説明

荷電粒子線装置及び荷電粒子線装置を利用した評価方法

【課題】荷電粒子線装置には、評価対象である試料の外周縁部の近傍において、等電位分布の対称性が乱れて荷電粒子線が偏向する不具合がある。
【解決手段】静電吸着式の試料保持機構の内部に設置される電極板を、同心円状に配置される内側の電極板と外側の電極板との2つで構成する。外側の電極板の外径は、試料の外径よりも大きい値に形成する。更に、外側の電極板と試料との重なり面積と、内側の電極板の面積とが概略等しい大きさになるように形成する。そして、内側の電極板には、基準電圧に対して正極性の任意の電圧を印加し、外側の電極板には基準電圧に対して負極性の任意の電圧を印加する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、荷電粒子線により試料(例えば半導体装置が形成された基板)を走査し、試料が発生する二次電子信号又は反射電子信号等を検出する装置に関する。本発明は、例えば試料に形成されたパターンの寸法を計測する寸法計測装置(以下、「測長SEM装置」という。)や試料に発生した欠陥や異物等を検査する検査装置(以下、「検査SEM装置」という。)に関する。この明細書では、荷電粒子線を用いて検出された信号に基づいて試料に形成されたパターンの計測や検査に使用される装置を「荷電粒子線評価装置」という。
【背景技術】
【0002】
半導体製造装置の分野では、荷電粒子線で基板を走査し、基板が発生する二次電子信号又は反射電子信号等を検出する装置が必要不可欠である。この種の装置には、パターンの形状を反映した信号波形を用いて基板上に形成されたパターンの寸法を計測する測長SEM装置やパターンの欠陥を検査する検査SEM装置がある。
【0003】
計測や検査の対象である半導体基板(ウエハ)上には、パターンが描かれた複数の矩形のチップがほぼ全領域に亘って形成されている。近年における半導体装置の製造現場では、基板表面の面積を有効に使うために、つまり一枚のウエハから多くの半導体チップを取得するために、ウエハの周縁部近傍まで可能なかぎり回路パターンを形成することが強く望まれている。さらに一枚のウエハから多くの半導体チップを取得するために、基板そのものの表面積を拡大することが、つまりウエハを大口径化する動きも進んでいる。
【0004】
しかし、測長SEM装置等はウエハの径に対応して製作されるために、ウエハの径が大きくなるとその径に対応した装置を新規で導入する必要がある。このことは、設備投資面で大きな負荷となっている。そこで、測長SEM装置等への投資効果を高めるために、直径の異なるウエハ、例えば直径200mmと300mmの両方に対応できる測長SEM装置等が望まれている。すなわち、ウエハの周縁部近傍まで可能なかぎり評価でき、かつ、直径の異なるウエハであっても評価できる荷電粒子線評価装置の必要性が高まっている。
【0005】
ところで、荷電粒子線を用いてウエハ上に形成されたパターンの寸法を計測する場合や欠陥や異物を検査する場合に、荷電粒子線が照射される周囲の電位分布に歪があると、電位の勾配によって荷電粒子線が偏向する。結果的に、荷電粒子線は、本来計測又は検査すべき位置から離れた位置に入射する。つまり、本来観察したい領域の検査ができない、いわゆる位置ずれの問題が発生する。また、荷電粒子線の入射角度も変わる。このため、ウエハから得られるパターンの信号(例えば画像)に歪みが生じる問題がある。
【0006】
この問題は、計測位置又は検査位置がウエハの外周縁に近いほど顕著に出現する。ウエハの中央周辺では、荷電粒子線が照射される位置に対して周囲の電位分布が対称であるために位置ずれが起こらないのに対し、ウエハの周辺近傍では、荷電粒子線が照射される位置に対して周囲の電位分布が非対称となるために位置ずれが発生すると考えられる。
【0007】
