の他方の端部外周には環状の切欠き25aが形成される。切欠き25aには、シール部材としてのOリング26がバルブボディ27とスリーブ25との間で圧縮して配置され、スリーブ25の外周とバルブボディ27の内周との間を閉塞することによって、戻りポート33とポンプポート32との間の作動油の流れを阻止する。
【0037】
以上より、スリーブ25とバルブボディ27との間にはすきま嵌めによる隙間が存在する。しかし、ストッパリング60を周壁25dの内周に圧入することによって、スリーブ25の端部の周壁25dが周方向に押圧されるため、スリーブ25は固定され軸方向への移動は規制される。また、周壁25dがバルブボディ27に押圧されるため、すきま嵌めによる隙間は閉塞される。これにより、スリーブ25とバルブボディ27との間はシールされる。つまり、ストッパリング60は、スリーブ25の周壁25dを周方向に押圧することでスリーブ25の軸方向への移動規制と、スリーブ25とバルブボディ27の間のシールとの二つの機能を有する。
【0038】
スプール30は、スプール孔31を軸方向に摺動する略円筒形の部材である。スプール30とスプール孔31とは、スプール弁21を構成する。スプール30は、摺動によってポンプポート32と戻りポート33との連通を遮断可能である。また、スプール30の摺動によってポンプポート32から戻りポート33へと還流する作動流体の流量を調整可能である。つまり、スプール30は、ポンプポート32と戻りポート33との間の開口面積を調節可能である。
【0039】
スプール30の先端側には、ポンプポート32に連通し、ベーンポンプ101から吐出される作動油が導かれる上流側室42が画成される。また、スプール30の背面側にはリターンスプリング40を収装するスプリング室39が画成される。
【0040】
スプール30の先端には、バルブボディ27の貫通孔37に挿入され、先端に向かって拡径されたテーパロッド41が形成される。スプール30の移動に伴ってテーパロッド41が貫通孔37に対して相対移動し、貫通孔37の開口面積が変化する。テーパロッド41と、テーパロッド41の移動によって開口面積が変化する貫通孔37とで可変絞り20が構成される。
【0041】
可変絞り20は、上流側室42に臨んで設けられ、供給通路12を流れる作動油に抵抗を付与する。可変絞り20の下流側に画成された下流側室44は、通孔43を介してスプリング室39に連通している。このように、スプール30の一端には、可変絞り20の上流側の圧力が作用し、他端には、可変絞り20の下流側の圧力が作用する。したがって、スプール30は可変絞り20の前後差圧の変化に応じて移動し、可変絞り20の前後差圧に基づく荷重とリターンスプリング40の付勢力とが釣り合った位置にてバランスする。
【0042】
上流側室42と下流側室44との間は、バルブボディ27の分離壁24によって仕切られる。分離壁24の略中央には、テーパロッド41が挿通される開口部24aが形成される。開口部24aは貫通孔37の一部を構成する。分離壁24の一方の面は、スプール30が当接して着座するシート24bを構成する。
【0043】
ベーンポンプ101から吐出される作動油の流量が多く、可変絞り20の前後差圧が大きくなると、スプール30はリターンスプリング40を圧縮する方向へ移動し、スプール30のランド部30aが戻りポート33を開放する。
【0044】
スプール30が移動してランド部30aが戻りポート33を開放すると、ポンプポート32が上流側室42を通じて戻りポート33と連通し、ベーンポンプ101から吐出される作動油の一部が戻り通路35へと還流する。戻り通路35へと還流する作動油の流量は、可変絞り20の前後差圧が大きい程、スプール30の移動量が大きくなり、戻りポート33の開口面積が大きくなるため多くなる。つまり、エンジン回転数が上昇し、ベーンポンプ101から吐出される作動油の流量が多くなる程多くなる。
【0045】
戻りポート33と対峙するスプール孔31の壁面には、スプール孔31と直交する戻り孔36がスリーブ25を貫通して形成される。戻り孔36は、スプール30の軸心と直交する方向の圧力バランスをとるために、また作動油の流れる面積を拡大して流速を抑えるために設けられる。戻り孔36は、スプール30の摺動によってポンプポート32と連通可能である。複数形成される戻り孔36の一つは、戻りポート33から貫通するように動軸に形成されて戻りポート33に連通する。
【0046】
