説明

眼球組織への生理活性薬剤導入のための組成物及び装置

【課題】本発明は、超音波エネルギーを利用した眼球組織への生理活性薬剤の導入に適した組成物及び装置を提供することを目的とする。
【解決手段】本発明は、眼球組織に生理活性薬剤を導入するための組成物であって、導入されるべき生理活性薬剤と微小気泡含有小球体とを含有することを特徴とする眼球組織への生理活性薬剤導入用組成物に関する。本発明はまた、眼球表面組織又は眼球内部組織への生理活性薬剤の導入に適した超音波照射装置に関する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は超音波エネルギーを利用した眼球組織への生理活性薬剤の導入のための組成物及び装置に関する。
【背景技術】
【0002】
疾患に関わる遺伝子情報が解明され、それを治療に応用する遺伝子治療に注目が集まっている。遺伝子治療は、細胞障害を伴うことなく目的遺伝子が標的細胞に取り込まれ、目的遺伝子が蛋白合成を行う必要がある。また、遺伝子治療以外でも、薬物を標的細胞や標的部位にのみ運び(デリバー)作用させることで、薬物治療の効率を上げ、正常細胞への副作用を軽減しようとするドラッグデリバリーにも大変注目が集まっている。
【0003】
一方、視覚は日常生活において重要な感覚であり、平均寿命の延長に伴って遺伝子眼疾患、難治性疾患も増加の一途をたどり社会的な問題となっている。
【0004】
眼球組織(図7)(特に網膜、虹彩、水晶体等の眼球内部組織)は外部と交通のない組織であるため、生理活性薬剤を安全かつ効率的に投与することは従来不可能であった。
【0005】
眼科における遺伝子治療の分野では、動物を用いたウイルスベクターによる遺伝子導入で網膜変性症などの遺伝性疾患の症状を改善できることがわかり、治療への期待は大きい。しかし、ウイルスベクターは目的遺伝子と同時にベクターの遺伝子も組み込まれるため、安全性の面で人への臨床応用となると問題も多くあたらな方法を模索している現状である。
【0006】
眼科におけるドラッグデリバリーに関しては、すでに臨床応用が始まっているが単純に投与薬物を標的細胞近くに供給しゆっくりと除放すると言う形にとどまっている。
【0007】
遺伝子導入法の1つとしてソノポレーション法が知られている。この方法は、細胞に超音波を照射すると細胞膜に可逆性の小さな孔が出現し、その孔を介して様々な物質が細胞内に取り込まれるという現象を利用したものであり、近年関心が集まっている(特許文献1)。しかしながら、眼球は脆弱な組織であるため既存のソノポレーション法では侵襲が大きすぎるため、眼球組織に対する臨床的応用は進んでいない。
【0008】
【特許文献1】特開2004−182728号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
本発明は、超音波エネルギーを利用した眼球組織への遺伝子、薬物、その他種々の物質(本明細書で「生理活性薬剤」又は単に「薬剤」と称することがある)の導入に適した組成物を提供することを目的とする。
【0010】
本発明はまた、超音波照射によって生理活性薬剤を細胞内に導入するために、眼球において安全に超音波照射可能な装置を開発することを目的とする。これまでに超音波による生理活性薬剤の導入を行うために実験室レベルで利用可能な超音波照射装置は存在しているが、眼球及び眼周囲組織へ与えるダメージが大きいため、実用的な利用には向かず改良が必要である。
【0011】
ここで「安全に超音波照射可能な装置」とは以下の項目の少なくとも1つを満たすものであることが好ましい。1.眼球という臓器の形状及び特性に最適化した超音波照射装置であること。2.眼球を構成する細胞(特に網膜や視神経)は、感覚細胞というセンサーのようなデリケートな細胞であるために、細胞障害性には特に配慮した装置であること。3.超音波照射部だけではなく、投与されるべき生理活性薬剤を標的部位に効率的に供給することができる構造を併せ持つこと。4.照射部における超音波の周波数、エネルギーは単一のものではなく、眼球の各部位においても異なるために、種々の因子の出力を調整する事ができる装置であること。
【課題を解決するための手段】
【0012】
本発明は以下の発明を包含する。
(1)眼球組織に生理活性薬剤を導入するための組成物であって、導入されるべき生理活性薬剤と微小気泡含有小球体とを含有することを特徴とする眼球組織への生理活性薬剤導入用組成物。
【0013】
(2)前記生理活性薬剤が、オリゴヌクレオチド、アンチセンスオリゴヌクレオチド、トリプルヘリックスフォーミングオリゴヌクレオチド、オリゴヌクレオチドプローブ、ヌクレオチドベクター、ウイルスベクターおよびプラスミドからなる群より選択される少なくとも1種であることを特徴とする(1)記載の組成物。
【0014】
(3)眼球内部組織への生理活性薬剤の導入のための超音波照射装置であって、
眼球内部組織に挿入されて標的部位に超音波を照射する、超音波発生部を備えた超音波照射部と、
前記超音波照射部を冷却するための冷却手段とを備えた前記装置。
(4)前記冷却手段が、灌流液を前記超音波照射部の外表面上を流れるように灌流させる手段である、(3)記載の装置。
【0015】
(5)前記超音波照射部が、太さが1.5mm以下、長さが30mm以上である略棒状の形状である(3)又は(4)記載の装置。
(6)生理活性薬剤を標的部位に供給するための供給手段を更に備えた(3)〜(5)の何れか記載の装置。
【0016】
(7)標的部位を観察するための観察手段を更に備えた(3)〜(6)の何れか記載の装置。