この問題は、ウエハが大口径になるほど深刻になる。ウエハが大口径化するほど外縁の曲率は小さくなり、デバイスチップをよりウエハの外縁近くまで作成できるようになるためである。従って、今まで以上にウエハの外縁近くまで検査したいという要求が高まる。しかし、前述したように、荷電粒子線の位置ずれ量はウエハの外縁に近いほど大きくなる。このため、大口径のウエハでは、計測又は検査が不可能な領域が外周縁の付近に発生するのを避け得ない。
【0008】
そこで、このようなウエハの周辺部近傍での電位分布の歪を防止し、荷電電子線の曲がりによる計測時又は検査時の位置ずれを抑制する技術が検討されている(特許文献1及び2を参照)。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特許第325187号公報
【特許文献2】特開2004−235149号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
例えば特許文献1には、ウエハ周辺部の上方を覆うように導電体を配置し、導電体に電位を印加することで電位分布の歪を防止する技術が開示されている。本技術は、電位歪を補正する意味では有効である。しかし、ウエハ周辺部の上方を導電体で覆うために、ウエハの周辺部にデバイスチップの作成不可能な領域ができるという別の問題がある。また、この開示技術では、ウエハより上方の位置に部品が張り出さざるを得ない。このため、荷電粒子線評価装置の部品を組み替えることなく直径の異なるウエハを計測又は検査することができない問題がある。
【0011】
また例えば特許文献2には、ウエハより内径が大きい穴を有し、その深さがウエハの厚みとほぼ同じになるように形成されたウエハホルダを用いる技術が開示されている。また、この特許文献2には、ウエハホルダの穴にウエハを落とし込むように設置した際に生じるウエハのエッジ部分と穴とのギャップを、ウエハの表面高さと同じ高さになるように形成された導体リングで塞ぐ技術が開示されている。すなわち、ウエハの表面と、導体リングの表面と、ウエハホルダの表面がほぼ同じ高さになるように配置した状態で、導体リングに電圧を印加することにより電位分布の歪を防止する技術が開示されている。この特許文献2を用いれば、電位の歪を補正することができ、さらにウエハの周辺部にデバイスチップの作成不可能な領域を作り込まないこともできる。しかし、この特許文献2の場合にも、ウエハの直径に応じて部品、ウエハホルダ、導体リングを組み替えなければ、ウエハを計測又は検査することができない問題がある。
【0012】
そこで、発明者らは、評価対象物である基板の周縁部近傍でも荷電電子線の偏向による評価位置のずれを効果的に抑制できる技術を提案する。
【課題を解決するための手段】
【0013】
(1)1つの発明では、静電吸着式の試料保持機構の内部に設置される電極板を、同心円状に内側に配置される円形状の電極板と外側に配置される中空円形状の電極板との2つで構成する。外側の電極板の外径は、試料の外径よりも大きい値に形成する。更に、外側の電極板と試料との重なり面積(すなわち、外側の電極板の内径と試料の外径で囲まれる中空パターンの面積)と、内側の電極板の面積とが概略等しい大きさになるように形成する。そして、内側の電極板には、基準電圧に対して正の極性の任意の電圧を印加し、外側の電極板には基準電圧に対して負の極性の任意の電圧を印加する。因みに、外側の電極板の外径寸法と試料の外径寸法との差は、制御電極に荷電粒子を通過させるために設けられた孔の70%以上であることが望ましい。
【0014】
(2)別の発明では、静電吸着式の試料保持機構の内部に設置される電極板を、同心円状に配置される4つの電極板で構成する。ここでは、中心側から順番に、円形状の第1の電極板、中空円形状の第2、第3及び第4の電極板と呼ぶことにする。第1と第3の電極板には、基準電圧に対して正の極性の任意の電圧を印加し、第2と第4の電極板には、基準電圧に対して負の極性の任意の電圧を印加する。この発明の場合、第2の電極板の外径は、評価対象になる2種類の試料のうち径が小さい方の試料の外径よりも大きい値に設定する。