説明

熱電冷却装置

【課題】発熱体を冷却するための熱電冷却素子を有する冷却装置に関し、熱電冷却素子による冷却効率を向上させる。
【解決手段】多数の前記熱電冷却素子10,11が二次元方向に配列されて、冷却素子ユニット4が形成されるとともに、複数の前記冷却素子ユニット4が複数層に積層され、かつ各層の前記冷却素子ユニット4の間に、これら冷却素子ユニット4に対して熱の出入りを行う伝熱部材7,8が介装され、その伝熱部材7を挟んで位置する一方の前記冷却素子ユニット4における吸熱部4aと他方の前記冷却素子ユニット4における吸熱部4aとが同一の前記伝熱部材7に熱伝達可能に接触し、かつ他の伝熱部材8を挟んで位置する一方の前記冷却素子ユニット4における発熱部4bと他方の前記冷却素子ユニット4における発熱部4bとが他の前記伝熱部材8に熱伝達可能に接触している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、発熱体を冷却する冷却装置に関し、特に熱電冷却素子を有する熱電冷却装置に関するものである。
【背景技術】
【0002】
近年、エレクトロニクス機器は、電子制御を行うための電子回路が設けられた基板上に中央演算処理装置(CPU)およびマイクロプロセッサ(MPU)等の高性能な半導体チップを実装している。CPUおよびMPU等の半導体チップは、高速での演算、制御等の処理を行うために、集積度および動作周波数の速度がきわめて高くなり、そのため動作中にそのチップ自体が高温になり多量の熱を放出する発熱体となる。高速演算処理により発熱した半導体チップ(発熱体)は、ファンを用いるフィン等のヒートシンク、ヒートパイプ(HP)、ベーパチャンバ(VC)、ループヒートパイプ(LHP)等により構成される冷却装置によって半導体チップが良好に動作するように冷却がなされる。しかし、今後、さらにCPUなどの半導体チップが高性能化することおよび高性能化されても熱源である半導体チップ自体の寸法がほぼ同じか小さくなっていることにより、現在の市販のエレクトロニクス機器にはほとんど使用されていないペルチェ効果などを利用した熱電半導体素子(TEC)等を使ったものが必要となる。
【0003】
CPUおよびMPU等の半導体チップを冷却する熱電半導体素子は、一般にp型の熱電半導体素子とn型の熱電半導体素子とを接合部である金属電極を介して交互に直列に接続して、複数のp−n接合対が形成されることにより作成される。また、ペルチェ効果による吸熱(冷却)および放熱(発熱)を最適に利用するために複数のp−n接合対を「π」形の構造にして電気的に直列に結合される。この「π」形の構造、いわゆるπ形結合は、図6を参照して説明すると、p型の熱電半導体素子101とn型の熱電半導体素子102と金属電極103とから形成される一対のp−n接合対104を、向きを揃えて複数並べて金属電極103で接合して形成される。
【0004】
このようにπ形結合された熱電半導体素子においては、n型の熱電半導体素子102からp型の熱電半導体素子101に電源105により電流Iを流すと、図6のπ形の上部で吸熱、下部で発熱が起こり、熱が上部から下部へ向かってポンピングされる。すなわち電子がp型からn型の方向(電流はn型からp型の方向)に流れる中央の金属電極103と、p型の熱電半導体素子101とn型の熱電半導体素子102とのそれぞれの境界つまり図6の上部では、電子は低いエネルギー状態から高いエネルギー状態へ移行するので、周囲の結晶格子から振動エネルギーを吸収して、吸熱現象が起こる。逆に、電子がn型からp型の方向に流れる左端の金属電極103とp型の熱電半導体素子101との境界および右端の金属電極103とn型の熱電半導体素子102との境界の二箇所つまり図6の下部では、上部で振動エネルギを吸収した電子は高いエネルギー状態から低いエネルギー状態に移行するので、余った振動エネルギを周囲の結晶格子に与えて、発熱現象が起こる。
【0005】
このπ形結合されたp−n接合対を電気的に直列に複数、例えば数十個から数百個を並べて接続することによりモジュール化された熱電半導体素子は、直列に接続された複数のp−n接合対の両極に電流を流すと、p−n接合対の接合部の一方で冷却(吸熱)、p−n接合対の接合部の他方で発熱(放熱)する状態になるペルチェ効果による冷却装置(TEC)として利用することができる。また、このようにモジュール化された熱電半導体素子は、接合部の一方で吸熱させて高温状態にし、かつ、接合部の他方を接合部の一方より低温状態にして、この一方の接合部と他方の接合部とに温度差を生じさせると、温度差によって起電力を発生するゼーベック効果により発電装置(TEG)として利用することができる。
【0006】
図7に示す装置は、このような熱電半導体素子を利用した冷却装置(TEC)を構成する一般的な熱電冷却モジュール201である。この熱電冷却モジュール201では、p型の熱電半導体素子202とn型の熱電半導体素子203とがπ結合されて、熱電半導体素子202,203が電気的に直列、かつ熱伝導的に並列になるように向きを揃えて二次元方向つまり平面状に並べられている。また、この熱電冷却モジュール201では、上記のとおり配列されて接続された熱電半導体素子202,203が通電性良好な端子、例えば適切な大きさの銅板204を介して、電気的に絶縁性であり、かつ熱伝導性であるセラミック材質のベース部材205に挟まれた構成となっている。このモジュール201では、電源206により熱電半導体素子202,203に電圧を印加して電流Iを流すと、セラミック材質のベース部材205を構成する一方の面が一様に冷却(吸熱)側となり、他方の面が一様に発熱(放熱)側となる。このモジュール201の冷却および発熱の効果は、上記のように平面状に熱電半導体素子202,203が構成されることから、熱電半導体素子202,203の数に依存する。そして、熱電半導体素子202,203の数は、ベース部材の平面の面積により決まる。
【0007】
特許文献1に記載の冷却装置は、熱電クーラー(TEC)を取り付ける際にセラミック基板を用いないで構成されている。一般に、TECが通電されることによって一方が吸熱し他方が放熱するため、この温度差によってセラミック基板が膨張することから、熱電半導体素子にせん断応力が集中し、信頼性の確保が難しくなる。このため、熱電半導体素子の大きさには限界がある。その大きさの限界は30〜40mm角とされ、TECの性能は素子の高さに依存し、素子の高さを低くすることによる高性能化のために熱電半導体素子の高さを低くすると、大きさの限界がさらに低下するという問題点がある。