(8)生理活性薬剤を標的部位に供給するための供給手段と、標的部位を観察するための観察手段とを更に備え、
前記供給手段に含まれ、標的部位に向けられる部材と、前記観察手段に含まれ、標的部位に向けられる部材とが、各部材の先端部が前記超音波照射部の先端部に位置するように前記超音波照射部の内部に配設されている(3)〜(5)の何れか記載の装置。
【0017】
(9)眼球表面組織への生理活性薬剤の導入のための超音波照射装置であって、
眼球表面組織の標的部位に超音波を照射する、超音波発生部を備えた超音波照射部と、
前記超音波照射部に配設された、瞼が前記超音波照射部の先端部に接触することを阻止するための瞼接触阻止部材とを備えた前記装置。
【0018】
(10)前記瞼接触阻止部材が超音波照射方向に向けて先広がり状に形成された部材である(9)記載の装置。
(11)前記瞼接触阻止部材の全部又は一部が実質的に透視可能な材料で構成されているか、又は、前記瞼接触阻止部材の一部に開口部が設けられている(9)又は(10)記載の装置。
【0019】
(12)前記超音波照射部を冷却するための冷却手段を更に備えた(9)〜(11)の何れか記載の装置。
(13)前記冷却手段が、灌流液を前記超音波照射部の外表面上を流れるように灌流させる手段である、(9)〜(12)の何れか記載の装置。
(14)生理活性薬剤を標的部位に供給するための供給手段を更に備えた(9)〜(13)の何れか記載の装置。
【発明の効果】
【0020】
本発明に係る組成物を用いれば、ソノポレーション法により生理活性薬剤を効率的に眼球組織に導入することが可能である。
【0021】
本発明に係る超音波照射装置を用いてソノポレーション法を行えば、眼球組織の各部位(眼球表面組織又は眼球内部組織)への生理活性薬剤の導入を効率的かつ安全に行うことができる。
【発明を実施するための最良の形態】
【0022】
本発明において眼球組織に導入されるべき生理活性薬剤としては生理活性を有するものであれば特に限定されず、生理活性を有する核酸、タンパク質(ペプチドを含む)、糖、その他の化合物などの合成又は天然の生理活性化合物が挙げられる。なかでも、オリゴヌクレオチド、アンチセンスオリゴヌクレオチド、トリプルヘリックスフォーミングオリゴヌクレオチド(TFO)、オリゴヌクレオチドプローブ、ヌクレオチドベクター、ウイルスベクターおよびプラスミドからなる群より選択される少なくとも1種の生理活性薬剤が好ましく、とりわけ、生理活性薬剤を有する遺伝子をコードしたプラスミドDNAが特に好ましい。その他の生理活性薬剤としては、消炎剤(例えばコルチコステロイド)、免疫抑制剤(例えばサイクロスポリン、タクロリムス)、種々の光感受性物質、血管新生を促進又は抑制する活性を有する成分(例えばHGF、FGF、VEGF、VEGFに対するオリゴタイプsiRNA)、IL−1受容体アンタゴニスト、NFκBデコイなどが挙げられるがこれらには限定されない。
【0023】
プラスミドDNAにコードされる遺伝子の生理活性は、特に限定されないが、例えば、眼における疾患に対応する遺伝子、すなわち、眼における疾患に対して拮抗的に作用する遺伝子や疾患における欠如を補足する遺伝子が用いられる。このような遺伝子としては、例えば、サイトカイン、成長因子、抗体または抗体断片、サイトカインまたは成長因子に対するレセプター、増殖防止または増殖抑制作用を有するタンパク質、酵素、脈関係抑制剤、血栓誘発物質、および凝集抑制剤、フィブリン溶解作用を有するタンパク質、ウイルスコートタンパク質、細菌性抗原および寄生動物性抗原、腫瘍抗原、血液循環に効果を有するタンパク質、ペプチドホルモン、ならびにリボザイムおよびアンチセンスRNAのようなリボ核酸からなる群より選択される薬理活性化合物をコードする遺伝子等が挙げられる。
【0024】
本発明に用いられる微小気泡含有小球体としては、例えば、不溶性ガスであるパーフルオロカーボンを含有するアルブミン由来の微小気泡含有小球体が挙げられる。微小気泡含有小球体は弾性、圧縮性があり、水より密度が低く、生体組織と体液の間で音響インピーダンスの不均衡を生じる。よってこのような性質により超音波を効率良く反射する。また、微小気泡含有小球体はキャビテーションのためのエネルギー閾値を低下させる。キャビテーションにおいて、超音波エネルギーはミクロ領域に濃縮され、キャビテーションは安全性には影響がない小さな衝撃波を引き起こし薬剤の細胞透過性を増加させる。キャビテーションは微小気泡含有小球体を破壊し、微小気泡含有小球体に付着あるいは封入されていた生理活性薬剤が放出される。こうして、超音波照射により、生理活性薬剤が細胞に導入され得る。
【0025】
パーフルオロカーボンを含有するアルブミン由来の微小気泡含有小球体としては、Optison(商標名、Molecular Biosystems Inc.)が特に好ましく用いられる。Optisonは従来から超音波診断用造影剤として使用されており、その安全性が確認されている。
【0026】
本発明の生理活性薬剤導入用組成物は、上述の生理活性薬剤と微小気泡含有小球体とを混合することにより得ることができる。混合割合は特に限定されないが、例えば、生理活性薬剤に対して微小気泡含有小球体が1〜90重量%、好ましくは5〜50重量%、より好ましくは7〜30重量%、最も好ましくは10〜20重量%となるような割合である。本発明の組成物中では生理活性薬剤は微小気泡含有小球体の気泡の近傍に存在するか、表面に存在するか、或いは気泡内部に封入されているものと考えられる。
【0027】
