説明

能動的に振動を減衰するためのシステムとその方法

【課題】比較的大きな減衰力と同時に振動絶縁を向上させる実用的な減衰システムを提供する。
【解決手段】ペイロードからの静的な力に対処する支持ばねと、ペイロードと振動源との間に並列に配置された独立した能動絶縁ダンパーとを有す能動振動減衰システムにおいて、能動絶縁ダンパーは、ペイロードのマスと切り離された小さな中間マスと、絶縁台座の小さな中間マスへの動的な結合のための受動絶縁要素を含む。小さな中間マスは、ペイロードからの動的な力を減衰できる。さらに能動ダンパーは、一方の表面で小さな中間マスに接続され、他方の表面で振動するベース台座に接続された少なくとも1つのアクチュエータを含む。さらに、運動センサを設け、小さな中間マスの運動の関数としてフィードバック信号を生成してもよい。運動センサが補償/増幅器モジュールおよびアクチュエータとともに、振動を最小化するフィードバック補償ループの一部として機能する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般的には、支持された荷重(以後、「ペイロード」と呼ぶ)の振動を能動的に減衰させるための方法およびシステムに関し、さらに詳しくは、支持されたペイロードによって生成される静的な力および動的な力を切り離し、能動的に分離絶縁された点への動的な力を減衰させる振動減衰システムおよび振動減衰方法に関する。
【背景技術】
【0002】
産業上において、振動源を絶縁して防振する必要性が増している。例えば、半導体の製造において使用される紫外線ステッパにおいて、環境振動に対する許容度がますます厳しくなってきている。半導体および他の製品の製造が、ますます精密になってきているため、環境振動の抑制のニーズが、ますます大きくなっている。
【0003】
「柔軟なばね」に基づく現時点において利用可能な多数の振動絶縁の適用は、さらに、比較的高度な減衰も必要とする。ダンパーが、ばねの共振周波数において振動の増幅を小さくし、可動ステージ、モータ、などによって被絶縁のマスに生じるひずみを最小限にするために、しばしば使用される。残念ながら、容認できる減衰のレベルが、利用可能なシステムの大部分において極めて制限される可能性がある。1つの制限因子は、ダンパー‐ばねの組み合わせの系の剛性の向上に起因する可能性があり、これが系の共振周波数の上方運動、および共振周波数の上方の利得/周波数関数、すなわち「ロールオフ」の傾きの減少につながる可能性がある。結果として、共振周波数を超える振動絶縁の利得が大きく損なわれがちである。
【0004】
一般に、減衰のレベルは、(i)整定時間、即ち、系の共振周波数および当該周波数における振動の増幅のレベルに直接的に関係する、(ii)特には高い周波数における振動絶縁仕様、および/または(iii)ダンパーの種類(例えば、能動、受動)、によって決定できる。受動ダンパーの既知の例として、ダッシュポット・ダンパーおよび流体ダンパーが挙げられる。受動ダンパーは、典型的には、ばねの共振周波数において系の振動絶縁に有利であるように使用される。しかしながら、これらのダンパーは、通常は振動するベース台座に接続されるため、共振周波数を超える周波数においては、振動絶縁の利得が、周波数が10倍になるごとに約20dBも低下する。
【0005】
他方で、能動ダンパーとしては、例えばボイス・コイル・ダンパーまたはモータ要素を挙げることができる。能動ダンパーは、比較的大きな補償力を生み出すために使用することが可能であり、絶縁されるペイロードに位置するセンサを伴うことで、大きな加速度で運動する重たいペイロードによって生成される力を補償することができる。しかしながら、能動ダンパーも、きわめて限られた能動帯域幅の利得しか有していない。特には、ペイロードの共振と検出される出力との結合が、安定性の余裕を損なう可能性がある。この制限は、複数の共振を検出する絶縁台座への振動センサの必要とされる取り付けによって限定されうるサーボループの安定性に起因すると考えられる。
【発明の概要】
【発明が解決しようとする課題】
【0006】
一般に、支持されたペイロードは、多くの場合、ペイロードへと作用して、ペイロードに応答としての振動を生じさせる動的な力を生み出しうる運動する機械的な構成部品を含むことがある。さらに、ペイロードは、静的な力を生み出す質量を有している。大部分の既存の絶縁システムにおいては、静的な力および動的な力の両者が、例えばアクチュエータなどといった振動補償機構に作用することができ、そのような補償機構が、振動を最小限にするときに静的な力および動的な力の両方に対処する必要がある。このような手法では、きわめて強力なアクチュエータまたは多数のアクチュエータを使用する必要があり、どちらも高価になり、かさばる可能性がある。さらに、減衰レベルと振動絶縁の利得との間の妥協を見つけることが、困難な技術的課題となりうる。
【0007】
したがって、比較的大きな減衰力をもたらしつつ、同時に振動絶縁を向上させる実用的な減衰システムを提供することが望ましい。
【課題を解決するための手段】
【0008】
本発明は、ペイロードによって生成される静的な力および動的な力を切り離し、これら2つの力のそれぞれに別個の機構によって対処できるようにし、ペイロードからの動的な力を能動的に絶縁された点へと導くことによって振動絶縁を改善する能動振動減衰システムを提供する。この振動減衰システムは、一実施形態においては、ペイロードマスからの静的な力に対処するための支持ばね、およびペイロードマスからの動的な力を減衰させるため、ペイロードマス(絶縁台座など)と振動源(床、外側ケーシング、または振動するベース台座、など)との間に並列に配置された能動絶縁ダンパーとを備えている。能動絶縁ダンパー(以後、「能動ダンパー」とも呼ぶ)は、一実施形態において、ペイロードマスとは別個であって、ペイロードマスから弾性的に切り離されている小さな中間マスを含んでいる。この小さな中間マスは、システムが支持または絶縁するように設計される質量の範囲に比べ、少なくとも1桁小さくてよく、動的な荷重のための支持点として機能することができる。さらに能動ダンパーは、前記小さな中間マスと接続された第1の表面と、振動するベース台座と接続された第2の表面とを有する圧電モータ素子などの少なくとも1つのアクチュエータを含んでいる。このアクチュエータは、剛性が前記支持ばねよりも少なくとも1桁大きいように設計されたばねシステムを備えることができる。さらに能動ダンパーは、絶縁台座を前記小さな中間マスへと接続するために、受動流体ダンパーなどの受動絶縁要素(以後、「受動ダンパー」とも呼ぶ)を備えている。一実施形態においては、運動センサを前記小さな中間マスに組み合わせることで、前記小さな中間マスの運動の関数として前記アクチュエータへのフィードバック信号を生成することができる。運動センサは、絶縁台座から切り離されるように設計することができる。