戻り孔36は、本実施形態のように180度間隔で2個設ける構成の他、120度間隔で3個設けたり、90度間隔で4個設けたり、60度間隔で6個設けたり、多数設ける構成にすることも可能である。すきま嵌めによる嵌入では、焼き嵌めによる圧入のときとは異なり、スリーブ25に戻り孔36をあらかじめ形成することができるためである。この戻り孔36の数を多くすることで開口面積が大きくなれば、それだけ作動油が流れる流路の面積が拡大されるため、作動油の流速を遅くすることができ、エロージョンを抑制することができる。
【0047】
このとき、スプール30の軸心と直交する方向の圧力バランスをとるために、戻り孔36を全周に渡って等ピッチで設けることが望ましい。スリーブ25に戻り孔36をあらかじめ形成することができるため、全周に渡って等ピッチで設けることも可能である。
【0048】
スプール30のランド部30aの背面側には、略矩形の断面で環状に形成される環状油室50が設けられ、環状油室50とスプール孔31の内周によって油室が画成される。
【0049】
環状油室50は、戻りポート33及び戻り孔36と連通している。環状油室50には、スプール弁21が開かれると上流側室42から戻り孔36を通じて作動油が流入する。環状油室50に流入した作動油は、環状油室50を伝って戻りポート33へと流出する。
【0050】
以上のように、スプール弁21は、可変絞り20の前後差圧に応じてポンプポート32から流入した作動油の一部を戻りポート33へと還流する。
【0051】
リリーフ弁22は、可変絞り20の下流側の圧力が所定値に達した場合に、スプール30内に収装されたスプリング45が圧縮されて開弁するものである。リリーフ弁22が開弁した場合には、可変絞り20の下流側の作動油は、下流側室44、通孔43、スプリング室39、リリーフ弁22、戻りポート33の順に流れ、戻り通路35へと逃がされる。
【0052】
以下では、可変絞り20及びスプール弁21の動作について説明する。
【0053】
ポンプ回転数の低速域では、可変絞り20の前後差圧が小さいため、スプール弁21は閉弁状態であり、ポンプ回転数に比例した作動油が油圧機器10へと供給される。
【0054】
ポンプ回転数が中速域に達すると、可変絞り20の前後差圧によってスプール弁21が開弁してポンプポート32と戻りポート33を連通し、上流側室42に流入する作動油の一部がポンプ回転数の増大に応じて戻り通路35へと還流する。このため、可変絞り20を通じて油圧機器10に供給される作動油の流量は略一定に保たれる。
【0055】
ポンプ回転数が高速域に達すると、可変絞り20の前後差圧が大きくなるため、スプール30はリターンスプリング40を圧縮して移動する。これにより、貫通孔37の開口部の開口面積は、テーパロッド41の移動によって次第に減少し、油圧機器10に供給される作動油の流量は次第に減少する。
【0056】
また、ポンプ回転数がゼロとなるベーンポンプ101の停止時には、リターンスプリング40の付勢力によってスプール30が分離壁24のシート24bに着座する。これにより、可変絞り20が全閉となると共に、スプール30のランド部30aによって戻りポート33が閉塞されスプール弁21も全閉となる。
【0057】
以上のように、本実施形態ではスプール30を可変絞り20の前後差圧に応じて移動させ、スプール弁21を開閉する。しかし、可変絞り20の前後差圧に応じてではなく、スプール30をポンプポート32から流入する作動流体の圧力とリターンスプリング40の付勢力とのバランスによって移動させる態様でもよい。
【0058】
以上の実施の形態によれば、以下の効果を奏する。
【0059】
バルブボディ27に対してスリーブ25をすきま嵌めで嵌入するため、組み付け時に圧入する場合のように、スリーブ25に内部応力は発生しない。よって、熱膨張によるスリーブ25の変形量は小さくなり、スプール30とスリーブ25との間から作動油が漏れることを抑制できる。
【0060】
ここで、すきま嵌めで嵌入した際には、バルブボディ27とスリーブ25との間に隙間が存在する。しかし、ストッパリング60がスリーブ25の周壁25dをバルブボディ27に押圧するため、スリーブ25の軸方向への移動を規制すると共に、スリーブ25とバルブボディ27との間の作動油をシールし、作動油の漏洩を防止できる。
【0061】
したがって、熱膨張による圧抜けを抑制できる流量制御弁100を得ることができる。
【0062】
また、スリーブ25を焼き嵌めのような圧入で形成した場合には、圧入時にスリーブ25は変形するため圧入後にスリーブ25の内周を設計寸法に仕上げる加工、及び戻り孔36の加工を必要とする。これに対してスリーブ25をすきま嵌めで嵌入することによって、嵌入時にスリーブ25は変形せず、仕上げの加工は不要である。よって、圧入工程及び内周の仕上げ加工工程が無くなることから、流量制御弁100を製造に必要な工数が削減され、コストダウンを図れる。また、戻り孔36を多数形成することによって、作動油の流速を小さくでき、エロージョンを抑制することが可能である。