この際、第2の電極板と試料との重なり面積(第2の電極板の内径と試料の外径で囲まれる中空パターンの面積)と第1の電極板の面積が概略等しい大きさとなるように形成する。さらに、第4の電極板の外径は、2種類の試料のうち径が大きい方の試料の外径よりも大きい値に設定する。この際、第4の電極板と試料との重なり面積(第4の電極板の内径と試料の外径で作られる中空パターンの面積)と第2の電極板の面積との和が、第1の電極板の面積と第3の電極板の面積の和と概略等しい大きさとなるように形成する。因みに、第2の電極板の外径寸法と径が小さい方の試料の外径寸法との差と、第4の電極板の外径寸法と径が大きい方の試料の外径寸法との差のそれぞれが、制御電極に荷電粒子を通過させるために設けられた孔の70%以上であることが望ましい。
【0015】
(3)別の発明では、静電吸着式の試料保持機構の内部に設置された電極板を、同心円状に配置される3つの電極板で構成する。ここでは、中心側から順番に、円形状の第1の電極板、中空円形状の第2及び第3の電極板と呼ぶことにする。少なくとも第1及び第2の電極板のそれぞれには、基準電圧に対して正極性又は負極性の任意の大きさの電圧を、評価対象である2種類の試料の外径に応じて相補的に印加する。また、第3の電極には基準電位に対して負の極性の任意の電圧を印加する。この発明の場合、第2の電極板の外径は、2種類の試料のうち径が小さい方の試料の外径よりも大きな値に形成する。さらに、第2の電極板と試料との重なり面積(第2の電極板の内径と試料の外径で囲まれる中空パターンの面積)と第1の電極板の面積が概略等しい大きさとなるように形成する。さらに、第3の電極板の外径は、2種類の試料のうち径が大きい方の試料の外径よりも大きい値に設定する。さらに、第3の電極板と試料との重なり面積(第3の電極板の内径と試料の外径で囲まれる中空パターンの面積)と第1の電極板の面積との和が、第2の電極板の面積と概略等しい大きさとなるように形成する。さらに、第2の電極板の外径寸法と径が小さい方の試料の外径寸法の差と、第3の電極板の外径寸法と径が大きい方の試料の外径寸法との差のそれぞれが、制御電極に荷電粒子を通過させるために設けられた孔の半径の70%以上であることが望ましい。
【発明の効果】
【0016】
1つの発明によれば、専用の部品を使用しなくても、試料の外周縁近傍まで正確に評価できる荷電粒子線評価装置を実現できる。また、1つの発明によれば、サイズの異なる試料を電極上に載置する場合でも、専用の部品等を交換すること無しに、試料の外周縁部まで正確に評価できる荷電粒子線評価装置を実現できる。
【図面の簡単な説明】
【0017】
【図1】形態例に係る測長SEM装置の概略構成図。
【図2】ウエハの中央近傍を計測する場合の電位分布を説明する図。
【図3】ウエハの外周縁近傍を計測する場合の電位分布を説明する図(従来)。
【図4】第1の形態例におけるウエハの載置態様を説明する断面図。
【図5】第1の形態例で使用する電極板の構造とウエハとの位置関係を説明する平面図。
【図6】第1の形態例において形成される電位分布を説明する断面図。
【図7】第1の形態例における処理手順を説明するフロー図。
【図8】ウエハの外周縁部からの距離と偏向量との関係を説明するグラフ。
【図9】ウエハの外周縁部からの距離と補正電圧との関係を説明するグラフ。
【図10】第2の形態例におけるウエハの載置態様を説明する断面図
【図11】第2の形態例における電極と印加電圧との関係を説明する断面図。
【図12】第2の形態例で使用する電極板の構造とウエハとの位置関係を説明する平面図。
【図13】第2の形態例における処理手順を説明するフロー図。
【図14】第3の形態例における各電極と印加電圧との関係を説明する断面図。
【図15】第3の形態例における各電極と印加電圧との関係を説明する断面図。
【図16】第3の形態例で使用する電極板の構造とウエハとの位置関係を説明する平面図。
【発明を実施するための形態】
【0018】