【0008】
このため、特許文献1に記載の冷却装置では、セラミック基板の代わりに、所定の電気接続領域、たとえば、スルーホール、開口部等を備えた一対の樹脂基板を用いる。このスルーホールに熱および電気伝導性に優れた金属を充填して充填金属層を形成し、電気回路金属層を樹脂基板の外側に配置し、熱電半導体素子のそれぞれの面を充填金属層を介して電気回路金属層と接続する。このように構成されることから、特許文献1に記載の冷却装置では、熱電半導体素子の厚さを薄くして、高性能かつ大型化できる構成となっている。
【0009】
特許文献1に記載の冷却装置によれば、セラミック基板を用いないで、スルーホールが素子にかかる応力を緩和する応力緩和構造となっているため、TEC面積の大型化に伴う歪による応力を小さくすることができる。そのため、大型化が可能であり、高い信頼性を得ることができる。また、セラミックを用いた基板に比べ、安価な絶縁性樹脂を用いるので、セラミックを用いた冷却装置より安価に製造することができる。さらに、この特許文献1に記載の冷却装置は、熱伝導率の低いセラミック基板を用いない構造であるので、熱抵抗を抑えることができる。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】再表2006/019059号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
しかしながら、上記の図7に示した冷却モジュールや特許文献1に記載の冷却装置では、熱電冷却素子が吸熱(冷却)側と放熱(発熱)側との向きが揃えられて平面状に配列されているため、設置された平面のみでしか熱電半導体素子を配置することができない。そして、熱電半導体素子による効果は、熱電半導体素子と基板などの設置部材とが接触する底面積の総和に比例する。したがって、その効果は、平面状に熱電冷却素子が配置されていることにより、その設置された平面の面積に限定されてしまう。
【0012】
この発明は、上記の技術的課題に着目してなされたものであり、熱電半導体素子を設置できる面積を増やして熱電半導体素子による冷却能力および冷却効果をさらに向上させる熱電冷却装置を提供することを目的とするものである。
【課題を解決するための手段】
【0013】
上記の目的を達成するために、請求項1の発明は、通電することにより、吸熱部と発熱部とが相互に反対側の面に生じる多数の熱電冷却素子を備え、その吸熱部により発熱体で発生した熱を冷却する熱電冷却装置において、前記多数の熱電冷却素子が二次元方向に配列されて、冷却素子ユニットが形成されるとともに、複数の前記冷却素子ユニットが複数層に積層され、かつ各層の前記冷却素子ユニットの間に、これら冷却素子ユニットに対して熱の出入りを行う伝熱部材が介装され、その伝熱部材を挟んで位置する一方の前記冷却素子ユニットにおける吸熱部と他方の前記冷却素子ユニットにおける吸熱部とが同一の前記伝熱部材に熱伝達可能に接触し、かつ他の伝熱部材を挟んで位置する一方の前記冷却素子ユニットにおける発熱部と他方の前記冷却素子ユニットにおける発熱部とが他の前記伝熱部材に熱伝達可能に接触していることを特徴とする熱電冷却装置である。
【0014】
請求項2の発明は、請求項1の発明において、前記熱電冷却素子は、前記吸熱部と前記発熱部との温度の差から、起電力が生じる構成を含むことを特徴とする熱電冷却装置である。
【0015】
請求項3の発明は、請求項1または2の発明において、前記冷却素子ユニットにおける吸熱部に接触する前記伝熱部材、および前記冷却素子ユニットにおける発熱部に接触する前記伝熱部材は、L字型の伝熱部材を複数並べて配置されて形成されることを特徴とする熱電冷却装置である。
【0016】
請求項4の発明は、請求項1ないし3のいずれかの発明において、前記伝熱部材は、潜熱の形で熱を輸送することを特徴とする熱電冷却装置である。
【0017】
請求項5の発明は、請求項1ないし4のいずれかの発明おいて、前記伝熱部材は、ベーパチャンバであることを特徴とする熱電冷却装置である。
【0018】
請求項6の発明は、請求項1ないし4のいずれかの発明において、前記伝熱部材は、ヒートパイプであることを特徴とする熱電冷却装置である。
【0019】
請求項7の発明は、請求項1ないし6のいずれかの発明において、前記冷却素子ユニットは、一方の面で吸熱し他方の面で発熱するように、ポリイミドシート上に複数対のp型素子とn型素子とがπ結合されて構成されていることを特徴とする熱電冷却装置である。
【0020】
請求項8の発明は、請求項1ないし7のいずれかの発明において、前記伝熱部材に外設されて、前記伝熱部材もしくは前記冷却素子ユニットから排出される熱が伝達され、伝達された熱を前記熱電冷却装置の外部に放出する放熱部材を備えることを特徴とする熱電冷却装置である。
【0021】
請求項9の発明は、請求項1ないし8のいずれかの発明において、前記放熱部材が、フィンを備えていることを特徴とする熱電冷却装置である。
【0022】
請求項10の発明は、請求項1ないし9のいずれかの発明において、前記伝熱部材と前記冷却素子ユニットとの間には、小さな隙間や凹凸を埋めて、空気より熱伝導性がよいサーマルグリスが設けられることを特徴とする熱電冷却装置である。
【0023】
請求項11の発明は、請求項1ないし10のいずれかの発明において、前記発熱体と前記伝熱部材との間および前記伝熱部材と前記放熱部材との間には、小さな隙間や凹凸を埋めて、空気より熱伝導性がよいサーマルグリスが設けられることを特徴とする熱電冷却装置である。
【0024】
請求項12の発明は、請求項1ないし11のいずれかの発明において、組み付けられた前記伝熱部材の周囲を囲んで補強するフレームを有することを特徴とする熱電冷却装置である。
【0025】
請求項13の発明は、請求項1ないし12のいずれかの発明において、前記熱電冷却素子はペルチェ効果を有する熱電半導体素子であることを特徴とする熱電冷却装置である。