本発明において薬剤導入の標的となる眼球組織としては、より具体的には、網膜、強膜、虹彩、水晶体、ぶどう膜、視神経等の眼球内部組織や、角膜、結膜等の眼球表面組織が挙げられる。なかでも眼球深部組織である網膜及び強膜は、従来、薬剤の送達が特に困難であるとされてきたが、本発明によればこれらの組織にも非侵襲的に薬剤を送達することができる。
【0028】
本発明の組成物を用いた角膜組織への薬剤導入方法としては、例えば、本発明の組成物を角膜実質内に注射したのち超音波照射を行う方法が挙げられる。網膜、強膜等の眼球深部組織への薬剤導入方法としては、例えば、本発明の組成物を硝子体内に注射したのち超音波照射を行う方法が挙げられる。
【0029】
照射される超音波の周波数、強度、照射時間などは送達すべき薬剤の種類、量、疾患の状態などの諸事情に応じて適宜選択できるため特に限定されないが、非限定的に例示するとすれば、周波数は0.1〜10MHz、好ましくは0.5〜5MHz、より好ましくは0.7〜3MHz、最も好ましくは0.8〜1.5MHz(例えば1MHz)であり、強度は好ましくは0.1〜10w/cm、より好ましくは0.7〜3w/cm、最も好ましくは0.8〜1.5w/cm(例えば1w/cm)であり、duty比(一定時間あたりの超音波のon/off割合)は好ましくは10〜100%、より好ましくは25〜75%、最も好ましくは40〜60%(例えば50%)であり、照射時間は好ましくは1〜999秒間、より好ましくは30〜300秒間、最も好ましくは60〜120秒間である。例えば、網膜に対してルシフェラーゼプラスミドを導入する場合、周波数1MHz,強度1w/cm、照射時間120〜240秒、duty比50%が最も効率に遺伝子導入できる条件である。
【0030】
本発明の組成物の送達に使用し得る超音波照射装置の特に特に好ましい形態を以下に説明する。なお下記の超音波照射装置は上記組成物として調製された生理活性薬剤を送達するのに用いることができるだけでなく、他の形態の生理活性薬剤を送達するためにも使用することができる。
【0031】
眼球は、その前方上方部に眉丘が存在し、内側には鼻骨が存在し、後方が眼窩骨によって囲まれたスペースに位置する約2.5cm程度の球状の臓器である。また、眼球の最前にある角膜は、上下のまぶた(眼瞼)におって覆われている(図7a)。言い換えると、入り口が狭くなった小さな袋の中に位置している臓器である。従って、眼球に超音波を照射するには、その標的部位に応じて超音波プローブの形状を変えることが好ましい。
【0032】
例えば、水晶体、ぶどう膜、網膜、視神経、前房や硝子体腔(図7b)といった眼球内部組織を標的部位する場合は眼内用超音波プローブ1が好ましく、角膜、強膜の一部、結膜、眼瞼、眼球周囲皮膚など(図7a)の眼球表面組織を主な標的部位とする場合は眼外用超音波プローブ2が好ましい。
【0033】
上記2種類の超音波プローブは照射標的部位は異なるが、眼球という狭いエリアへの照射という点は共通である。両者に共通する構造としては、上記2種類の超音波プローブは共に、標的部位に超音波を照射する部材(本明細書において「超音波照射部」又は単に「照射部」と称する)11,21と、術者が超音波プローブを保持するための部材(本明細書において「支持部」と称する)12,22が挙げられる。また、超音波照射部の形状は通常は細長い形状であるから、超音波エネルギーを効率的に組織に伝えるためには、超音波発生部101、201は照射部の先端部に位置していることが好ましい。
【0034】
照射する超音波エネルギーは0.5〜10MHz、2w/cm以下であることが好ましい。この範囲であれば、超音波照射によって標的部位が高熱になることはまれである。しかし、照射部が組織を強く押しつけるように接触した場合には、同部位に熱が発生し組織障害を起こす可能性は考慮しておく必要がある。眼内用超音波プローブ及び眼外用超音波プローブともに照射部を冷却するための冷却手段を備えていることが好ましい。特に眼内用超音波プローブにおいては冷却手段を備える必要性が高い。
【0035】
眼内用超音波プローブにおいて特に重要な点は、照射部の大きさである。硝子体腔、前房に照射部を挿入するには、眼球の外壁の一部である毛様体扁平部強膜や輪部角膜(図7a,b)を穿刺した上で、超音波照射部11を挿入する必要がある。同部位以外を穿刺すると穿刺にともなって網膜剥離などの合併症が起こるために、この部位にしか穿刺することができない。穿刺の幅は大きすぎると眼球が虚脱して組織が障害されるため、穿刺の幅は1.5mm以内にとどめなければならないのが通常である。従って照射部の太さ16はその穿刺部を通ることが可能な大きさ、すなわち1.5mm以内であることが好ましい。照射部の長さ17は、穿刺部から最も離れた場所に位置する視神経(図7b)まで約20mm程度であることから、最低30〜40mmの長さであることが好ましい。
【0036】
眼内用超音波プローブ1の照射部11を硝子体腔や前房(図7b)に挿入して、標的部位の状況を詳細に確認するためには、更に、標的部位を観察するための手段を備えたものであることが好ましい。かかる観察手段としては、例えば、眼内用超音波プローブに光源や内視鏡による観察システムを搭載することが好ましい。
【0037】
眼外用超音波プローブ2の標的部位は表面組織であるから、眼内用1と異なり、穿刺する事なく標的部位に直接到達することができる。従って、超音波照射部の太さは照射先の大きさに適合するように適宜選択することができる。眼外用超音波プローブ2の照射標的部位は角膜や結膜(図7a)が主であること、及び、あまり大きすぎると標的以外の部位にも超音波があたることを考慮すると、照射部の太さ26は3〜9mm程度であることが好ましい。また、標的部位の大きさに応じて選択可能な複数の種類の太さの超音波照射部を用意することが好ましい。