【0009】
さらに、本発明の振動減衰システムは、運動センサからのフィードバック信号を受信するための補償モジュールを備えることができる。一実施形態においては、補償モジュールは、受動ダンパーおよび中間マスへの振動を少なくするため、フィードバック信号の関数としてアクチュエータの長さを変化させることができるよう、アクチュエータと情報のやりとりができる構成としてもよい。さらに、補償モジュールを、能動フィードバックシステムがペイロードマスにかかわらず所定の振動周波数の範囲にわたって安定でありうるような方法で設計することもできる。一実施形態においては、補償モジュールを、受動ダンパーの動作の軸に沿って設けることができ、中間マスを、この同じ軸における振動から能動的に絶縁することができる。あるいは、中間マスを6つの自由度に沿った振動から能動的に絶縁できるよう、「X」、「Y」、および「Z」軸のそれぞれに沿って別個に独立した補償モジュールを設けることができる。換言すると、「X」、「Y」、および「Z」軸のそれぞれに沿った振動、ならびに「X」、「Y」、および「Z」軸を中心とする回転の振動を、絶縁することができる。中間マスおよび運動センサを、ケース内に収容することができ、少なくとも1つのアクチュエータによって少なくとも1つの軸においてベースから浮かせることができる。当然ながら、中間マスおよび運動センサを、「X」、「Y」、および「Z」軸のそれぞれにおいて、それぞれの方向の少なくとも1つのアクチュエータによって浮かせることもできる。
【0010】
アクチュエータへの剪断応力の作用を抑えるために、剪断分離器を、能動的に制御される「Z」軸に沿って位置するアクチュエータと中間マスとの間に配置することができる。さらに、剪断分離器を、交差軸の振動を最小にするために、「X」および「Y」軸においてそれぞれのアクチュエータおよび中間マスの間に配置することもできる。
【0011】
本発明の他の実施形態によれば、ペイロードマスに取り付けられたセンサから送信される信号を処理するために、補償モジュールによってさらなる補償回路を使用することができる。ペイロードの運動を表わすことができるこれらの信号を、中間マス上の運動センサからの信号と組み合わせ、ペイロードの振動をさらに補償することが可能である。
【0012】
さらなる実施形態においては、運動センサをベース台座に取り付けることができ、そこからのフィードフォワード信号を、ベース台座からの運動を補償するために使用することができる。
【0013】
本発明は、とりわけ、ペイロードマスとベース台座との間に配置される能動絶縁ダンパーおよび支持ばねに基づく実用的な能動振動減衰システムを提供する。能動帯域幅よりも上方の共振周波数を持つ中間マスを有する能動絶縁ダンパーを、ペイロードの共振の中間マスからの切り離すとともに能動絶縁周波数範囲の外側での受動的絶縁の提供のための受動ダンパー、及び床振動の能動的補償および支持ばねの剛性よりも比較的高い剛性の生成のためのアクチュエータと共に使用することで、ペイロードマスによって経験される環境源からの振動を最小にすることができる。さらに、運動センサの使用によってアクチュエータへと、とりわけ種々の構成部品からの運動信号に基づくフィードバック信号を供給でき、システムへのフィードバックの不安定性をさらに最小化することができる。
【図面の簡単な説明】
【0014】
【図1】能動的な振動絶縁または減衰のための本発明の一実施形態によるシステムを示す図である。
【図2】図1のシステムに関して使用される能動ダンパーの詳細を示す図である。
【図3】能動的な振動絶縁または減衰のための本発明の他の実施形態によるシステムを示す図である。
【図4】三次元の振動絶縁または減衰システムについて運動センサ、補償回路、およびアクチュエータの間の電気的な相互接続を説明する概略ブロック図である。
【図5】2軸に沿った能動振動減衰システムについて、簡略化した構成を示す概略図である。
【発明を実施するための形態】
【0015】
支持されたペイロードは、典型的には、静的な力および動的な力を生じ、ペイロードの運動によって引き起こされる振動を補償または最小化しようとする場合には、その両方に対処しなければならない。これらの力の両方に対処するために、本発明は、支持されたペイロードによって生成される静的な力および動的な力を切り離し、これら2つの力のそれぞれに別個の機構によって対処可能にする振動減衰システムを提供する。
【0016】
図1において、本発明は、静的な力に対処する支持ばね11と、ばね11に並列であるとともに、ばね11から離間した関係に配置され、動的な力に対処する別個独立した能動絶縁ダンパー12(「能動ダンパー」)とを使用することによって、ペイロードによって誘起される力に起因する支持ペイロードの運動に抵抗し、あるいはそのような運動を最小にすることができる能動振動減衰システム10を提供する。ばね11および能動ダンパー12の両者を、例えば、絶縁台座13上に位置するマス、あるいは絶縁台座13を含むマスなどのペイロードマスと、例えば、床、外側ケーシング、または振動するベース台座14などの振動源、との間に配置することができる。図1は、3つの次元のうちの1つにおいて能動的または動的な振動に対処するシステムを示している。この簡略化は、説明を簡単にするために行われている。しかしながら、このシステムを、最大6つの自由度のすべてについて能動的な振動の絶縁を可能にするために使用できることを理解すべきである。