【0063】
(第2実施形態)
以下では、図2を参照しながら本発明の第2の実施の形態に係る流体圧ポンプの流量制御弁200について説明する。図2は、流量制御弁200の側面を断面で示した図である。なお、以下に示す各実施形態では前述した実施形態と同様の機能を果たす構成には同一の符号を付し、説明は省略する。
【0064】
第2の実施の形態は、スリーブ225の両端にOリング26a,226bが配置され、一方の端部から圧入されたストッパリング260で固定する点で第1の実施の形態とは相違する。
【0065】
スリーブ225は、バルブボディ27の開口部からすきま嵌めで嵌入される円筒形の部材である。スリーブ25の両端部外周には環状の切欠き25a,225bが形成される。
【0066】
切欠き225bが形成されたスリーブ225の端部には、環状の周壁225dが形成される。周壁225dの内径はスリーブ225と同一で、外径はスリーブ225の外径よりも切欠き225bの分だけ小さい。
【0067】
切欠き225bには、Oリング226bが配置され、バルブボディ227と周壁225dとにより圧縮される。Oリング226bは、すきま嵌めによるバルブボディ227とスリーブ225との僅かな隙間と、スプリング室39との間を流れようとする作動油をシールする。
【0068】
スリーブ225が嵌入されたバルブボディ227の開口部には、スリーブ225の外径以上の外径を有するストッパリング260が圧入される。ストッパリング260は、周壁225dの端部と当接する。スリーブ225はバルブボディ227にすきま嵌めで嵌入されるのに対して、ストッパリング260はバルブボディ227に圧入、即ちしまり嵌めで嵌入される。このように、ストッパリング260の外径は、スリーブ225の外径よりも嵌めあい寸法の差分だけ大きい。
【0069】
ストッパリング260が圧入されることによって、スリーブ225はバルブボディ227に固定される。具体的には、ストッパリング260がスリーブ225をバルブボディ227に向けて軸方向に押圧しながらバルブボディ27に圧入されることによって固定され、スリーブ225の軸方向への移動を規制する。このストッパリング260が移動規制手段に該当する。
【0070】
以上の実施の形態によれば、バルブボディ227に対してスリーブ225をすきま嵌めで嵌入するため、組み付け時に圧入する場合のように、スリーブ225に内部応力は発生しない。よって、熱膨張によるスリーブ225の変形量は小さくなり、スプール30とスリーブ225との間から作動油が漏れることを抑制できる。
【0071】
ここで、すきま嵌めで嵌入した際に、バルブボディ227とスリーブ225との間に隙間が存在する。しかし、圧入されたストッパリング260がスリーブ225の軸方向への移動を規制すると共に、スリーブ225の周壁225dとバルブボディ227との間で圧縮されて配置されたOリング226bが作動油をシールするため、作動油の漏洩を防止できる。
【0072】
したがって、熱膨張による圧抜けを抑制できる流量制御弁200を得ることができる。
【0073】
(第3実施形態)
以下では、図3を参照しながら本発明の第3の実施の形態に係る流体圧ポンプの流量制御弁300について説明する。図3は、流量制御弁300の側面を断面で示した図である。
【0074】
第3の実施の形態は、第2実施形態のストッパリング260の代わりにストッパねじ360を螺合することによってスリーブ225を固定する点で第2の実施の形態とは相違する。
【0075】
キャップ28が螺合されるバルブボディ327の内周面の雌ねじ327aは、スリーブ225の背面側の端面まで形成されている。スリーブ325が嵌入されたバルブボディ327の開口部には、円盤形のストッパねじ360が螺合される。このストッパねじ360の締結力によって、スリーブ225はバルブボディ327に軸方向に押圧される。またストッパねじ360がバルブボディ327に対して締結されることで固定され、スリーブ225は軸方向の移動を規制される。このストッパねじ360が移動規制手段に該当する。
【0076】
以上の実施の形態によれば、バルブボディ327に対してスリーブ225をすきま嵌めで嵌入するため、組み付け時に圧入する場合のように、スリーブ225に内部応力は発生しない。よって、熱膨張によるスリーブ225の変形量は小さくなり、スプール30とスリーブ325との間から作動油が漏れることを抑制できる。
【0077】