【0026】
請求項14の発明は、請求項1ないし13のいずれかの発明において、前記冷却素子ユニットは入力電力を変動させることにより、前記伝熱部材から吸収する熱量および前記伝熱部材に向けて放出する熱量が調整されることを特徴とする熱電冷却装置である。
【0027】
請求項15の発明は、請求項1ないし14のいずれかの発明において、前記熱電冷却素子はゼーベック効果を有する熱電半導体素子であることを特徴とする熱電冷却装置である。
【発明の効果】
【0028】
この発明の請求項1の発明によれば、多数の熱電冷却素子が二次元方向に配列されて冷却素子ユニットが形成され、その複数の冷却素子ユニットが複数層に積層されて、さらに、その伝熱部材を挟んで位置する一方の冷却素子ユニットの吸熱部と他方の前記冷却素子ユニットの吸熱部とが同一の伝熱部材に熱伝達可能に接触し、かつ他の伝熱部材を挟んで位置する一方の冷却素子ユニットの発熱部と他方の前記冷却素子ユニットの発熱部とが他の伝熱部材に熱伝達可能に接触している。このように伝熱部材と冷却素子ユニットとが位置することから、冷却素子ユニットが立体的かつ層状に積層されて配置される。そのため、冷却素子ユニットを多数設置でき、それにより熱電冷却素子を配置する数を増やせることから、この装置における発熱体を冷却する能力が向上される。また、発熱体を直接に冷却素子ユニットに接触させて冷却を行わない、言い換えると伝熱部材が介装されているため、熱膨張や熱応力による冷却素子ユニットもしくは熱電冷却素子の破損を防ぐことができる。
【0029】
請求項2の発明によれば、冷却素子ユニットが立体的かつ層状に積層されて配置されることから、発電をするための熱電冷却素子を配置する数が増やせる。これにより、熱電冷却素子による吸熱部と発熱部との温度の差による起電力が増加し、電力を回収する能力を向上することができる。
【0030】
請求項3の発明によれば、冷却装置が複数のL字型の伝熱部材を配列することにより形成されることから、冷却素子ユニットを層状に配置する隙間を設けるのが容易になる。また、冷却素子ユニットの吸熱部に接触する伝熱部材および冷却素子ユニットの発熱部に接触する伝熱部材の製造が容易となる。
【0031】
請求項4の発明によれば、伝熱部材は吸収された熱を輸送する際、潜熱の形で熱を輸送することから、低い熱抵抗で熱を輸送することができる。
【0032】
請求項5の発明によれば、伝熱部材がベーパチャンバであることから、潜熱の形で熱を輸送することから、低い熱抵抗で熱を輸送することができ、発熱体の近傍にあるスペースが限られた場合であっても冷却能力を向上できる。
【0033】
請求項6の発明によれば、伝熱部材がヒートパイプであることから、潜熱の形で熱を輸送することから、低い熱抵抗で熱を輸送することができ、発熱体の近傍にあるスペースが限られた場合であっても冷却効率を向上できる。
【0034】
請求項7の発明によれば、一方の面が吸熱側、他方の面が発熱側にポリイミドシート状に予め複数対のp型素子とn型素子とがπ結合されて構成されていることから、このように構成された冷却素子ユニットが積層され、これに伝熱部材が介装されて熱電冷却装置が組み立てられることにより、効率的に熱電冷却装置が生産できる。
【0035】
請求項8の発明によれば、発熱体から吸収した熱を放熱部材により熱電冷却装置の外部に放出することができる。
【0036】
請求項9の発明によれば、発熱体から吸収した熱を放熱性の高いフィンにより効率よく熱電冷却装置の外部に放出することができる。
【0037】
請求項10の発明によれば、サーマルグリスにより伝熱部材と冷却素子ユニットとの間の熱抵抗を低減でき、効率よく熱を伝達できる。
【0038】
請求項11の発明によれば、サーマルグリスにより発熱体と伝熱部材との間および伝熱部材と放熱部材との間の熱抵抗を低減でき、効率よく熱を伝達できる。
【0039】
請求項12の発明によれば、フレームによって組み付けられた伝熱部材と冷却素子ユニットもしくは装置全体の強度を増すことができる。
【0040】
請求項13の発明によれば、ペルチェ効果により発熱体を冷却する能力を向上できる。
【0041】
請求項14の発明によれば、入力電力を変動させることにより、冷却素子ユニットが伝熱部材から吸収する吸熱量および冷却素子ユニットが伝熱部材に対して発熱する発熱量を調整することから、必要な吸熱および発熱以上に入力電力を上げることによる電力の消費を抑えることができる。
【0042】
請求項15の発明によれば、ゼーベック効果により熱電冷却素子による吸熱部と発熱部との温度の差による起電力から電力を回収できる。
【図面の簡単な説明】
【0043】
【図1】この発明に係る熱電冷却装置と発熱体とを模式的に表す側面図である。
【図2】この発明に係る熱電冷却装置を構成する第2冷却手段(冷却素子ユニット)を模式的に表す図である。
【図3】この発明に係る熱電冷却装置の主要部を模式的に表し、内部を上視する横断面図である。
【図4】この発明に係る熱電冷却装置の周囲にフレームが取り付けられた状態を模式的に表す上面図である。
【図5】この発明に係る熱電冷却装置の周囲にフレームが取り付けられた状態を模式的に表す正面図である。
【図6】熱電半導体素子のπ結合について説明するための模式図である。
【図7】従来の熱電冷却モジュールを模式的に表す図である。
【発明を実施するための形態】
【0044】
以下、本発明の実施の形態を図面を参照して説明する。図1に示されるこの発明の熱電冷却装置(TEC)1は、発熱体2を冷却する装置である。この発熱体2は、パーソナルコンピュータなどのエレクトロニクス機器に設けられ、基板上に実装される中央演算処理装置(CPU)およびマイクロプロセッサ(MPU)等の高性能な半導体チップなどである。このような半導体チップなどである発熱体2は、近年、高速での演算、制御等の処理を行うために、集積度および動作周波数の速度がきわめて高くなり、そのため動作中にそのチップ自体が高温になり多量の熱を放出する。また、高温となることによる異常動作を防止するために、動作周波数には制限が設けられており、さらに高速に動作させるためには冷却が必要となる。
【0045】
この発熱体2を冷却するために、この発明の熱電冷却装置1は、図1ないし5に示される第1冷却手段3と第2冷却手段4と第3冷却手段5とフレーム6を有する。以下、熱伝達経路順に説明する。