【0017】
一実施形態においては、支持ばね11を、一端において絶縁台座13と接続し、他端においてベース台座14へと延在させることができ、ペイロードマスによって生成される静的な力を支持するように機能させることができる。さらに、ばね11は、絶縁台座13をベース台座14に対して実質的に平行な関係に保つようにも機能することも可能である。図1には、ばね11が1つだけ示されているが、絶縁台座13のマスに対するばね11の剛性に応じて、さらなる複数のばね11を使用してもよいことを理解すべきである。すなわち、絶縁台座13をベース台座14に対して実質的に平行な関係に維持できる限りにおいて、2つ、3つ、または4つ以上のばね11を使用することができる。一実施形態においては、ばね11は、金属ばね、コイルばね、ダイ・スプリング、受動型の空気ばね、能動的な高さ制御を備える空気ばね、または他の任意の同様のばねであってよい。
【0018】
能動ダンパー12は、ペイロードからの動的な力を絶縁または最小化するために設けられているが、一実施形態においては、ベース台座14と接続されるアクチュエータ15と、アクチュエータ15に支持された小さな中間マス16(以後、「中間マス」と呼ぶ)と、絶縁台座13を中間マス16と動的に接続するための受動絶縁要素17(以後、「受動ダンパー」とも呼ぶ)とを備えている。さらに、能動ダンパー12は、中間マス16の運動から生成される信号を能動フィードバック補償ループ19の一部として補償して、所定の範囲の振動周波数にわたって安定性をもたらすことができるよう、運動センサ18を中間マス16に取り付けて備えている。
【0019】
ここで図2に目を向けると、一実施形態において、システム10に組み合わせて使用される図1の能動ダンパー12と同様の能動ダンパー22が示されている。能動ダンパー22は、この実施形態においては、下端251を振動するベース台座24に取り付けたアクチュエータ25を備えている。さらに、アクチュエータ25は、運動をベース台座24の運動の例えば0.01倍へと最小化する目的で、実質的に動かないままであり、あるいはほぼ動かないままであることができる上端252を備えている。本発明の能動ダンパー22は、アクチュエータ25の変位の軸に実質的に平行な軸Zに沿うベース台座24の振動を絶縁するように設計することができる。
【0020】
本発明の一実施形態において、アクチュエータ25は、圧電スタックであってよい。そのような実施形態においては、アクチュエータ25は、軸Zに沿った長さが、印加される制御信号の関数として変化させることができる第1の実質的に剛な部材、例えば、スタック253を備えることができる。
【0021】
圧電スタック(例えば、Karlsruhe/Palmbach,GermanyのPhysik Instrumente(PI) GmbH & Co. KGの型番P‐010‐20)として、アクチュエータ25を、充分な剛性を有するモータばね254としてモデル化できる。ばね254の自身の軸に沿った剛性により、アクチュエータ25は、印加される指令信号に従って、ペイロードの静的な力とは無関係に、容易に収縮または伸張することができる。ばね254の剛性は、一実施形態においては、支持ばね11の剛性よりも少なくとも1桁大きくてよく、好ましくは少なくとも2桁大きい。一例においては、ばね254の剛性は、1インチ当たり約190万ポンドであってもよいが、変位‐対‐電圧の関係は、1インチ当たり約100万ボルト(ピーク)であってよい。
【0022】
特定の種類の圧電アクチュエータ(例えば、Karlsruhe/Palmbach,GermanyのPhysik Instrumente(PI) GmbH & Co. KGの型番P‐010‐20)においては、実際の動作のもとでアクチュエータ25が引っ張り状態へと入ることがないように、アクチュエータ25にあらかじめ荷重を加える必要があり得る。したがって、ばね231を、アクチュエータ25にあらかじめ荷重を加えるために使用することができる。一実施形態においては、ばね231が鋼製のばねであってよく、圧縮軸(例えば、軸「Z」)に沿ってペイロードにおいて生成される動的な力の最大値よりも適度に大きい圧縮を予めもたらすために使用することができる。圧縮方向に必要とされる大きさの推力をもたらすために、圧縮のセットねじまたは他の手段(不図示)を使用することによって、ばね231にあらかじめ荷重を加えることができる。
【0023】
本発明の一実施形態においては、スタック253を、約0.001〜約0.005インチ(ピーク)の最大相対スタック変位を有するように設計することができる。したがって、このような変位を生み出すために、アクチュエータ25を動かすために約800ボルトの電圧が必要とされる可能性がある。さらに、電圧を、動きがない場合に約400ボルト(DC)をアクチュエータ25に印加するように構成してもよい。このバイアス電圧は、電流を必要とせず、アクチュエータ25を最大の相対変位の約2分の1だけあらかじめ伸張させる。したがって、この電圧を上昇または下降させることによって、アクチュエータ25の伸張または収縮を生じさせることができる。一実施形態においては、アクチュエータ25は、電圧がゼロのときに完全に収縮した状態に達することができ、約1000ボルトにおいて完全に伸張した状態に達するようにできる。したがって、印加電圧に対するアクチュエータ25の伸張および収縮は、実質的に線形に可変制御することが可能である。
【0024】