【0038】
眼外用超音波プローブ2では、標的部位である角膜、結膜、強膜の一部(図7b)等に照射を行おうとすると、まばたきによって上下眼瞼(図7a)が照射部の先端を圧迫するため正確な照射が行えない可能性がある。そこで、眼外用超音波プローブ2は更に、瞼がその先端部に接触することを阻止するための瞼接触阻止部材を備えていることが好ましい。瞼接触阻止部材は超音波照射方向に向けて先広がり状に形成された部材4であることが好ましい。
【0039】
標的部位への効率的な生理活性薬剤の投与を達成するためには、超音波プローブ1,2は更に生理活性薬剤を標的部位(通常は超音波照射部の先端部の近傍)に生理活性薬剤を供給するための供給手段を備えていることが好ましい。眼内用超音波プローブでは、前述の通り、超音波照射部のサイズを小さくする要請があることから、該供給手段は超音波照射部の内部に配設されていることが好ましい。眼外用超音波プローブでは、照射部のサイズに大きな制限がないことから、該供給手段は照射部の外部に付設されてもよい。
【0040】
通常は、超音波周波数、出力、出力時間、一定時間あたりの超音波のon/off割合などは、コントロールユニット6(図6)を用いて制御される。また、超音波照射部は清潔域であるために、超音波照射の開始、灌流などをフットスイッチ69で管理することが好ましい。フットスイッチ69もまたコントロールユニット6に接続される。
【0041】
本発明について一実施形態を挙げ、図面に基づいて以下に説明する。なお、本発明は以下に記述する実施の形態に限定されるものではなく、特許請求の範囲に記載した技術思想の範囲において種々の変更が可能なのは言うまでもない。
【0042】
図1は、超音波プローブ(図1a:眼内用、図1b:眼外用)の斜視図である。
眼内用超音波プローブ1は、眼内に挿入される超音波照射部11と術者が超音波照射部を操作するための支持部12からなり、コントロールユニット6へつながるコード13を有する。支持部12は、灌流冷却を行うために灌流液を流通させるチューブに接続されるコネクタ14を有している。
【0043】
眼内用超音波プローブ1は、直径約25mmの眼球内(硝子体腔、前房)(図7b)に挿入して用いられる。照射部11は好ましくは、長さ17が30mm以上、例えば30〜40mm程度であり、太さ16が1.5mm以下、例えば1〜1.5mm程度である略棒状(例えば円柱形)の形状である。支持部12については、術者の好みに応じて適宜選択し得るが、照射部の操作性を考慮すれば、長さ19が40〜50mm、太さ18が10mm以内の円柱型が適切である。
【0044】
図2aは眼内用超音波プローブ1の中心軸に沿った断面図を示す。図2bは眼内用超音波プローブ1の先端部を超音波照射方向から見た図である。図2cは眼内用超音波プローブ1の先端付近の図2bの破線に沿った矢印方向からの拡大断面図を示す。眼内用超音波プローブ1は、超音波発生部101以外に、ライトガイド106、内視鏡用レンズ102、画像転送用のイメージガイド105、種々の生理活性薬剤を投与するための供給路103を備えている。ライトガイド106、内視鏡用レンズ102、画像転送用のイメージガイド105、及びそれらに接続された内視鏡システムが、本発明における観察手段に相当する。種々の生理活性薬剤を投与するための供給路103、薬剤送達用チューブ110、及びそれらに接続された薬剤送達システムが、本発明における供給手段に相当する。薬剤送達システムとしてはシリンジ、ポンプ等が挙げられる。また、シリンジ等の薬剤送達システムと供給路103とはチューブ110を経ずに直接接続されてもよい。生理活性薬剤を投与するための供給路103は図2bの破線で示される面を通る断面上には現れないため、図2a及びcでは供給路103は想像線で記載されている。超音波発生部101は直径0.7〜1mmの大きさであることが好ましい。超音波発生部101の背部にはチューブ104が接続されており、チューブ104はコード13を経由してコントロールユニット中の高周波数発信源に接続される。画像転送用のイメージガイド105の先端側には、イメージガイドとほぼ同径の円柱状の対物レンズ102が配置されている。イメージガイド105の外径は、好ましくは0.3mm程度である。材質は石英系光ファイバー、プラスチック系光ファイバーまたは多成分ガラス系光ファイバーなどが利用可能で特に限定されない。また対物レンズ102はロッドレンズの他、複数枚のレンズを組み合わせた光学レンズユニットであってもよい。供給路103は、所定の厚さを有する細径管であり生理活性薬剤を流通させることができる。照射部11は外套109で覆われている。外套109はステンレスなどの耐蝕性をもつ素材から構成された管である。照明用の複数のライトガイド106はイメージガイド105、対物レンズ102、供給路103とともに、外套の隙間を埋めるように長軸方向に沿って配設される。ライトガイドの本数は特に限定するものではなく、素材は石英、プラスチックなど公知の素材から任意に選択できる。
【0045】
超音波プローブ1は灌流冷却用に灌流液の流路107を有する。流路107の開口部108は照射部11と支持部12の移行部に設けられている。流路107は支持部後方のコネクタ14から枝分れを経て開口部108に至る(流路107の枝分れの様式についてはプローブ2における流路207と同様である。流路207についての明細書中の記述、並びに図3a及びbを参照されたい)。コネクタ14はコントールユニットの64の部位に接続されて灌流装置と連接される。灌流液は灌流装置につながった灌流ボトルから供給され、流路107を経て開口部108から排出される。排出された灌流液は照射部11の外表面上を流れて同部位を冷却する。効率的な冷却のためには更に、スリーブ51を用いることが好ましい(スリーブについては後記参照)。流路107、開口部108、灌流装置、灌流ボトル、スリーブ51等が本発明における冷却手段に相当する。