【0046】
まず、第1冷却手段3について説明する。図1に示すように、第1冷却手段3は、L字型の部材7,8で構成されており、組み付けられたその上端部が発熱体2と熱伝達が可能な状態で接触している。この接触面には、熱抵抗を低くする目的で発熱体2と第1冷却手段3とが接触する面の平面度を上げるため、言い換えれば、発熱体2と第1冷却手段3とが接触する面の凹凸を埋めるためにサーマルグリスが塗布されている。また、第1冷却手段3を構成するL字型の部材7,8は、L字型のベーパチャンバもしくはヒートパイプまたは熱伝性が高く加工性のよい高純度の銅を中空もしくは中実にL字型に成型した部材から形成される第1の伝熱部材7と第2の伝熱部材8とにより構成されている。
【0047】
ベーパチャンバもしくはヒートパイプは、熱を潜熱の形で輸送する優れた熱輸送能力を持つ2相の熱輸送デバイスである。このベーパチャンバもしくはヒートパイプには、作用する液体である作動液が、密閉された容器の内部に封入されている。容器の一方の端部が熱せられると、作動液の蒸発が惹き起こされ、その蒸気は容器の冷たい他方の端部に移動して液体に戻る。液体に戻った作動液は、ウィックなどの毛管構造を介して、再び一方の端部に移動する。このベーパチャンバもしくはヒートパイプは、蒸発時の潜熱が大きいので、容器の一方の端部と他方の端部との非常に小さな温度差で非常に多くの熱量を輸送できる。なお、作動液は、適用される作動温度に基づいて、適切なものが選ばれる。例えば、高性能のパーソナルコンピュータなどに適用する場合、作動温度は通常50〜100℃であり、この作動範囲での作動液には水が最も適している。潜熱の形で熱を輸送することから、ベーパチャンバもしくはヒートパイプは、同じ寸法の無垢の銅などと比較して非常に熱抵抗が低い。また、ベーパチャンバは、熱の流れがヒートパイプの一次元的な流れと比較して2次元的になることにより、高い熱輸送能力と低い熱抵抗を持つ。さらに、ベーパチャンバは、同じ寸法のヒートパイプと比較して熱抵抗が低い。一方、ヒートパイプは、ベーパチャンバと比較して製造されたものを折り曲げたり、平板化して所定の形状にすることが可能である。
【0048】
また、銅は、加工が容易であり、他の金属よりも熱伝導性が良好であるため、後述する第2冷却手段4による冷却力により発熱体2の冷却が十分おこなえるような状況で、第1冷却手段3を構成する部材として利用できる。
【0049】
第1冷却手段3は、L字型に曲げられて成形された上記に説明したベーパチャンバもしくはヒートパイプまたは銅を中空もしくは中実にL字型に成型した部材のいずれかである同じ形状の第1の伝熱部材7と第2の伝熱部材8とを組み合わせることにより構成される。以下、第1の伝熱部材7と第2の伝熱部材8とをベーパチャンバもしくはヒートパイプとして説明する。
【0050】
図1に示すように、この第1の伝熱部材7と第2の伝熱部材8とが交互に複数並べられ、そのL字型の凹部同士が所定の隙間を設けて対向した状態で配置され、かつ、そのL字型の凹部の背面同士が所定の隙間を設けて対向した状態で配置される。つまり、複数ある第1の伝熱部材7における上面7aが、面一に隙間を詰めて揃られた状態で配置および結合される。この結合された複数の上面7aが、発熱体2から放熱された熱を吸収する第1冷却手段3における吸熱面3aを構成する。このように並べられて結合された複数ある各第1の伝熱部材7に対して、第1の伝熱部材7における内側面7bと外側面7cとの隙間に第2の伝熱部材8が、内側面7bと第2の伝熱部材8における内側面8aとが所定の隙間を設けて対向した状態で配置され、さらに外側面7cと第2の伝熱部材8における外側面8bとが所定の隙間を設けて対向した状態で配置される。また、第1の伝熱部材7における内上面7dと第2の伝熱部材8における上面8cとが所定の隙間を設けて対向した状態で配置され、さらに第1の伝熱部材7における底面7eと第2の伝熱部材8における内下面8dとが所定の隙間を設けて対向した状態で配置される。一方、複数ある第2の伝熱部材8における底面8eが、面一に隙間を詰めて揃られた状態で配置および結合される。この結合された複数の底面8eが、第3冷却手段5へと熱を放出する第1冷却手段3における放熱面3bを構成する。
【0051】
このように複数の第1の伝熱部材7と複数の第2の伝熱部材8とが配置されることから、第1冷却手段3の内部には、層状の隙間が形成される。つまり、この第1の伝熱部材7と第2の伝熱部材8とが、交互に複数並べられて、第1の伝熱部材7の内側面7bと第2の伝熱部材8の内側面8aとが所定の隙間を設けて対向した状態で配置され、かつ、第1の伝熱部材7の外側面7cと第2の伝熱部材8の外側面8bとが所定の隙間を設けて対向した状態で配置されることから、図1に示すような層状の隙間が第1冷却手段3の内部に形成される。また、このように配置された状態で複数の第1の伝熱部材7と複数の第2の伝熱部材8とが、図示しない支持部材や一般的な締結方法により固定される。なお、このような層状の隙間が形成できる構成であれば、この第1の伝熱部材7と第2の伝熱部材8とは、同じ形状でなくても構わない。そして、この層状の隙間のそれぞれに第2冷却手段(TEC、冷却素子ユニット)4が設置される。言い換えると、この層状の隙間に冷却素子ユニット4が、交互に複数並べられた第1の伝熱部材7と第2の伝熱部材8とを挟んで積層された構造となる。
【0052】
図2に示すように、第2冷却手段(TEC、冷却素子ユニット)4は、高い耐熱性と絶縁性とをもつ有機高分子で、電子回路部品に広く使われるポリイミドシート9上に、複数のp型の熱電半導体素子10とn型の熱電半導体素子11とを交互に直列に配線された状態で配置することにより構成される。この熱電半導体素子10,11について説明すると、一例としてこれらは絶対熱電率の大きいセラミック複合材料を素材として形成されており、例えばp型の熱電半導体素子10としては、Bi2 Sb8 Te15 、Bi を添加したGe Te 、Ag Sb Te2 、Cr Si2 、MnSi1.73 などを使用することができる。またn型の熱電半導体素子11としてBi Te2 Se 、Pを添加したIn As 、Co Si などを採用することができる。