以下、図面に基づいて、本発明に係る荷電粒子線評価装置の形態例を説明する。なお、本発明は荷電粒子線を利用する各種の評価装置(例えば測長装置や検査装置)に適用可能であるが、以下の説明では測長SEM装置に適用する場合について説明する。また、以下の説明では、二次電子像に関して説明するが、反射電子像を利用することも可能である。また、以下における説明や図面は、専ら発明を説明することを目的としたものであり、記述していない既知の技術との組み合わせや置換も可能である。
【0019】
(1)形態例1
(1−1)装置構成
前述したように、走査電子顕微鏡(SEM:Scanning Electron Microscope)を応用した測長SEM装置は、現在、半導体製造工程においてパターン寸法の管理に必須の装置である。図1に、形態例に係る測長SEM装置の概略構成を示す。測長SEM装置は、電子光学系1100、ステージ機構系を備える真空室1200、ウエハ搬送系(図示せず)、真空排気系(図示せず)、情報処理・装置制御部1300等で構成される。
【0020】
電子光学系1100は、電子銃1101と、電子銃1101からの一次電子ビーム1102の放出をアライメントするアライメントコイル1107と、一次電子ビーム1102を集束させるコンデンサレンズ1103と、一次電子ビーム1102の非点を補正する非点補正コイル1108と、一次電子ビーム1102を二次元に偏向させる偏向器1105、1106と、対物レンズ1104と、対物レンズ絞り1109とにより構成される。
【0021】
ウエハ等の基板試料1201(以下、「ウエハ」という。)は、XYステージ1202上の試料保持台(以下、「試料台」又は「静電チャック」という。)1203に載置され、ステージコントローラ1301からの指令によりXY方向に走行し、任意の位置に停止させることができる。二次電子検出器1110は、ウエハ1201に一次電子ビームを照射することで発生した二次電子を検出し、電気信号に変換する。これにより、二次電子線像(SEM画像)を得ることができる。なお、ウエハ1201には、重畳電圧電源1401により負の重畳電圧(以下、「基準電圧」ともいう。)が印加されている。ウエハ1201と対物レンズ1104の間の空間には、ウエハの移動範囲を覆うように制御電極1112が設けられており、ウエハ1201に印加される重畳電圧と等しい電圧が印加されている。
【0022】
(1−2)測長動作の概要
電子銃1101から放出された一次電子ビーム1102は、コンデンサレンズ1103、対物レンズ1109によって集束され、微小スポットとしてウエハ1201上に照射される。電子ビームが照射されると、照射された部分から試料の材質や形状に応じた二次電子や反射電子が発生する。偏向器1105、1106を用いて一次電子ビーム1102を二次元走査し、発生する二次電子を二次電子検出器1110で検出する。二次電子検出器1110は、検出した二次電子を電気信号に変換し、A/D(Analog to digital)変換器1111に出力する。A/D変換器1111は、入力した電気信号をディジタル信号に変換する。これにより、二次元ディジタル画像としてのSEM画像が得られる。
【0023】
ウエハ1201には、重畳電圧電源1401より負の重畳電圧が印加されている。このため、ウエハ1201に照射される最終段階の一次電子ビームの加速電圧は、電子銃から放出された加速電圧から重畳電圧を差し引いた電圧となる。なお、電子光学系1100を通過する時の電子線は高エネルギであるので高分解能を得ることができる。一方、ウエハに照射される一次電子は減速されて低エネルギであるのでウエハ1201のチャージアップを解消することができる。また、ウエハ1201に対向して、ウエハと同電位の重畳電圧が印加された制御電極1112を配置することにより、ウエハ1201の電位変動を抑制することができる。
【0024】
情報処理・装置制御部1300は、ステージコントローラ1301、偏向・焦点制御部1302、加速電圧制御部1303、重畳電圧制御電源1401、静電チャック制御電源1501をそれぞれ制御する。
【0025】