【0046】
図3aは眼外用超音波プローブ2の中心軸に沿った断面図である。図3bは図3aの破線における矢印方向から見た断面図である。眼外用超音波プローブ2は、眼内用超音波プローブ1と同様に、照射部21、支持部22を有する。超音波発生部201、チューブ209、コード23、灌流液の流路207、流路207の開口部208、コネクタ24はそれぞれ、眼内用超音波プローブ1における超音波発生部101、チューブ104、コード13、灌流液の流路107、流路107の開口部108、コネクタ14に対応する。各部材の機能及び構成については眼内用超音波プローブ1の説明を参照されたい。流路207は支持部後方のコネクタ24の近傍で2本に枝分れし、一方は支持部22の長手方向に沿って開口部108に至るように形成されており、他方は分岐点から架橋流路207aを経て支持部の中心軸に関して反対方向に迂回されたのち(図3b)、支持部22の長手方向に沿って開口部108に至るように形成されている(プローブ1における流路107についても同様である)。なお図3aにおいて架橋流路207aは中心軸を通る断面上に存在しないため、想像線で描く。眼外用超音波プローブ2の長手方向に沿って付設された生理活性薬剤の供給路25は眼内用超音波プローブ1の供給路103に相当する(図3aにおいて供給路25は中心軸を通る断面上に存在しないため、想像線で描く)。ただし供給路25は支持部22の内側を通り、照射部21の側壁部の外表面上を通るように付設されているという点で上記103と相違する。供給路25が照射部21の側壁部の外表面上を通るように付設されているのは、超音波を発信する面を大きく確保するためである。供給路25は19〜26ゲージ程度の内径をもつ。供給路25、薬剤送達用チューブ205、及び薬剤送達用チューブ205に接続された薬剤送達システムが、本発明における供給手段に相当する。薬剤送達システムとしてはシリンジ、ポンプ等が挙げられる。また、シリンジ等の薬剤送達システムと供給路25とはチューブ205を経ずに直接接続されてもよい。眼外用超音波プローブ2では標的部位の肉眼による観察が可能であるから、内視鏡システム等の観察手段は必ずしも必要ない。
【0047】
眼外用超音波プローブ2による照射標的部位は主に角膜や結膜、眼瞼(図7a)である。これらの組織は体表にあるため、眼内用超音波プローブ1のように小型である必要はない。術者が安定して超音波照射部を保持できること目的に、支持部22は長さ29が10cm程度、太さ28が1.5〜2cm程度の円柱形であることが好ましい。照射部の長さ27は2〜3cm程度、太さ26については、照射予定部位の大きさによって異なるが、角膜径を考慮すると3mm〜9mm程度の範囲であることが好ましい。より好ましくは、照射部の太さ26が異なる複数の眼外用超音波プローブ(例えば照射部の太さ26が3mm刻み3種類:3mm,6mm,9mmのもの)を用意して適宜選択できるようにしておく。
【0048】
眼外用超音波プローブ2を使用する際の問題点は、まばたきにより患者の瞼が照射部に接触して照射の位置ずれなどが起こる事である。そこで眼外用超音波プローブ2は更に、瞼がその先端部に接触することを阻止するための瞼接触阻止部材4を備えていることが好ましい。瞼接触阻止部材4は標的部位が存在する超音波照射方向に向けて先広がり状に形成された部材4であることが好ましい。図4aは瞼接触阻止部材4の斜視図であり、図4bは同部材の中心軸を通る面による縦断面図である。瞼接触阻止部材4は図4aの上部方向から眼外用超音波プローブ2の先端部を挿入することにより、眼外用超音波プローブ2に略同軸的に装着される。瞼接触阻止部材4はコーン状になった壁部41の全部又は一部が実質的に透視可能な材料(例えば透明なアクリル性樹脂)で構成されているか、又は、壁部41の一部に開口部44が設けられていることによって、術者が眼球表面を視認し得るものであることが好ましい。壁部41の開放された側の縁端部を上下眼瞼(図7a)が挟む形となって、瞼が照射部に直接に接することが阻止される。壁部41の開放された側の縁端部が構成する円は半径7mm程度であることが好ましい。この大きさである場合、壁部41の縁端部を瞼の間に入れることが容易であり且つ外れ難いからである。
【0049】
瞼接触阻止部材4は、超音波プローブの照射部が挿入される側の端部に、同部材の中心軸方向に突出するように形成され、中央に開口部を有する壁部43を有している。壁部43は、照射時に超音波照射部の先端を角膜や結膜に強く押しつけすぎないようにするストッパーの役割を担う。照射部21と支持部22との段差部分が壁部43に当接することにより、眼外超音波プローブ2の照射部21を図4b上方向から挿入するときに、眼外超音波プローブ2が一定程度以上図4b下方向に挿入されることが禁止される。例えば、支持部22の太さが1.5〜2cmであり、照射部21の最大太さが9mmである場合には、壁部43により包囲される開口部の内径を1cmとすることでその機能を持たせることができる。
【0050】