【0053】
この各熱電半導体素子10,11は、ポリイミドシート9上に配置および固定されやすくなり、かつ第1の伝熱部材7と第2の伝熱部材8との層状の隙間に設置された際に効率よく熱伝達できるようにその寸法が所定の大きさとなるように規定されている。なお、このような所定の寸法となるように、各熱電半導体素子10,11の製造方法では、先ず添加元素を含む出発材料を粉末化し、あるいは溶解混合して得たインゴットを粉砕して粉末化し、その後、バインダーを加えて造粒する。得られた粉粒体をふるい分けして、粒径を揃え、これを所定のダイスに入れて、冷間プレスして圧粉体を得る。つぎにその圧粉体を真空中で加熱し、バインダーを除去するための脱脂と焼結とを連続して行う。そして、大気中で加熱して熱処理を施し、所定の特性を与えて、さらに必要に応じてスライシングして所定の寸法の各熱電半導体素子10,11を得る。
【0054】
この各熱電半導体素子10,11は、電流が流れることにより素子の一方の面が吸熱(冷却)面10a,11aとなり、他方の面が放熱(発熱)面10b,11bとなる。このような作用が生じるp型の熱電半導体素子10とn型の熱電半導体素子11とを図示しない金属電極を介して電気的に直列にいわゆるπ形結合されたp−n接合対12に、電流Iを流すと、π形の一方で吸熱、他方で発熱が起こり、熱が一方から他方へ向かってポンピングされる。すなわち電子がp型からn型の方向に流れる金属電極とp型の熱電半導体素子10における吸熱面10aとの境界および電子がp型からn型の方向(電流はn型からp型の方向)に流れる金属電極とn型の熱電半導体素子11における吸熱面11aとのそれぞれの境界では、電子は低いエネルギー状態から高いエネルギー状態へ移行するので、周囲の結晶格子から振動エネルギーを吸収して、吸熱現象が起こる。逆に、電子がn型からp型の方向に流れる金属電極とp型の熱電半導体素子10における放熱面10bとの境界および電子がn型からp型の方向に流れる金属電極とn型の熱電半導体11における放熱面11bとの境界では、振動エネルギを吸収した電子は高いエネルギー状態から低いエネルギー状態に移行するので、余った振動エネルギを周囲の結晶格子に与えて、放熱現象が起こる。
【0055】
このように一方が吸熱側となり、他方が放熱側となって、ペルチェ効果による作用が得られるp−n接合対12が、複数並べられて、電気的に直列にπ形結合されて連結されてポリイミドシート9上に配置される。また、複数対のp型の熱電半導体素子10とn型の熱電半導体素子11とは、ポリイミドシート9上に二次元方向に格子状に配列されて形成される。さらに、ポリイミドシート9上の複数対のp型の熱電半導体素子10とn型の熱電半導体素子11とは、前述の第1の伝熱部材7と第2の伝熱部材8とから形成される層状の隙間、具体的には第1の伝熱部材7の内側面7bと第2の伝熱部材8の内側面8aとの相対する面同士および第1の伝熱部材8の外側面8bと第2の伝熱部材7の外側面7cとの相対する面同士の寸法に適合するように配置されて、統一のある纏まり(集合)を成している。このように纏まって配置されたp型の熱電半導体素子10とn型の熱電半導体素子11とが設けられた領域がポリイミドシート9上に複数設けられている。そして、このp型の熱電半導体素子10とn型の熱電半導体素子11とが設けられた領域ごとに、p型の熱電半導体素子10とn型の熱電半導体素子11とが直列に結線された一方の端部と他方の端部とに導線13が設けられている。
【0056】
このように構成された冷却素子ユニット(第2冷却手段)4は、その一方の面が一様に吸熱面4aとなり、他方の面が一様に放熱面4bとなる。そして、図1または図3に示すように、この吸熱面4aが第1の伝熱部材7の放熱面である内側面7bおよび外側面7cに熱伝達可能に対向させて配置されて取り付けられる。一方、冷却素子ユニット4の放熱面4bは、第2の伝熱部材8の吸熱面である内側面8aおよび外側面8bに熱伝達可能に対向させて配置されて取り付けられる。言い換えると、第1の伝熱部材7の内側面7bと冷却素子ユニット4の吸熱面4aとが対向して熱伝達可能に取り付けられ、かつ冷却素子ユニット4の放熱面4bと第2の伝熱部材8の内側面8aとが、対向して熱伝達可能に取り付けられて、この内側面7bと内側面8aとの隙間に冷却素子ユニット4が挟まれた(介装された)構成となる。また、第2の伝熱部材8の外側面8bと冷却素子ユニット4の放熱面4bとが対向して熱伝達可能に取り付けられ、かつ冷却素子ユニット4の吸熱面4aと第1の伝熱部材7の外側面7cとが、対向して熱伝達可能に取り付けられて、この外側面8bと外側面7cとの隙間に冷却素子ユニット4が挟まれた(介装された)構成となる。このように複数設けられた第1の伝熱部材7と第2の伝熱部材8とが構成する隙間に、層状に冷却素子ユニット4が挟まれた(介装された)構成となる。
【0057】
この冷却素子ユニット4が、複数の第1の伝熱部材7と第2の伝熱部材8とが構成する隙間に層状に設けられる際、冷却素子ユニット4の熱電半導体素子10,11と伝熱部材7,8とが接触する境界は、電気的に絶縁性を有し、かつ熱的には伝導性となるように構成される。そのため、例えば、p型の熱電半導体素子10とn型の熱電半導体素子11とのポリイミドシート9上での設置状態は、p型の熱電半導体素子10とn型の熱電半導体素子11との吸熱面10a,11aおよび放熱面10b,11bがむき出しの状態もしくはセラミックでコーティングされた状態もしくはサーマルグリスが塗布された状態のうちの少なくともいずれかの状態とされる。
【0058】
また、シート状の冷却素子ユニット4が複数設けられた第1の伝熱部材7と第2の伝熱部材8とが構成する隙間に配置される際、この層状の隙間に対して、第1の伝熱部材7の内側面7bと第2の伝熱部材8の内側面8aとの相対する面同士もしくは第1の伝熱部材8の外側面8bと第2の伝熱部材7の外側面7cとの相対する面同士に適合させて、一枚のシート状の冷却素子ユニット4を折り曲げて配置することが可能である。また、複数に分割されたシート状の冷却素子ユニット4を、第1の伝熱部材7の内側面7bと第2の伝熱部材8の内側面8aとの相対する面同士もしくは第1の伝熱部材8の外側面8bと第2の伝熱部材7の外側面7cとの相対する面同士に適合させて、各層ごとに配置する構成であってもよい。