ステージコントローラ1301は、情報処理・装置制御部1300からの指令に基づいてXYステージ1202を制御する。偏向・焦点制御部1302は、情報処理・装置制御部1300からの指令に基づいて偏向器1105、1106を制御し、画像倍率設定やフォーカス制御を行う。
【0026】
加速電圧制御部1303は、情報処理・装置制御部1300からの指令に基づいて加速電圧を制御する。重畳電圧制御電源1401は、情報処理・装置制御部1300からの指令に基づいて重畳電圧を制御する。
【0027】
情報処理・装置制御部1300は、得られた画像や計測データを保存するデータベース1304と、装置に対する操作入力、条件の設定入力(レシピ作成)、結果表示に用いられるコンピュータ1305とを有する。
【0028】
なお、この形態例に係る情報処理・装置制御部1300は、評価対象位置のウエハ外縁からの距離を算出する処理部と、当該距離と照射する一次電子ビームの照射条件の組み合わせに対して最適な補正電圧値を格納した補正テーブルとを有している。補正テーブルは、データベース1304に格納しても良い。情報処理・装置制御部1300は、評価対象であるウエハの外周縁からの距離と、照射する一次電子ビームの照射条件と、必要に応じてウエハの種類との組み合わせに基づいて、ウエハに照射する一次電子ビームの偏向がほぼゼロになるように静電チャックを構成する電極板に印加する電圧値と極性を制御する。補正テーブルや電極板に印加する電圧値と極性の制御機能については後述する。
【0029】
(1−3)静電チャックの構成
(従来構造)
図2及び図3に、従来用いられている静電チャックの概略構成を示す。図2は、ウエハ1201の中央部近傍を評価する場合におけるウエハ周辺の断面図を示し、図3は、ウエハの外縁近傍を評価する場合のウエハ周辺の断面図を示す。この形態例で使用する試料台1203は、静電吸着式の試料保持台であり、セラミックスからなる誘電体2010と、誘電体内部に設けられた電極板2011とで構成される。
【0030】
静電チャックは、ウエハ1201と誘電体内部の電極板2011との間に電位差を与えた際に発生する吸引力により、ウエハ1201を誘電体表面2012に吸着保持する。前述したように、ウエハ1201には負の重畳電圧が印加されている。このため、静電チャックの電極板2011には、重畳電圧を基準電位とする吸着のための電圧が印加される。なお、電極板2011の厚さは例えば数μm〜数十μm程度であり、誘電体の厚み(電極板の上方)は例えば数十μmから数百μmである。
【0031】
図2に示すように、評価位置がウエハの中央周辺の場合、一次電子ビームの軌道2001に対して周辺の部品(対物レンズ1104、制御電極1112、ウエハ1201、試料台1203等)の配置と形状は対称となる。このため、周囲の空間に形成される電位分布も対称となり、一次電子ビームの偏向を生じない。なお図中、一次電子ビームの照射領域の近傍に形成される等電位面2020を破線で示す。
【0032】
これに対し、評価対象位置がウエハの外周縁近傍の場合、図3に示すように、一次電子ビームの軌道に対して、ウエハ1201、試料台1203の形状が非対称となる。このため、ウエハの外周方向に向かって等電位面2020の落ち込みが発生する。すなわち、等電位面が非対称に変化する。この等電位面の落ち込みより、一次電子ビームの軌道2001は、本来通過すべき軌道2201よりも外側(ウエハ1201の中心から見て外縁方向)に偏向される。これにより、本来、評価すべき位置から離れた位置に一次電子ビーム1102が入射することになる。この一次電子ビームの軌道2001の位置ずれは、ウエハの外周縁に近いほど大きくなり、評価が不可能な領域を発生させる原因になる。
【0033】
(形態例の構造)
一方、形態例に係る測長SEM装置では、静電チャックの構造、静電チャック内部に設置する電極板の構造、印加電圧の大きさ及び極性、ウエハと同電位に制御された制御電極との位置関係を最適化し、一次電子ビームの軌道の偏向を防止する。