超音波プローブ1,2ともに、使用時には、冷却のためにスリーブ51を装着することが好ましい。スリーブ51は図5に示す通り、内径の大きい部分52と、内径の小さい部分54と、両部分を接続する、内径が中心軸方向に沿って連続的に変化する移行部53とを有する中空構造を有する。超音波照射部11、21は、内径の大きい部分52の開放端から挿入されるから(図1参照)、超音波照射部11、21の挿入を容易にすることを目的として、図5に示すように、内径の大きい部分52は移行部53との接続部分から開放端方向に向けて内径が連続的に広がった形状であることが好ましい。超音波プローブ1,2にスリーブ51が装着された場合、図5に示す通り、内径の大きい部分52は支持部12、22に密着し、移行部53は開口部108,208の灌流排出方向に間隙を構成し、内径の小さい部分54の内壁面と照射部11、21の外壁面との間には僅かな隙間が形成される。そして、灌流液が流路107、207を経て開口部108,208より排出されると、内径の小さい部分54の内壁面と照射部11、21の外壁面との間の僅かな隙間を経由して、灌流液が超音波照射方向に流れ出る構造になっている。この灌流液の流れによって、照射部の外表面が冷却され、さらに照射面にも冷却された液体が供給されるため、超音波照射部の予想外の発熱に対応する事ができる。スリーブ51の内径の大きい部分52は支持部12、22の外径と同一の内径を有する部分を含んでいることが好ましく、内径の小さい部分54の内径は照射部11、21の外径よりも0.1〜1mm程度大きいことが好ましい。内径の小さい部分54の中心軸に沿った長さは1〜2cm程度が好ましい。移行部53の中心軸に沿った長さは5mm以内であることが好ましい。また、スリーブ51は柔軟なシリコン製であることが好ましい。スリーブ51をシリコン製にすることにより、標的部位に応じて照射部スリーブを適宜切除して長さを調整することが可能となる。
【0051】
眼内用、眼外用超音波プローブ1,2とも好ましくは共通のコネクタ形状を備えたコード13,23の形状を有し、コード13,23はコントロールユニット6の接続口65に接続される。コントロールユニット6の制御部62において、超音波の周波数、エネルギー、照射時間、一定時間あたりの超音波のon/off割合を制御できる。コントロールユニット6はまた、それらのパラメーター設定を表示するモニター61を有する。また灌流冷却用の灌流液が貯留された灌流ボトルからの流路がコントロールユニット6の部位64に接続され、コントロールユニット6内部の灌流装置で灌流圧をコントロールして、コネクタ14,24を経て流路107、207に灌流を供給する。超音波のon/off、灌流量などはコントロールユニットに接続するフットスイッチ69によって調整することができる。
【0052】
またコントロールユニット6はその内部に内視鏡の光源、CCDカメラを備え、眼内用超音波プローブ1からの映像を取り込み,内視鏡へ光を供給することができるものであることが好ましい。また、外部出力端子から既存のテレビモニターに映像を映し出すことができるものであってもよい。
【0053】
次に、眼内用超音波プローブ1を使用する場合の手順について説明する。理解の容易のために、網膜を標的部位とし、硝子体腔で超音波照射を行う場合を例に挙げて説明するが、下記の手順は原則として他の態様で本発明の装置を使用した場合にも当てはまる。
【0054】
まず処置を始める前に、標的部位に適合した照射条件を、コントロールユニット6を用いて設定する。超音波プローブ1にスリーブ51を装着し、灌流冷却システムが機能していることを確認する。供給路103は、精製水を一度通水し、正常であることを確認した上で、供給路103を空気で置換しておく。導入されるべき生理活性薬剤を含んだシリンジをチューブ110に装着し、ゆっくりとシリンジを進めて供給路103内の空気を押し出しておく、その後、角膜輪部から3.5mm離れた毛様体扁平部強膜を約1mm強穿刺(図7,8を参照)し、眼内用超音波プローブ1の照射部11を挿入する。照射部を内視鏡モニターで観察しながら目的の部位まで進める。シリンジをゆっくりと押して必要量を眼内へ投与する。モニターで投与物が広がることを確認しながら、超音波照射を開始する。照射後、内視鏡で照射部、周囲組織に異常がないことを確認して超音波照射部を引き抜く。その後、強膜穿刺部を8−0程度の太さの糸で縫合して処置を終了する。
【0055】
また、この方法は従来の硝子体手術に準じていることから、硝子体手術の併用療法などにも応用が可能である。例えば、糖尿病網膜症、加齢黄斑変性の手術後の追加処置として、血管新生抑制因子などを超音波によって、網膜に導入することなどが可能である。
【0056】
以上説明したように、本発明に係る超音波装置を使うと、眼組織に特異的に安全に遺伝子や薬物、蛋白を投与することが可能である。遺伝性の眼疾患に対しての新たな治療可能性がひらかれ、近年注目を集めている眼内への薬物送達(ドラッグデリバリー)にも応用可能であり、難治性の眼疾患の治療法の選択肢が増え、治療成績の向上が期待できる。
【0057】
以下、本発明に係る眼球組織への生理活性薬剤導入用組成物について実施例により説明するが、本発明は実施例に記載された範囲には限定されない。
【実施例1】
【0058】
in vitroにおける遺伝子導入
pEGFPプラスミド(Clontech)とOptison(Molecular Biosystems Inc.)とを5:1(重量比)の割合で混合した。ラット角膜上皮細胞(RC−1)を24ウェルプレートに細胞数8×10個/24ウェルとなるように加え、各ウェルに上記混合物を0.6μl添加した。各ウェル中の試料をMEM培地により1000μlに調整した。
【0059】