【0059】
このように第1の伝熱部材7と第2の伝熱部材8とが構成する隙間にそれぞれ配置された冷却素子ユニット4は、ポリイミドシート9上に纏まって配置されたp型の熱電半導体素子10とn型の熱電半導体素子11とが設けられた領域同士を結線するために、その領域同士を結線するために設けられた導線13を介して、隣り合う層間に配置された冷却素子ユニット4をコネクタ14により接続する。また、図1に示すように、第1冷却手段3の左右両側には、第1の伝熱部材7の底面7eと第2の伝熱部材8の内下面8dとの隙間および第1の伝熱部材7の内上面7dと第2の伝熱部材8の上面8cとの隙間が設けられている。このように第1冷却手段3の左右両側には、開放された部分が設けられている。この開放された部分からすべてが直列に結線された冷却素子ユニット4の一方端のp型の熱電半導体素子10に接続されている導線13が、図示しない電源装置に接続され、また冷却素子ユニット4の他方端のn型の熱電半導体素子11に接続されている導線13が、図示しない電源装置に接続される。この電源装置は、図示しない制御装置および/またはセンサなどにより第2冷却手段(冷却素子ユニット)4による冷却状態を自動もしくは手動で調整する機能を有する。
【0060】
また、図1に示すように、この発明の熱電冷却装置1には、第1冷却手段3における放熱面3bに対向して熱伝達可能に接触させた第3冷却手段(放熱部材)5が設けれらている。この接触面には、熱抵抗を低くする目的で第1冷却手段3における放熱面3bと第3冷却手段5とが接触する面の平面度を上げるため、言い換えれば、発熱体2と第1冷却手段3とが接触する面の凹凸を埋めるためにサーマルグリスが塗布されている。この第3冷却手段5は、複数のフィン15が設けられたアルミニウムなどを成形したヒートシンク5である。複数のフィン15は間隔を開けて多数設けられている。これにより、その表面積は、層状に設けられた複数のフィン15により大きくされている。なお、このヒートシンク5には、図示しないファンなどの送風装置を設けることにより、さらに放熱力を高める構成としてもよい。また、第2冷却手段4による冷却力により発熱体2の冷却が十分おこなえるような状況では、静粛性の観点から図示しないファンなどの送風装置を使わない構成であってよい。
【0061】
さらに、冷却素子ユニット4が層状に収容され、複数の第1の伝熱部材7と複数の第2の伝熱部材8とが組み付けられた第1冷却手段3の外周には、図4および図5に示すフレーム6が設けられる。このフレーム6は第1冷却手段3の側面の周囲を覆い、熱伝達のために発熱体2が第1冷却手段3と接触する面および第1冷却手段3が第3冷却手段5と接触する面が開放された状態になるように成形されている。なお、このフレーム6の材質については、電気的には絶縁性を有する材質であってよい。
【0062】
つぎに、本発明の他の実施の形態を図面を参照して説明する。この他の実施の形態における熱電冷却装置1は、図1から図3に示すように上述した実施の形態における第2冷却手段(冷却素子ユニット)4と同様の構成である第1発電手段(TEG)17を有する。また、その他の構成についてもほぼ同一であるため、同一の構成について説明を省略する。この第1発電手段17においては、冷却素子ユニット4をThermo Electric Generator(TEG)として利用する。つまり、この第1発電手段17は、ポリイミドシート9上に複数設けられたp型の熱電半導体素子10とn型の熱電半導体素子11とにより冷却素子ユニット4と同様に構成される。また、この第1発電手段17の構成および熱電冷却装置1における配置は、第2冷却手段4と同様であり、その吸熱面4aと放熱面4bと同様に吸熱面17aと発熱面17bとを有している。そして、その直列にπ結合された第1発電手段17(冷却素子ユニット4)の両端部の導線13が図示しない蓄電装置などに接続されている。なお、p型の熱電半導体素子10とn型の熱電半導体素子11とは実施の形態とは用途が違うため、異なった構成の素子を用いてもよい。
【0063】
以下、本発明の実施の形態における熱電冷却装置1の動作について説明する。図1の第1冷却手段3の吸熱面3aに接触して配置された発熱体2は、中央演算処理装置(CPU)およびマイクロプロセッサ(MPU)等の高性能な半導体チップなどであり、高速に動作するためその表面が高温になる。高温となった発熱体2から放出される熱は、発熱体2と第1冷却手段3との接触面に塗布されたサーマルグリスを介して熱伝達可能に発熱体2と接触している第1冷却手段3における吸熱面3aから吸収される。第1冷却手段3が吸熱することにより、発熱体2が冷却される。
【0064】
発熱体2と接触して位置する第1冷却手段3における吸熱面3aすなわち複数の第1の伝熱部材7の上面7aに吸収された熱は、ベーパチャンバもしくはヒートパイプである第1の伝熱部材7の上面7a側で、内部の液体(作動液)の蒸発を惹き起こす。その蒸気は、エネルギ状態の低い第1の伝熱部材7における底面7e側に移動する。第1の伝熱部材7の底面7e側に移動した蒸気は、第1の伝熱部材7の内側面7bと外側面7cとを介して、図示しない電源装置によりその両端部の導線13に電圧が印加された冷却素子ユニット4における第1の伝熱部材7の内側面7bと外側面7cとに対向したそれぞれの吸熱面4aにより冷却される。その冷却された蒸気は、液体に戻り、ウィックなどの毛細管力により再度、第1の伝熱部材7の上面7a側に戻る。なお、この第1の伝熱部材7が銅を中空もしくは中実にL字型に成型した部材である場合には、通常の金属の熱伝導と同様に熱が伝導される。この場合、第1の伝熱部材7が、一様に高温となろうとし、そのため、第1の伝熱部材7における他方の端部も高温となる。また、冷却の際、図示しない電源装置に設けられた制御装置および/またはセンサにより発熱体2が適切に冷却されるように自動もしくは手動にて調整される。
【0065】