【0034】
図4〜図6に、形態例1に係る測長SEM装置で使用する静電チャックとその周辺部との位置関係や各電極板に対する電圧の印加関係を示す。図4は、試料台1203にウエハ1201を設置した場合の断面図である。図4には、ウエハ1201、静電チャック1203、静電チャック内の電極板3010、3011、対物レンズ1104、制御電極1112の位置関係が示されている。図4は、評価位置がウエハの外周縁近傍にある場合について表している。図5は、図4に示す静電チャックを上方から見た平面図である。
【0035】
図4及び図5に示すように、この形態例における静電チャック1203は双極型の静電チャックであり、同心円状に二つの電極板3010、3011が設けられている。これら2つの電極板3010及び3011は、それぞれスイッチ3002及び3004を介して直流電源3001及び300に接続されている。従って、スイッチをオン制御(閉制御)することにより、各電極板に対して所定の電圧を給電することができ、ウエハ1201は静電チャックに吸着されることになる。既に説明したように、ウエハ1201には重畳電圧電源1401より負の重畳電圧(−V0)が印加されている。従って、静電チャックには、重畳電圧である基準電圧(−V0)に対して正の電圧(+V)と負の電圧(−V)が印加される。このとき、ウエハ1201の電位は、各電極板に印加される電圧の中間電圧になる。従って、ウエハ1201の電位は、重畳電圧(−V0)と一致する。以下の説明では、基準電圧(−V0)に対して正の電圧を「正電圧」といい、基準電圧(−V0)に対して負の電圧を「負電圧」という。
【0036】
この形態例の場合、ウエハ1201、静電チャック内の電極板3010、3011、制御電極1112は、次のような位置関係に設定する。なお、評価対象としてのウエハ1201の寸法は事前に分かっているものとする。また、センタリング技術により、ウエハ1201は静電チャック1203の所定位置に配置されるものとする。他の形態例についても同様である。
【0037】
この形態例の場合、静電チャック1203を構成する2つの電極板3010及び3011は、図5に示すように同心円状に配置する。すなわち、中心側に円板形状の電極板3010(以下、「内側電極板」という。)を配置し、その外側にリング形状の電極板3011(以下、「外側電極板」という。)を配置する。
【0038】
また、内側電極板3010に正電圧(+V)を印加し、外側電極板3011に負電圧(−V)を印加する。
【0039】
また、外側電極板3011の外径寸法d3は、ウエハの外径Dよりも外側に、はみ出し寸法r1だけはみ出す大きさとする。はみ出し寸法r1(=(d3−D)/2)と制御電極1112の中心の穴(穴径=d0)の半径r0(=d0/2)とによる比R(=r1/r0)が0.7以上(≧0.7)になるように、外側電極板3011の外径寸法d3を決定する。例えば比Rは、0.75、0.80、0.85、0.90、0.95、1.00、1.05…でも良い。
【0040】
さらに、内側電極板3010の面積(直径d1の円の面積)と、外側電極板3011の内径d2とウエハ1201の外径Dとで囲まれた中空円の面積が等しくなるように、内側電極板3010と外側電極板3011の寸法を設定する。すなわち、次式を満たすように寸法を設定する。
【0041】
π×(d1/2)=π×{(D/2)−(d2/2)
【0042】
このことは、内側電極板3010と外側電極板3011がウエハに吸着力を作用させる面積が実効的に等しくなることを意味する。この条件は、内側電極板3010に正電圧(+V)を印加し、かつ、外側電極板3011に負電圧(−V)を印加する場合において、ウエハ1201に印加される電位を中間電位(すなわち、基準電圧(−V0))に制御するための必須の条件でもある。
【0043】