超音波照射装置としてはソニトロン2000(商標名:Rich mar Inc.)を使用した。超音波の周波数は1MHz、強度は1W/cm、Duty比50%、照射時間は60秒とした。照射後48時間ののち蛍光実体顕微鏡を用いてGFP陽性細胞を計数して導入効率を算出した。
【0060】
比較のために、超音波照射しない系(US(−))、超音波照射(周波数1MHz,1W/cm、Duty比50%、照射時間60秒)するがOptisonを添加しない系(US(+))についても同様の実験を行った。
【0061】
なお本明細書及び図面において、USとはultra sonicすなわち超音波を意味し、MBとはmicro babbleすなわち微小気泡含有小球体を意味する。
【0062】
結果を図9に示す。Optisonの存在下で超音波照射照射を行った場合(US(+)、MB)に遺伝子導入効率が高まることが明らかとなった。
【0063】
続いて、超音波照射強度と細胞障害の発生との関係を検討した。細胞傷害はLDHアッセイを用いて評価した。96ウェルプレートにおいて,200μlのMEM培地にラット角膜上皮細胞(RC−1)を4×10個調整し、GFP導入効率を測定したのと同じ方法で超音波を照射した。超音波照射強度を0.5,1,1.5,2W/cmと変化させて実験を行った。また対照群として、細胞膜が高度に障害される1%TRITON Xを混合した群であるTRI群(hight contorol群)と、超音波照射を行わず細胞と培地のみを添加した群であるlow control群を設けた。超音波照射から3時間後に測定に必要な試薬を加えて30分反応させたのち、吸光度計を用いてLDH活性を測定した。
【0064】
結果を図10に示す。超音波エネルギーが比較的低い場合(0.5又は1W/cm)は、超音波エネルギーが比較的高い場合(1.5又は2W/cm)と比較して、細胞傷害の程度が有意に低かった。
【実施例2】
【0065】
角膜への遺伝子導入(in vivo)
実施例1で調製したのと同様の混合物を用いて白色家兎の角膜実質内へのGFP遺伝子の導入効率を測定した。超音波照射はソニトロン2000(商標名:Rich mar Inc.)を用いて行った。照射条件は周波数1MHz,duty比50%,照射時間120秒とし、照射強度を1,1.5,2W/cmと変化させた。
【0066】
兎角膜中央部の実質浅層に30G針をつかって、pEGFPプラスミド10μl、生理食塩水2μlの混合液12μlを注射した。マイクロバブル(MB)としてはOptison(Molecular Biosystems Inc.)を使用した。MB併用群では、MBの添加量はプラズミドの20重量%とし、pEGFPプラスミド10μl,MB2μl混合し、角膜へ注射を行った。角膜注射後に、直接角膜面にソニトロン2000のプローブをあてて前述の条件で超音波照射を行った。
【0067】
超音波照射を行ってから3日後に角膜を摘出し、蛍光実体顕微鏡を用いてGFP蛍光を観察した。Optisonを付加せず超音波照射単独で処置をした群では、わずかにGFP蛍光を認めるのみであったが、超音波照射とOptison付加とを併用した群では、超音波強度を上げるにつれてGFP蛍光陽性細胞が多く観察できた。照射条件が、周波数1MHz,2W/cm,duty比50%,照射時間120秒である場合のOptison付加の条件での角膜の蛍光実体顕微鏡の像を図11に示す。GFP蛍光が観察された領域は超音波を照射した領域と一致していた。
【0068】
また電子顕微鏡を用いて摘出角膜の細胞傷害の有無を観察した。図12の左図が角膜の内皮側であり、同右図が上皮側である。いすれの像からも超音波照射による細胞傷害は観察されなかった。
【実施例3】
【0069】
網膜への遺伝子導入(in vivo)
Optison付加と超音波照射とを併用することによって網膜へ遺伝子導入可能か否かを調べるためにルシフェラーゼを用いたレポータージーンアッセイを行った。
【0070】
まず、ルシフェラーゼプラスミド(pCMV−GL3)と、Optison(Molecular Biosystems Inc.)と、PBS(リン酸緩衝食塩水)とを2:1:2の割合(重量比)で混合した溶液を準備した。この溶液20μLを、顕微鏡下に30ゲージの鋭針でラットの硝子体内へ注射し、ソニトロン2000(商標名:Rich mar Inc.)を用い、プローブを直接角膜にあて、経角膜的に網膜へ超音波照射を行った。照射条件は周波数1MHz,2W/cm,duty比50%,照射時間240秒とした。そして、網膜及び水晶体へのルシフェラーゼ遺伝子の導入効率を測定した。
【0071】
超音波照射を行ってから2日後に眼球を摘出し、眼球を網膜・角膜・水晶体・胸膜・虹彩と5つに分離し、ホモジナイザーをつかって各組織をすりつぶしたのち、網膜(retina)及び水晶体(lens)において、ルミノメーターでルシフェラーゼ量を定量(単位RLU)した。組織による違いを補正するために、同時にホモジナイズ後の溶液中に含まれる蛋白定量を行った(補正後:RLU/mg)。
【0072】
また比較実験として、超音波照射を行わずルシフェラーゼプラスミドとPBSを1:1の割合で混合した溶液を硝子体内へ注射した後、上記と同様の方法でルシフェラーゼを定量した(P+non−US)。
【0073】
結果を図14に示す。本実験では超音波照射とOptoison付加を併用することで効果的に網膜へルシフェラーゼ遺伝子の導入できた。またルシフェラーゼ遺伝子は、網膜に特異的に導入され、水晶体には殆ど導入されなかった。
【0074】