一方、第1の伝熱部材7の放熱面である内側面7bから放出された熱は、接触面に塗布されたサーマルグリス等を介して、第1の伝熱部材7の内側面7bに対向して接触する冷却素子ユニット4の吸熱面4aにより吸収され、また、第1の伝熱部材7の放熱面である外側面7cから放出された熱は、接触面に塗布されたサーマルグリス等を介して、第1の伝熱部材7の外側面7cに対向した別の冷却素子ユニット4の吸熱面4aにより吸収される。内側面7bから冷却素子ユニット4の吸熱面4aにより吸収された熱は、ペルチェ効果により、その冷却素子ユニット4の放熱面4b側に輸送される。外側面7cから別の冷却素子ユニット4の吸熱面4aにより吸収された熱は、ペルチェ効果により、別の冷却素子ユニット4の放熱面4b側に輸送される。
【0066】
冷却素子ユニット4の放熱面4b側に輸送された熱と別の冷却素子ユニット4の放熱面4b側から放出された熱とは、接触面に塗布されたサーマルグリス等を介して、同一の第2の伝熱部材8の内側面8aと外側面8bとに放出される。第2の伝熱部材8の内側面8aと外側面8bとに吸収された熱は、第2の伝熱部材8における上面8c側の作動液の蒸発を惹き起こす。その蒸気は、エネルギ状態の低い第2の伝熱部材8における底面8e側に移動する。第2の伝熱部材8の底面8e側に移動した蒸気は、複数の第2の伝熱部材8の底面8eすなわち第1冷却手段3における放熱面3bにサーマルグリス等を介して熱伝達可能に接触された第3冷却手段(ヒートシンク)5により冷却される。このヒートシンク5に伝達された熱は複数のフィン15によって、発熱体2に熱による影響を与えない状態で大気中などに放出される。さらに、第3冷却手段5にファンを取り付けた場合には、フィン15による熱がファンに送風されてさらに効率よく放熱される。
【0067】
つぎに、本発明の他の実施の形態における熱電冷却装置1の動作について説明する。第1発電手段17は、ゼーベック効果を利用したものであり、発熱体2で発熱した熱は、実施の形態と同様に、第1の伝熱部材7における内側面7bに輸送される。第1の伝熱部材7の内側面7bに輸送された熱は、サーマルグリスを介してポリイミドシート9上の各熱電半導体素子10,11の吸熱(冷却)面10a,11aにより吸収される。各熱電半導体素子10,11の吸熱面10a,11aに吸収された熱は、直列にπ結合された各熱電半導体素子10,11のゼーベック効果により、発電電力に変換される。この熱を発電電力に変換する作用は、ポリイミドシート9上の各熱電半導体素子10の吸熱面10a,11aが高温となり、それにより、各熱電半導体素子11の放熱(発熱)面10b,11bが相対的に低温となることで、その温度差による吸熱面10a,11aと放熱面10b,11bとのエネルギ状態の違いから各熱電半導体素子10,11に起電力が発生することによる。そして、導線13を介して図示しないバッテリなどに蓄電されるか、もしくは、発電電力として利用される。
【0068】
一方、ポリイミドシート9上の各熱電半導体素子10,11の発熱面10b,11bへと輸送された熱が、第2の伝熱部材8の内側面8aおよび外側面8bに吸収される。第2の伝熱部材8の内側面8aおよび外側面8bから第3冷却手段5により放熱されるまでの熱の伝達経路については本発明の実施の形態と同様である。なお、この他の実施の形態における熱電冷却装置1の動作つまり、冷却素子ユニット4を発電素子として使用する動作は、実施の形態における冷却要求が低い場合もしくは熱電冷却の必要のない構成もしくは発熱体2の発熱が熱電冷却の必要のない状況である場合に実施の形態において実行されうる。
【0069】
以上のように構成される熱電冷却装置1によれば、まず、第1冷却手段3では、発熱体2からの熱はサーマルグリスを介して第1冷却手段3の吸熱面3aに吸収されるため、熱抵抗を低く第1冷却手段3に熱を伝達できる。また、第1冷却手段3が熱抵抗の低いベーパチャンバもしくはヒートパイプで構成されていることによって、熱抵抗を低く第2冷却手段4に熱を輸送できる。また、第1冷却手段3が熱抵抗の低いベーパチャンバもしくはヒートパイプで構成されていることによって、熱を潜熱の形で輸送して伝達するため、熱抵抗が低く効率のよい熱輸送を行えると同時に発熱体2の近傍が限られた冷却スペースであっても、効率よく冷却できる。また、第1冷却手段3が設けられたことにより、直接に発熱体からの熱を第2冷却手段4すなわち第1発電手段17の熱電半導体素子10,11で吸収しないので、熱膨張や熱応力による熱電半導体素子10,11の破損等が発生しない。また、第1冷却手段3における第1の伝熱部材7と第2の伝熱部材8とが、L字型の部材であることから、それを複数並べて容易に冷却素子ユニット4を層状に配置するための隙間を層状に形成することができ、製造性が向上する。さらに、第2冷却手段4への熱伝達は、サーマルグリスを介して行われるため、第1冷却手段3から第2冷却手段4への熱伝達が効率よく行える。
【0070】
つぎに、第2冷却手段4では、冷却素子ユニット4がポリイミドシート9上に複数設けられたp型の熱電半導体素子10とn型の熱電半導体素子11とが交互に格子状に配置され、交互に電気的直列に結線されてπ結合されているため、導線13およびコネクタ14を接続するのみで、すべての熱電半導体素子10,11が直列π結合で結線できる。また、冷却素子ユニット4がポリイミドシート9上にp型の熱電半導体素子10とn型の熱電半導体素子11とが電気的に直列に配置されて、さらに一方の面が吸熱面4aとなり、他方の面が放熱面4bとなるように予め構成されることから、このように構成された冷却素子ユニット4を第1冷却手段3の内部に構成された層状の隙間にそれぞれ配置すればよいので、生産性が向上する。
【0071】
この熱電冷却装置1によれば、第1冷却手段3における第1の伝熱部材7と第2の伝熱部材8とが、上記のように複数の層状の隙間を構成し、その層状の隙間に複数の冷却素子ユニット4を熱伝達可能に配置して積層させることにより、設置できる熱電半導体素子10,11の数が増えて、冷却素子ユニット4の吸熱面(冷却面)4aの面積が大きくなることから、第2冷却手段4での冷却効果もしくは第1発電手段17の発電効果が向上される。また、第2冷却手段4による冷却は制御装置により、熱電半導体素子10,11に印加する電圧が調整できることから、要求される吸熱(冷却)および放熱(発熱)能力以上に入力電力を上げることによる電圧の消費が抑制できる。
【0072】