本発明の一実施形態においては、アクチュエータ25はペイロードからの動的な振動にのみ対処し、ペイロードのマス(すなわち、重量)によって生成される静的な力には対処しないため、能動ダンパー22は、たとえペイロードのマスが大きくなっても、減衰行為を十分に達成するためにただ1つのアクチュエータを使用するだけでよいことに留意すべきである。さらに、ペイロードのマスの支持および動的な力への対処を行わなければならないアクチュエータに比べ、より安価でより低出力のアクチュエータを使用することができる。当然ながら、ペイロードのマスを支持しつつ動的な力への対処を行わなければならないアクチュエータと同等の強力なアクチュエータを使用するならば、そのようなアクチュエータからの余剰の力を、動的な力への対処に集中させて、振動減衰を向上させるために利用することが可能である。
【0025】
1つの例において、支持ペイロードMが、アクチュエータ25によって直接支持されるならば、ペイロードのマスMが例えば約1000重量ポンドである場合、ペイロードの共振周波数は、毎秒約130サイクルになると考えられる。このような共振周波数は、振動の絶縁の利得の減少につながる可能性がある。この場合には毎秒130サイクルでありうるペイロードの共振周波数の付近の周波数において、所望の利得を得ることは、困難または不可能であると考えられる。さらに、補正がない場合、システムは、ペイロードの共振周波数において振動を大きく増幅させ、振動絶縁のメリットの大部分が失われてしまう可能性がある。
【0026】
この問題に対処するために、能動ダンパー22に、アクチュエータ25と絶縁台座との間に配置され、受動ダンパー27(後述)によってペイロードから切り離され、ペイロードからの動的な力を減衰させることができる能動的に絶縁された点として機能する中間マス26を設けることができる。一実施形態においては、中間マス26は、システム10が支持または絶縁するように設計されているマスMの範囲よりも少なくとも1桁以上(例えば、2桁)小さくてよいMというマスの値を有することができる。Mに対するMの比は、好ましくは約1 lb.〜約10 lb.の範囲にあるべきである。中間マス26は、図2に示されているように、上端261と、下端262と、両者の間を延びている本体部263とを有するハウジング260を備えることができる。中間マス26は、その下端262を、アクチュエータ25の上端252に直接配置することができる。中間マス26をアクチュエータ25の上方の位置に固定するとともに、中間マス26の横方向または半径方向の動きを最小にするため、能動ダンパー22に、アクチュエータ25および中間マス26を内部に位置させることができる外部ケーシング21を備えることができる。一実施形態においては、ケーシング21は、「Z」軸に沿ってお互いに対して軸方向に運動することができる上部211および下部212を備えることができる。補強材23を、ケーシング21の内側に沿って設けることができ、その間に中間マス26を、中間マス26の横方向または半径方向の動きをさらに最小にすべく配置することができる。当然ながら、例えば中間マス26とケーシング21の内側との間に押し込まれるOリングなど、当技術分野において知られている他の任意の機構を、中間マス26の横方向または半径方向の動きを最小にするために使用することができる。図2に示した実施形態においては、補強材23を、固定具265によってケーシング21へと固定でき、中間マス26を、同様に固定具265を使用して補強材23の間に固定することができる。補強材23は、一実施形態においては、ケーシング21の上部211の下部212に対するわずかな軸方向の動きに対応するため、柔軟な材料で製作することができる。
【0027】
アクチュエータ25をあらかじめの圧縮状態へと押圧するために、ばね231を使用することができ、一実施形態においては、ばね231は、中間マス26の本体部263の周囲で上端261と下端262の間に位置させることができる。ばね231を上端261と下端262の間に保持するために、ばね231を、中間マス26とケーシング21の内側との間の空間において、補強材23の内部側に配置することができる。
【0028】
さらに図2に目を向けると、受動ダンパー27を、中間マス26と絶縁台座との間に介在させることができる。図2に示した実施形態においては、受動ダンパー27は、中間マス26の一部であってよい。しかしながら、図1に示した受動ダンパーのように、別個の受動ダンパーを中間マスとは独立に設けてもよいことに留意すべきである。中間マス26および受動ダンパー27を設けることで、すでに述べたように、ペイロードからの動的な力を減衰させることができる能動的に絶縁された点をもたらすことができ、きわめて高い周波数のフィードバック利得を可能にすることができる。なぜならば、受動ダンパー27が、そのような高い周波数において受動的な振動絶縁をもたらすことができるためである。
【0029】
図2に示した実施形態において、受動ダンパー27は、弾性流体ダンパーであってもよく、中間マス26の本体部263の内側に、油、シリコーンオイル、または他の任意の粘性流体など、或る量の粘性流体271を含むことができる。さらに、受動ダンパー27は、上端261を通過して中間マス26の本体部263の内部の粘性流体へと軸Zに沿って実質的に垂直に延びるピストン272を備えることができる。上端261を通ってピストン272の延伸を受け入れるために、中間マス26の上端261に開口264を設けることができる。ピストン272は、一実施形態においては、絶縁台座13(図1を参照)に対して配置される外側端274と、中間マス26の本体部263の粘性流体271の中に配置される内側端275とを有するロッド273を有している。ロッド273は、一実施形態によれば、能動軸(例えば、Z軸)において丈夫かつ剛であってよく、ロッド273に実質的に直交する平面においては、より剛性が低くてよい。さらにピストン272は、ロッド273の内側端275に、プレート276などの広い表面を備えている。プレート276は、システム10からの振動が存在するときに、必要な減衰作用を受動ダンパー27によって生み出すことができるように機能する。プレート276は、一実施形態においては、中実なプレートであってよい。しかしながら、減衰作用を調節するために、プレート276に穴が開けられていてもよい。流体ダンパーとして説明したが、受動ダンパー27は、当技術分野において知られている任意の受動ダンパーであってよい。