図6に、前述した条件が満たされた場合における一次電子ビーム2001の軌道を示す。図6に示すように、静電チャック1203を構成する2つの電極板3010、3011は同心円状に配置されている。外側電極板3011は、その外縁がウエハ1201の外縁よりも外側にはみ出すように配置され、ウエハ1201に対する印加電圧よりも低い電圧(すなわち、−V)が印加される。この結果、ウエハ1201の外縁よりもはみ出した位置の外側電極板3011の表面に負の電界5000が発生する。この負の電界5000は、図3で認められたウエハ周辺部での等電位面2020の落ち込みを上方に押し上げるように作用する。すなわち、静電チャックを動作させる印加電圧により一次電子ビームの曲がりを抑制することができる。
【0044】
発明者らの実験及び計算による検討の結果によれば、外側電極3011のはみ出し寸法r2が大きい方が、ウエハの外周縁部における等電位面2020の落ち込みを上方に押し上げる電界が強くなることが確認された。その効果は、はみ出し寸法r2と制御電極1112の中心の穴(孔)の半径r0との比R(=r1/r0)が、0.7となる寸法及び配置の場合にほぼ飽和することが明らかとなった。
【0045】
また、等電位面の落ち込みを上方に押し上げる効果は、はみ出した電極上に発生する電界5000が大きいほど、すなわち静電チャックに印加する電圧が大きいほど大きくなる。既に説明したように、ウエハの外周縁部に近づくほど一次電子ビームの偏向量は大きくなり易い。従って、評価位置のウエハの外周縁からの距離に応じて静電チャックに印加する電圧を制御する機能を情報処理・装置制御部1300に搭載することにより、一次電子ビームの曲がりをより効果的に防止することができる。
【0046】
(1−4)処理手順
以下では、図7に示すフローチャートを使用して、測長SEM装置を用いる具体的な測定処理手順を説明する。また、図8にシミュレーションにより求めた一次電子ビームの偏向量とウエハ周縁からの距離との関係についての一例を示し、図9にシミュレーションにより求めたウエハ周縁からの距離と補正電圧と関係についての一例を示す。
【0047】
なお、ビーム偏向量(図8)や補正のために印加する補正電圧(図9)の値は、一次電子ビームや基準電圧などの評価条件(レシピ)により変化する。従って、測長SEM装置が使用する可能性のある全ての評価条件について、ウエハエッジからの距離に応じた印加電圧の条件等を予め求める。なお、求められた距離と印加電圧の関係は、情報処理・装置制御部1300の補正テーブルに格納される。
【0048】
まず、測長SEM装置に搬入されたウエハ1201は、不図示の搬送機構によって、XYステージ1202上の静電チャック1203に設置される(6001)。この後、静電チャックに電圧を印加し、ウエハ1201を吸着する(6002)。この場合、静電チャックの印加電圧は、ウエハ保持のための規定の電圧±V(V)とする。ステージコントローラ1301は、評価対象であるパターンのウエハ上での位置座標を情報処理・装置制御部1300から取得する(6003)。ステージコントローラ1301は、取得した位置座標に基づいてXYステージ1202を駆動制御し、評価対象位置に対応する座標が一次電子ビームの軌道2001の直下になるように位置決めする(6004)。
【0049】
一方、情報処理・装置制御部1300では、レシピ(例えば加速電圧、重畳電圧、プローブ電流、倍率等)の条件を取得し(6101)、レシピに対応した最適な補正テーブルを取得する(6102)。
【0050】
次に、情報処理・装置制御部1300は、評価対象位置に基づいて、ウエハの外周縁部から評価位置までの距離を計算する(6103)。情報処理・装置制御部1300は、算出された距離と補正テーブルとに基づいて、一次電子ビームの偏向を補正する必要があるか否か判定する(6104)。補正の必要が無いと判定された場合、情報処理・装置制御部1300は、評価対象位置に対する評価を実行する(6005)。続いて、情報処理・装置制御部1300は、次ぎの測定が必要か否かを判定する(6006)。次の評価対象がある場合、情報処理・装置制御部1300は、次の評価対象位置の座標を取得する(6003)。一方、次ぎの測定対象が無い場合、情報処理・装置制御部1300は、静電チャックの電圧をオフ制御(開制御)し(6007)、ウエハの搬出を指示する(6008)。