ここで、すきま嵌めで嵌入した際に、バルブボディ327とスリーブ225との間に隙間が存在する。しかし、螺合されたストッパねじ360がスリーブ225の軸方向への移動を規制すると共に、スリーブ225の周壁225dとバルブボディ327との間で圧縮されて配置されたOリング226bが作動油をシールするため、作動油の漏洩を防止できる。
【0078】
したがって、熱膨張による圧抜けを抑制できる流量制御弁300を得ることができる。ここで、スリーブ225の軸方向長さ寸法、バルブボディ327の軸方向深さ寸法、キャップ28の軸方向長さ寸法などの寸法精度管理をより厳密にすることによって、ストッパねじ360とキャップ28とを一体構造とすることも可能である。このとき、キャップ28自体がバルブボディ327の所定位置にねじ込まれた状態で移動規制手段を構成する。
【0079】
本発明は上記の実施の形態に限定されずに、その技術的な思想の範囲内において種々の変更がなしうることは明白である。
【産業上の利用可能性】
【0080】
本発明に係る流体圧ポンプの流量制御弁は、車両用のパワーステアリング装置や変速機等の油圧機器に用いることができる。
【図面の簡単な説明】
【0081】
【図1】本発明の第1の実施の形態に係る流量制御弁の側面を断面で示した図である。
【図2】本発明の第2の実施の形態に係る流量制御弁の側面を断面で示した図である。
【図3】本発明の第3の実施の形態に係る流量制御弁の側面を断面で示した図である。
【符号の説明】
【0082】
100 流量制御弁
101 ベーンポンプ
12 供給通路
20 可変絞り
21 スプール弁
24 分離壁
25 スリーブ
25a 切欠き
27 バルブボディ
28 キャップ
29 供給ポート
30 スプール
31 スプール孔
32 ポンプポート
33 戻りポート
35 戻り通路
36 戻り孔
37 貫通孔
40 リターンスプリング
41 テーパロッド
42 上流側室
44 下流側室
45 スプリング
50 環状油室
60 ストッパリング

【特許請求の範囲】
【請求項1】
流体圧ポンプから吐出された作動流体を流体圧機器に導く供給通路に介装され、流体圧機器に供給される作動流体の流量を制御する流量制御弁であって、
当該流体制御弁の本体を構成するバルブボディと、
前記バルブボディに嵌入され、内周にスプール孔を形成するスリーブと、
前記スプール孔に摺動自在に挿入され、前記流体圧ポンプから吐出された作動流体の圧力に応じて移動し、前記流体圧ポンプから吐出された作動流体の一部を前記流体圧ポンプの吸込側に連通する戻り通路へと還流するスプールと、を備え、
前記スリーブは前記バルブボディにすきま嵌めで嵌入され、
前記バルブボディと前記スリーブとの間をシールすると共に、前記スリーブの軸方向への移動を規制する移動規制手段を備えることを特徴とする流量制御弁。
【請求項2】
前記移動規制手段は、前記スリーブの一方の端部内周に圧入され、前記スリーブの端部を前記バルブボディの内周に押圧する押圧部材であることを特徴とする請求項1に記載の流量制御弁。
【請求項3】
前記移動規制手段は、前記バルブボディ内周に圧入され、前記スリーブの軸方向への移動を規制するストッパリングを備えることを特徴とする請求項1に記載の流量制御弁。
【請求項4】
前記移動規制手段は、前記バルブボディ内周に螺合され、前記スリーブの軸方向への移動を規制するストッパねじを備えることを特徴とする請求項1に記載の流量制御弁。
【請求項5】
前記スリーブの他方の端部外周には、前記バルブボディの内周との間に圧縮して配置されたシール部材が装着されることを特徴とする請求項2から4のいずれか一つに記載の流量制御弁。
【請求項6】
前記移動規制手段は、前記スプールが摺動する軸方向の位置と重複しない位置に設けられることを特徴とする請求項1から5のいずれか一つに記載の流量制御弁。
【請求項7】
前記スプールの移動によって前記供給通路と前記戻り通路とを連通可能な、前記スリーブの全周に渡って形成された複数の戻り孔を備えることを特徴とする請求項1から6のいずれか一つに記載の流量制御弁。
【請求項8】
前記複数の戻り孔は、等ピッチで形成されることを特徴とする請求項7に記載の流量制御弁。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2010−151158(P2010−151158A)
【公開日】平成22年7月8日(2010.7.8)
【国際特許分類】
【出願番号】特願2008−327237(P2008−327237)
【出願日】平成20年12月24日(2008.12.24)
【出願人】(000000929)カヤバ工業株式会社 (2,151)
【Fターム(参考)】