【0030】
ピストン272は必要な減衰作用を生み出すべく中間マス26の本体部263の内側を上下に運動するとき、ピストン272が中間マス26の本体部263の内部から外れることが極力生じないようにするために、プレート276を、中間マス26の上端261の開口264よりも適度に大きくした幅を有するように製作することができる。さらに、ピストン272の動きによって上端261が本体部263から外れることがないよう、上端261を中間マス26の本体部263に固定するために、固定具265を使用することができる。固定具265は、ねじ/ボルトの組み合わせ、締め具、または当技術分野において知られている任意の固定機構であってよく、例えば上端261および本体部263に、上端261を本体部263へ回転させるための相補的なねじ山を設けてもよい。さらに、ピストン272の運動の最中に中間マス26の本体部263の内部から粘性流体271が失われてしまう可能性に対処するため、可撓膜などのカバー277を、開口264を横切って配置することができる。カバー277が使用される場合、ピストン272のロッド273を通過させて受け入れることができるように、カバー277に穴(不図示)を形成する必要がある。穴は、一実施形態においては、ピストン272のロッド273との実質的に密なシール構造を形成するように十分に小さくされる。
【0031】
ここで再び図1を参照すると、システム10を、フィードバック補償ループ即ちシステム19の適用によって、アクチュエータ15の伸張および収縮を制御するように設計することができる。ループ19は、とりわけ、補償/増幅器モジュール191を備えている。一実施形態においては、モジュール191を、アクチュエータ15に可変電圧を加えるように設計することができ、例えば約800ボルト(DC)を、定常状態条件においてアクチュエータ15に加えることができる。さらに、ループ19は、一実施形態においては、中間マス16の呈する運動または変位を得るべく積分することが可能な信号を生成するための運動センサ18を、中間マス16上に配置している(図2の参照番号28も参照のこと)。特に、センサ信号を、センサ18からモジュール191へと送信することができ、モジュール191が、信号を積分して変位を得て、利得を高める。その後、得られた積分信号を、種々の補償回路を含んでいるモジュール191によって処理することで、アクチュエータ15の伸張および収縮を制御することができる。
【0032】
センサ18は、一実施形態においては、サーボ加速度計であってよく、あるいは好ましくは受振器であってよい。受振器は、通常は、ワイヤーコイルを比較的低い剛性の機械ばねに支持して備えており、磁界がコイルを通過している。この磁界が、コイルに電圧を生じさせるが、この電圧は、磁石を保持している受振器ケースに対するコイルの相対速度、コイルを貫く磁界の強度、およびコイルのワイヤの巻きの数に比例すると考えられる。また、受振器は、低コスト、低雑音、および高い感度を有している。本発明に関連して使用される受振器および関連の補償回路は、米国特許第5,823,307号に開示のものと同様であってよく、この特許は、参照によって本明細書に取り入れられたものとする。
【0033】
次に図3を参照すると、すでに述べたように、絶縁台座13上に支持されたペイロードの多くが、システム10において絶縁されたときに、ペイロードへと作用して、ペイロードに応答としての振動を生じさせる力を生み出しうる運動する機械的な構成部品を含んでいる。したがって、減衰システム10は、ペイロードによって誘起される力に起因する支持ペイロードの運動に抵抗し、あるいはそのような運動を最小にすることが望ましいと考えられる。これを行うために、第2の運動センサ31を、システム10に組み合わせて使用することができる。センサ31は、絶対速度センサまたは相対変位センサであってよいが、絶縁台座13上に取り付けることが可能である。センサ31からの信号を、その後に絶縁台座13の振動制御を向上させるために、中間マス16上に配置されたセンサ18からの信号と組み合わせ、統合することが可能である。
【0034】
さらなる実施形態においては、システム10は、第3の運動センサ32を、振動するベース台座14または床に取り付けて備えることができる。センサ32からの信号をモジュール191へと送信でき、次いでモジュール191が、信号を積分して変位を得て、利得を大きくする。その後に、得られる積分信号を、種々の補償回路を含んでいるモジュール191によって処理することができる。また、この積分信号は、振動するベースの運動を補償するために、アクチュエータ15の伸張および収縮を制御するためのフィードフォワード信号として使用することができる。
【0035】
さらに図3を参照すると、システム10は、一端が絶縁台座13に直列に取り付けられ、他端が受動ダンパー17へと直列に取り付けられたばね33を、さらに備えることができる。図3に示した実施形態においては、ばね33を、受動ダンパー17のピストン171に接続することができる。この方法で、支持ばね11の共振周波数よりも少なくとも1桁高い共振周波数を有するばね33が、より高い周波数におけるシステム10への振動絶縁の利得を向上させることができる。
【0036】
1つの軸(すなわち、「Z」軸)に沿った振動を能動的に絶縁するように示されているが、本発明の中間マスおよびシステムを、「X」、「Y」、および「Z」軸のそれぞれに沿った振動を能動的に絶縁するように設計することが可能である。ここで、図4に目を向けると、三次元の振動減衰システムについて運動センサ、補償回路、およびアクチュエータの間の電気的な相互接続を説明する高度に概略化した電気ブロック図が示されている。全体として40で指し示されている電子コントローラが、補償回路41、42、および43を備えている。これらの補償回路のそれぞれは、米国特許第5,823,304号に開示のものに類似しており、この特許は、すでに述べたとおり、参照によって本明細書に取り入れられたものとする。