細胞傷害の観察結果も電子顕微鏡、光学顕微鏡を用いて併せて行った。いずれの観察法においても、上記の条件では組織障害は認めなかった(図示せず)。
【図面の簡単な説明】
【0075】
【図1】図1aは眼内用超音波プローブ1及びスリーブ51の斜視図である。図1bは眼外用超音波プローブ1及びスリーブ51の斜視図である。
【図2】図2aは眼内用超音波プローブ1の中心軸に沿った断面図である。図2bは眼内用超音波プローブ1の先端部を超音波照射方向から見た図である。図2cは眼内用超音波プローブ1の先端付近の図2bの破線に沿った矢印方向からの拡大断面図である。
【図3】図3aは眼外用超音波プローブ2の中心軸に沿った断面図である。図3bは図3aの破線に沿った矢印方向からの断面図である。
【図4】図4aは瞼接触阻止部材4の斜視図である。図4bは同部材の中心軸を通る面による縦断面図である。
【図5】図5aはスリーブ51の斜視図である。図5bはスリーブ51を超音波プローブ1,2に装着したときの、断面図である。
【図6】図6はコントロールユニット6の構成を模式的に示した概略図である。
【図7】図7aは眼球表面組織を示す図である。図7bは眼球組織の断面図である。
【図8】図8は眼内用超音波プローブ1を毛様体扁平部強膜の穿刺部から挿入した状況を示す図である。
【図9】超音波照射(US)の有無及び微小気泡含有小球体(MB)の添加の有無と遺伝子の導入効率との関係を示す図である。
【図10】超音波照射の強度と細胞障害の程度との関係を示す図である。
【図11】角膜実質へGPF遺伝子を注入して超音波照射した後の、角膜の蛍光実体顕微鏡による像を示す写真である。
【図12】角膜実質へGPF遺伝子を注入して超音波照射した後の、角膜の電子顕微鏡による像を示す写真である。
【図13】硝子体へルシフェラーゼ遺伝子を注入して超音波照射した後の、網膜及び水晶体におけるルシフェラーゼ量を示す図である。

【特許請求の範囲】
【請求項1】
眼球組織に生理活性薬剤を導入するための組成物であって、導入されるべき生理活性薬剤と微小気泡含有小球体とを含有することを特徴とする眼球組織への生理活性薬剤導入用組成物。
【請求項2】
前記生理活性薬剤が、オリゴヌクレオチド、アンチセンスオリゴヌクレオチド、トリプルヘリックスフォーミングオリゴヌクレオチド、オリゴヌクレオチドプローブ、ヌクレオチドベクター、ウイルスベクターおよびプラスミドからなる群より選択される少なくとも1種であることを特徴とする請求項1記載の組成物。
【請求項3】
眼球内部組織への生理活性薬剤の導入のための超音波照射装置であって、
眼球内部組織に挿入されて標的部位に超音波を照射する、超音波発生部を備えた超音波照射部と、
前記超音波照射部を冷却するための冷却手段とを備えた前記装置。
【請求項4】
前記冷却手段が、灌流液を前記超音波照射部の外表面上を流れるように灌流させる手段である、請求項3記載の装置。
【請求項5】
前記超音波照射部が、太さが1.5mm以下、長さが30mm以上である略棒状の形状である請求項3又は4記載の装置。
【請求項6】
生理活性薬剤を標的部位に供給するための供給手段を更に備えた請求項3〜5の何れか1項記載の装置。
【請求項7】
標的部位を観察するための観察手段を更に備えた請求項3〜6の何れか1項記載の装置。
【請求項8】
生理活性薬剤を標的部位に供給するための供給手段と、標的部位を観察するための観察手段とを更に備え、
前記供給手段に含まれ、標的部位に向けられる部材と、前記観察手段に含まれ、標的部位に向けられる部材とが、各部材の先端部が前記超音波照射部の先端部に位置するように前記超音波照射部の内部に配設されている請求項3〜5の何れか1項記載の装置。
【請求項9】
眼球表面組織への生理活性薬剤の導入のための超音波照射装置であって、
眼球表面組織の標的部位に超音波を照射する、超音波発生部を備えた超音波照射部と、
前記超音波照射部に配設された、瞼が前記超音波照射部の先端部に接触することを阻止するための瞼接触阻止部材とを備えた前記装置。
【請求項10】
前記瞼接触阻止部材が超音波照射方向に向けて先広がり状に形成された部材である請求項9記載の装置。
【請求項11】
前記瞼接触阻止部材の全部又は一部が実質的に透視可能な材料で構成されているか、又は、前記瞼接触阻止部材の一部に開口部が設けられている請求項9又は10記載の装置。
【請求項12】
前記超音波照射部を冷却するための冷却手段を更に備えた請求項9〜11の何れか1項記載の装置。
【請求項13】
前記冷却手段が、灌流液を前記超音波照射部の外表面上を流れるように灌流させる手段である、請求項9〜12の何れか1項記載の装置。
【請求項14】
生理活性薬剤を標的部位に供給するための供給手段を更に備えた請求項9〜13の何れか1項記載の装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2007−31411(P2007−31411A)
【公開日】平成19年2月8日(2007.2.8)
【国際特許分類】
【出願番号】特願2005−221346(P2005−221346)
【出願日】平成17年7月29日(2005.7.29)
【新規性喪失の例外の表示】特許法第30条第1項適用申請有り 刊行物名:ARVO 2005 Annual Meeting 掲載者:The Association for Research in Vision and Ophthalmology 掲載アドレス:http://www.arvo.org/AM/AbsInfo.aspx 電気通信回線発表日:2005年2月24日
【出願人】(504258527)国立大学法人 鹿児島大学 (284)
【Fターム(参考)】