そして、第1冷却手段3の第2の伝熱部材8から第3冷却手段5への熱の伝達がサーマルグリスを介して行われることから、熱を効率よく伝達できる。また、複数のフィン15などにより構成される第3冷却手段5が設けられていることから、発熱体2から吸収した熱を、発熱体2に熱の影響を与えない大気中などの発熱体2から離れた場所に熱を放出することができる。さらに、第1の伝熱部材7と第2の伝熱部材8とにより構成された第1冷却手段3の周囲にフレーム6が設けられたことから、装置全体の強度を増して保持することができる。
【0073】
なお、この熱電冷却装置1は、上記構成では第1の伝熱部材7と第2の伝熱部材8との二つの伝熱部材7,8を有する構成を示したが、例えば、第2の伝熱部材8を省略して、第1の伝熱部材7から伝達された熱を第2冷却手段4から直接に第3冷却手段5で放熱する構成であってもよい。この場合、第2冷却手段4の放熱面4bから直接に第3冷却手段5が熱伝達可能に接触する構成となる。また、上述したようにこの熱電冷却装置1は、第2冷却手段4の構成が冷却を行う構成と発電を行う構成とを組み合わせて同時に熱電冷却と熱電発電とを調整可能に実行できる構成であってもよい。さらに第1の伝熱部材7と第2の伝熱部材8とは、L字型の伝熱部材である構成としたが、第1冷却手段3の内部に形成される層状の隙間に対して冷却素子ユニット4を積層させて介装できれば、L字型の部材に限定されず、例えばT字型の部材などを用いてもよい。その場合、例えばT字型の伝熱部材の凹部同士を所定の隙間を設けて対向させて配置することにより、本発明の実施の形態と同様に第1の伝熱部材7と第2の伝熱部材8とが介装されて冷却素子ユニット4を積層させて配置する構成とする。
【0074】
この発明と実施の形態との対応関係について述べると、この発明にかかる熱電冷却素子は実施例における熱電半導体素子10,11であり、また、この発明にかかる放熱部材は、第3冷却手段5である。
【符号の説明】
【0075】
4…冷却素子ユニット(第2冷却手段)、 4a…吸熱部(吸熱面、冷却面)、 4b…発熱部(発熱面、放熱面)、 7…伝熱部材(第1の伝熱部材)、 8…伝熱部材(第2の伝熱部材)、 10,11…熱電冷却(半導体)素子。

【特許請求の範囲】
【請求項1】
通電することにより、吸熱部と発熱部とが相互に反対側の面に生じる多数の熱電冷却素子を備え、その吸熱部により発熱体で発生した熱を冷却する熱電冷却装置において、
前記多数の熱電冷却素子が二次元方向に配列されて、冷却素子ユニットが形成されるとともに、
複数の前記冷却素子ユニットが複数層に積層され、かつ各層の前記冷却素子ユニットの間に、これら冷却素子ユニットに対して熱の出入りを行う伝熱部材が介装され、
その伝熱部材を挟んで位置する一方の前記冷却素子ユニットにおける吸熱部と他方の前記冷却素子ユニットにおける吸熱部とが同一の前記伝熱部材に熱伝達可能に接触し、かつ他の伝熱部材を挟んで位置する一方の前記冷却素子ユニットにおける発熱部と他方の前記冷却素子ユニットにおける発熱部とが他の前記伝熱部材に熱伝達可能に接触していることを特徴とする熱電冷却装置。
【請求項2】
前記熱電冷却素子は、前記吸熱部と前記発熱部との温度の差から、起電力が生じる構成を含むことを特徴とする請求項1に記載の熱電冷却装置。
【請求項3】
前記冷却素子ユニットにおける吸熱部に接触する前記伝熱部材および前記冷却素子ユニットにおける発熱部に接触する前記伝熱部材は、L字型の伝熱部材を複数並べて配置されて形成されることを特徴とする請求項1または2に記載の熱電冷却装置。
【請求項4】
前記伝熱部材は、潜熱の形で熱を輸送することを特徴とする請求項1ないし3のいずれかに記載の熱電冷却装置。
【請求項5】
前記伝熱部材は、ベーパチャンバであることを特徴とする請求項1ないし4のいずれかに記載の熱電冷却装置。
【請求項6】
前記伝熱部材は、ヒートパイプであることを特徴とする請求項1ないし4のいずれかに記載の熱電冷却装置。
【請求項7】
前記冷却素子ユニットは、一方の面で吸熱し他方の面で発熱するように、ポリイミドシート上に複数対のp型素子とn型素子とがπ結合されて構成されていることを特徴とする請求項1ないし6のいずれかに記載の熱電冷却装置。
【請求項8】
前記伝熱部材に外設されて、前記伝熱部材もしくは前記冷却素子ユニットから排出される熱が伝達され、伝達された熱を前記熱電冷却装置の外部に放出する放熱部材を備えることを特徴とする請求項1ないし7のいずれかに記載の熱電冷却装置。
【請求項9】
前記放熱部材が、フィンを備えていることを特徴とする請求項1ないし8のいずれかに記載の熱電冷却装置。
【請求項10】
前記伝熱部材と前記冷却素子ユニットとの間には、小さな隙間や凹凸を埋めて、空気より熱伝導性がよいサーマルグリスが設けられることを特徴とする請求項1ないし9のいずれかに記載の熱電冷却装置。
【請求項11】
前記発熱体と前記伝熱部材との間および前記伝熱部材と前記放熱部材との間には、小さな隙間や凹凸を埋めて、空気より熱伝導性がよいサーマルグリスが設けられることを特徴とする請求項1ないし10のいずれかに記載の熱電冷却装置。
【請求項12】
組み付けられた前記伝熱部材の周囲を囲んで補強するフレームを有することを特徴とする請求項1ないし11のいずれかに記載の熱電冷却装置。
【請求項13】
前記熱電冷却素子はペルチェ効果を有する熱電半導体素子であることを特徴とする請求項1ないし12のいずれかに記載の熱電冷却装置。
【請求項14】
前記冷却素子ユニットは入力電力を変動させることにより、前記伝熱部材から吸収する熱量および前記伝熱部材に向けて放出する熱量が調整されることを特徴とする請求項1ないし13のいずれかに記載の熱電冷却装置。
【請求項15】
前記熱電冷却素子はゼーベック効果を有する熱電半導体素子であることを特徴とする請求項1ないし14のいずれかに記載の熱電冷却装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2011−82272(P2011−82272A)
【公開日】平成23年4月21日(2011.4.21)
【国際特許分類】
【出願番号】特願2009−231906(P2009−231906)
【出願日】平成21年10月5日(2009.10.5)
【出願人】(000005186)株式会社フジクラ (4,463)
【Fターム(参考)】