【0037】
補償/制御回路41は、一実施形態においては、「Z」軸に沿ったペイロードの運動を検出する「Z」垂直ペイロードセンサ31、および「Z」軸に沿った中間マスの運動を検出する「Z」垂直中間マスセンサ18からセンサ信号を受信するために設けられている。他方で、補償/制御回路42は、「Y」軸に沿ったペイロードの運動を検出する「Y」水平ペイロードセンサ44、および中間マスの「Y」方向の運動を検出する「Y」中間マスセンサ45からセンサ信号を受信する。補償/制御回路43に関しては、「X」水平ペイロードセンサ46、および「X」方向中間マスセンサ47からの信号を受信する。
【0038】
一実施形態においては、回路41からの出力制御信号を、例えば「Z」垂直アクチュエータ15へと送信できる一方で、回路42からの出力制御信号を、例えば「Y」ラジアルアクチュエータ48へと送信できる。同様に、回路43からの出力制御信号を、「X」ラジアルアクチュエータ49へと送信できる。図に示すように、センサ/モータの構成が、実質的に電子的なクロストークを有していない。さらに、後述のように種々の剪断の分離を使用することで、物理的なクロストークへの対処の必要を、さらに除くことが可能である。
【0039】
本発明の補償回路を、アナログまたはデジタル形式で実現できることを理解すべきである。さらに、そのような補償回路を、図3のセンサ32など、振動するベース台座に位置するセンサからの信号を受信するように構成することができる。さらに、補償回路を、6つの自由度のそれぞれからの運動信号を受信でき、6つの自由度のそれぞれに沿った振動を補償することができる単一のモジュールとして使用することができる。あるいは、複数(例えば、6つ)の補償モジュールを、それぞれを6つの自由度のそれぞれに設けつつ使用することができる。
【0040】
次に図5に目を向けると、能動振動減衰システム50の単純化した概略図が、二次元において示されている。システム50は、受動ダンパー51に載せられた支持ペイロードMを含んでおり、受動ダンパー51を、中間マス52によって支持することができる。剪断分離器53を、中間マス52と垂直アクチュエータ54との間に介在させることができる。一般に、アクチュエータは、軸方向の荷重または曲げの荷重が加わるときに、引っ張りの荷重が生じないように構成されなければならない。アクチュエータの剪断荷重は、剪断荷重によってアクチュエータの部分に引っ張り荷重を生じさせうる曲げモーメントが生じない限りは、許容可能であると考えられる。アクチュエータにおける剪断荷重を抑制または最小化するために、剪断分離器を使用することができる。剪断分離器は、周知の装置であって、典型的には、アクチュエータの端部に隣接する第1の剛体プレートまたは部材と、中間マスに隣接する第2の剛体プレートまたは部材と、これらの剛体プレートの間に位置する弾性材料の薄いディスクまたはウエハとを備えている。これらの剛体プレートを、一実施形態においては、金属などの非弾性材料から製作することができる。
【0041】
さらに、システム50は、ペイロードによって加えられる力に直交する方向、すなわち「Y」軸に沿って、能動的な振動の絶縁をもたらしている。この絶縁は、ラジアルアクチュエータ55(例えば、圧電モータ)、およびアクチュエータ55と中間マス52との間に位置するラジアル剪断分離器56を使用して実行できる。ラジアルアクチュエータ55は、一実施形態においては、何らかの方法で振動する床、外側ケーシング、ベースFに取り付けることができる。それぞれの剪断分離器について、荷重の加わる面積の荷重の加わらない面積に対する比が大きいとき、ラジアル方向の剛性を比較的低く保ちつつ軸方向の剛性を高く保つことができることを理解すべきである。本発明の一実施形態においては、剪断分離器の軸方向の剛性のラジアル方向の剛性に対する比は、少なくとも1桁であってよく、好ましくは2桁以上であってよい。
【0042】
垂直アクチュエータ54の伸張および/または収縮時、中間マス52が「Z」軸に沿ってのみ運動し、回転しないことが望ましいため、剪断分離器56を、中間マス52の反対側において剪断分離器58およびばね部材57によってバランスさせることができる。剪断分離器58およびばね部材57の存在は、ラジアルアクチュエータ55が圧電スタックである実施形態において、実際の動作のもとでアクチュエータ55が引っ張り状態へと入ることがないよう、ラジアルアクチュエータ55にあらかじめ荷重を加えるうえでも役に立つと考えられる。とくには、圧縮ばね部材57を、ラジアルアクチュエータ55にあらかじめ荷重を加えるために使用することができる。一実施形態においては、ばね部材57が、円錐形の鋼ばねなどのばね571と、ばね571を案内するためのゴム製またはエラストマー製の同軸ブシュ572とを備えている。ばね部材57を、図5に示されているように、振動源(例えば、床の延長、外側ケーシング、または振動するベースF)と剪断分離器58との間に配置することができ、次いで剪断分離器58を、ばね部材57と中間マス52との間に配置することができる。3つの次元のすべてにおいて6つの自由度に沿った振動絶縁を達成するために、ラジアルアクチュエータ55、剪断分離器56、剪断分離器58、およびばね部材57の直線状配置を、紙面に直交する方向、すなわち図5の見方の「X」軸についても、繰り返すことができる。
【0043】
ばね部材57は、一実施形態においては、「Y」軸に沿って比較的低い剛性を持ち、「Y」軸に直交するすべての方向において比較的大きいラジアル剛性を持つように、設計することができる。この方法では、ばね部材57が、ラジアルアクチュエータ55へと加えられる指令信号に従ったラジアルアクチュエータ55の容易な収縮または伸張を許容することができる。さらに、ラジアルアクチュエータ55と中間マス52との間に分離器56を介在させることで、例えばペイロードを支持している垂直アクチュエータ54の動きによって引き起こされる剪断のたわみを、一例においてはラジアルアクチュエータ55の動きの約0.7%にまで少なくすることができる。
【0044】
以上、要約すると、能動振動減衰システムを図示して説明した。本発明の実施形態による振動減衰システムは、ペイロードによって生み出される静的な力および動的な力を分離し、それぞれに独立の機構によって別個に対処できるようにしている。これらの力を分離することによって、ペイロードからの動的な振動の低減の向上を達成することができる。具体的には、このシステムは、共振周波数および必要な利得を低減するために、支持ばねと、ペイロードマス(すなわち、絶縁台座)および振動源(すなわち、ベース台座)との間に介在された独立の能動的に絶縁されたダンパーを提供している。支持ばねは、絶縁台座をベース台座に対して実質的に平行に維持するため、ペイロードからの静的な力(すなわち、重量)を支持し、これに対処するように機能する。他方で、能動ダンパーは、ペイロードからの動的な振動に対処し、少なくとも1つのアクチュエータ、このアクチュエータによって支持された中間マス、および中間マスと絶縁台座との間の受動ダンパーを備えている。中間マスは、「Z」軸に沿って垂直にアクチュエータによって支持される以外にも、「X」および「Y」軸に沿って追加のアクチュエータによってラジアル方向に支持することができる。さらに、このシステムは、中間マスのセンサから生成される垂直方向または「X」、「Y」、および「Z」方向のそれぞれの変位信号の関数として、アクチュエータを駆動するための回路構成をも提供する。一実施形態においては、能動ダンパーがペイロードの重量を支持しないため、本発明の能動ダンパーに組み合わせて使用されるアクチュエータは、ペイロードの重量もアクチュエータによって支持しなければならない従来の振動絶縁システムにおいて使用されるアクチュエータに比べ、比較的小型でかつ安価とすることができる。
【0045】
以上、本発明を、本発明の具体的な実施形態に関して説明したが、さらなる変更が可能であることが理解できるであろう。さらに、この出願は、本発明の関係する当技術分野における既知または通常の実施の範囲で、添付の特許請求の範囲の技術的範囲に包含されるような本明細書の開示からの逸脱など、本発明のあらゆる変種、使用、または調整を包含することを意図するものである。
【符号の説明】
【0046】
10 能動振動減衰システム
11 支持ばね
12 能動ダンパー
13 絶縁台座
14 ベース台座
15 アクチュエータ
16 中間マス
17 受動ダンパー
18 運動センサ
19 フィードバック補償ループ

【特許請求の範囲】
【請求項1】
支持されたペイロードからの振動を減衰させるためのシステムであって、
前記ペイロードからの静的な力を支持するために、一端において前記ペイロードを支持する絶縁台座から、前記絶縁台座に対向するベース台座に取り付けられた対向する端部まで延びている支持ばねと、
前記ペイロードからの動的な力を減衰させるために、前記絶縁台座と前記ベース台座との間を、前記支持ばねに並列かつ前記支持ばねから離間して延びている能動ダンパーと、
を有しており、
前記能動ダンパーは、
その両端部に互いに反対向きである第1および第2の端部を有しており、前記第1および第2の端部の間の長さは可変であり、前記第2の端部が前記ベース台座に接続されているアクチュエータであって、前記ペイロードから前記アクチュエータへの静的な力の伝導を避けるために、前記アクチュエータが前記ペイロードから静的に分離されているアクチュエータと、
本体部を有し、前記アクチュエータの前記第1の端部の上に軸方向に整列された中間マスであって、前記ペイロードから動的な力を分離して減衰させることができる安定点をもたらす中間マスと、
一端において前記絶縁台座に接続されたピストンを有し、前記安定点に対向する他端において前記中間マスに向かって延びている受動ダンパーと、を備えており、
前記能動ダンパーの中間マスに接続されて、前記中間マスの運動の関数である信号を生成し、前記アクチュエータが前記中間マスに前記安定点を発生させるように、前記アクチュエータにフィードバックを提供する運動センサを備えたことを特徴とするシステム。
【請求項2】
前記支持ばねは、一端において前記絶縁台座に接続され、他端において前記ベース台座に接続されており、更に、前記絶縁台座を前記ベース台座に対して実質的に平行に保つように機能する請求項1に記載のシステム。
【請求項3】
前記支持ばねの剛性の値が、前記アクチュエータの呈する剛性よりも少なくとも1桁小さい請求項1に記載のシステム。
【請求項4】
前記中間マスの質量が、前記ペイロードよりも少なくとも1桁小さい請求項1に記載のシステム。
【請求項5】
前記中間マスの前記本体部が、粘性流体の容量を収容できる容積を有する請求項1に記載のシステム。
【請求項6】
前記中間マスの前記本体部が下端および上端を有しており、前記上端は、前記受動ダンパーの前記ピストンが通過して延伸することができる開口を有している請求項5に記載のシステム。
【請求項7】
前記開口は、前記本体部から前記ピストンが外れることが起こることを最小限にするのに十分なサイズとすることができる請求項6に記載のシステム。
【請求項8】
前記中間マスは、前記本体部からの前記粘性流体の喪失を最小限にするために、前記開口を横切って延びる膜を備えている請求項6に記載のシステム。
【請求項9】
前記ピストンは、前記粘性流体内に前記ピストンの端部に取り付けられたプレートを備え、前記受動ダンパーによる必要な減衰効果の発生を可能にする請求項5に記載のシステム。
【請求項10】
前記中間マスと前記受動ダンパーが、別個の構成部品である請求項1に記載のシステム。
【請求項11】
前記能動ダンパーは、前記中間マスと前記アクチュエータの前記第1の端部との間に剪断分離器をさらに備え、前記アクチュエータへの剪断応力の作用を抑える請求項1に記載のシステム。
【請求項12】
前記能動ダンパーは、前記アクチュエータをあらかじめ圧縮された状態へと押す場合に役立つように、前記中間マスの前記本体部の周囲、かつ、前記中間マスの上端と下端との間に、ばねをさらに備えている請求項1に記載のシステム。
【請求項13】
前記運動センサからの信号に基づいて前記アクチュエータの長さを変化させるように、前記運動センサを前記アクチュエータと組み合わせる回路構成の補償モジュールをさらに備え、前記能動ダンパーが所定の振動周波数の範囲にわたって前記絶縁台座を安定させるべく機能する請求項1に記載のシステム。
【請求項14】
前記絶縁台座の運動の関数である信号を生成するために前記絶縁台座と組み合わせられた運動センサをさらに備えており、前記絶縁台座に配置された前記運動センサは、該センサからの信号を前記中間マスの前記運動センサに組み合わせて前記絶縁台座について振動制御を補強することができるように、補償モジュールと情報のやりとりをしている請求項13に記載のシステム。
【請求項15】
前記ベース台座の運動の関数である信号を生成するために、前記ベース台座と組み合わせられた運動センサをさらに備えており、該センサは、該センサからの信号を前記ベース台座からの振動を補償するためのフィードフォワード信号として使用することができるように、前記補償モジュールと情報のやりとりをしている請求項13に記載のシステム。
【請求項16】
一端において前記絶縁台座と直列に取り付けられ、他端において前記受動ダンパーと直列に取り付けられたばねをさらに備えている請求項1に記載のシステム。
【請求項17】
支持されたペイロードからの振動を減衰させるためのシステムであって、
前記ペイロードからの静的な力を支持するために、一端において前記ペイロードを支持する絶縁台座から延び、前記絶縁台座に対向するベース台座に取り付けられた対向する端部まで延びている支持ばねと、
前記支持ばねと並列で、かつ、前記支持ばねから離間して配置され、前記ペイロードからの動的な力を分離して減衰させることができる安定点をもたらすための中間マスと、
それぞれが各軸に沿って長さを変化させることができる複数のアクチュエータであって、各アクチュエータが前記中間マスに隣接する第1の端部と、振動しやすい支持体へと接続された反対側の第2の端部とを有し、前記ペイロードから各アクチュエータへの静的な力の伝導を避けるために、各アクチュエータが前記ペイロードから静的に分離されているアクチュエータと、
前記中間マスに接続されて、前記中間マスの運動の関数である信号を生成し、前記アクチュエータが前記中間マスに前記安定点を発生させるように、前記アクチュエータにフィードバックを提供する運動センサと、
前記アクチュエータへの剪断応力の作用を抑えるために、前記中間マスと各アクチュエータの前記第1の端部との間の剪断分離器と、を有しているシステム。
【請求項18】
前記支持ばねは、一端において前記絶縁台座に連結され、他端において前記ベース台座に連結されており、更に、前記絶縁台座を前記ベース台座に対して実質的に平行に保つように機能する請求項17に記載のシステム。
【請求項19】
前記支持ばねの剛性の値は、前記アクチュエータの呈する剛性よりも少なくとも1桁小さい請求項17に記載のシステム。
【請求項20】
前記中間マスの質量は、前記ペイロードよりも少なくとも1桁小さい請求項17に記載のシステム。
【請求項21】
前記中間マスに対し軸方向に整列した受動ダンパーをさらに備えており、該受動ダンパーは、粘性流体の容積を有するとともに、一端において前記絶縁台座と連結され、他端において前記粘性流体の容積部へと延びているピストンを有している請求項17に記載のシステム。
【請求項22】
前記中間マスは、前記粘性流体の容量を収容するための本体部を備えている請求項21に記載のシステム。
【請求項23】
一端において前記絶縁台座と直列に取り付けられ、他端において前記受動ダンパーと直列に取り付けられた第2のばねをさらに備えている請求項21に記載のシステム。
【請求項24】
前記アクチュエータが所定の振動周波数の範囲にわたって前記ペイロードマスを安定させるべく機能するよう、前記運動センサからの信号に基づいて前記アクチュエータの長さを変化させるように、前記運動センサを前記アクチュエータと組み合わせる回路構成の補償モジュールをさらに備えている請求項17に記載のシステム。
【請求項25】
前記絶縁台座の運動の関数である信号を生成するために、前記絶縁台座と組み合わせられた運動センサをさらに備えており、前記絶縁台座に配置された前記運動センサは、該センサからの信号を前記中間マスに配置された前記運動センサと組み合わせて前記絶縁台座についての振動制御を補強することができるように、前記補償モジュールと情報のやりとりをしている請求項24に記載のシステム。
【請求項26】
前記ベース台座の運動の関数である信号を生成するために、前記ベース台座と組み合わせられた運動センサをさらに備えており、該センサは、該センサからの信号を前記ベース台座からの振動を補償するためのフィードフォワード信号として使用することができるように、前記補償モジュールと情報のやりとりをしている請求項24に記載のシステム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2013−80911(P2013−80911A)
【公開日】平成25年5月2日(2013.5.2)
【国際特許分類】
【外国語出願】
【出願番号】特願2012−199422(P2012−199422)
【出願日】平成24年9月11日(2012.9.11)
【分割の表示】特願2008−514676(P2008−514676)の分割
【原出願日】平成18年5月18日(2006.5.18)
【出願人】(507394938)テクニカル・マニュファクチャリング・コーポレイション (3)
【氏名又は名称原語表記】Technical Manufacturing Corporation
【Fターム(参考)】