【0051】
これに対し、判定処理(6104)において、一次電子ビームの偏向を補正する必要があると判定された場合、情報処理・装置制御部1300は、評価対象位置のウエハ外周縁部からの距離に基づいて補正テーブルにアクセスし、静電チャックに印加する補正電圧(追加電圧)(Vα)を求める(6105)。この後、情報処理・装置制御部1300は、求められた補正電圧により静電チャックに対する印加電圧を補正する(6106)。例えば±Vを、±(V+Vα)に変化させる。次に、情報処理・装置制御部1300は、評価対象位置に対する評価を実行する。続いて、情報処理・装置制御部1300は、次ぎの測定が必要か否かを判定する(6006)。次の評価対象がある場合、情報処理・装置制御部1300は、次の評価対象位置の座標を取得する(6003)。一方、次ぎの測定対象が無い場合、情報処理・装置制御部1300は、静電チャックの電圧をオフ制御(開制御)し(6007)、ウエハの搬出を指示する(6008)。
【0052】
(1−5)まとめ
以上説明したように、前述した条件を満たす静電チャックの使用により、ウエハの外周縁部の近傍が評価対象位置の場合にも、偏向による荷電電子線の位置ずれを効果的に抑制することができる。これにより、評価範囲の広い測長SEM装置を実現することができる。
【0053】
(2)形態例2
続いて、2つ目の形態例を、図10、図11及び図12を用いて説明する。この形態例では、外径サイズの異なる2種類のウエハを、測長SEM装置の部品の交換なく、ウエハの外周縁部まで電子ビームで評価できる測長SEM装置を説明する。この形態例の場合、外径サイズの異なる2種類のウエハとして、直径が300mmのシリコンウエハと直径が450mmのシリコンウエハを使用する。
(2−1)静電チャックの構成
図10は、直径が300mmのウエハ8020を評価する場合におけるウエハの外周縁部と静電チャックとの位置関係を説明する図である。図11は、直径が450mmのウエハ8021を評価する場合におけるウエハの外周縁部と静電チャックとの位置関係を説明する図である。各図は、ウエハ、静電チャック、静電チャックの電極板、対物レンズ、制御電極の位置関係を示している。図12は、図10及び図11に示す静電チャックを上方から見た平面図である。
【0054】
この形態例の場合、静電チャック1203は、4枚の電極板で構成する。これら4枚の電極板は同心円状に配置される。以下では、これら4枚の電極板を、内側から順番に、内側電極板8001、内側中間電極板8002、外側中間電極板8003、外側電極板8004という。なお、内側電極板8001だけが円形状であり、その他3つの電極板はいずれもリング形状である。各電極板は、スイッチを介して直流電源に接続される。例えば内側電極板8001は、スイッチ8012を介して直流電源8011に接続される。内側中間電極板8002は、スイッチ8014を介して直流電源8013に接続される。外側中間電極板8003は、スイッチ8016を介して直流電源8015に接続される。外側電極板8004は、スイッチ8018を介して直流電源8017に接続される。
【0055】
この形態例の場合も、形態例1の場合と同様に、静電チャックに対する給電電圧は、重畳電圧電源1401による重畳電圧(−V0)を基準電圧とする。因みに、内側電極板8001と外側中間電極板8003には、正電圧(+V)を印加し、内側中間電極板8002と外側電極板8004には、負電圧(−V)を印加する。直流電源8011、8013、8015、8017の印加電圧はいずれも情報処理・装置制御部1305の制御指示により可変することができる。
【0056】
この形態例の場合、静電チャック1203を構成する4枚の電極板8001、8002、8003、8004と、評価対象である2種類のウエハ8020(直径300mm)、8021(直径450mm)と、制御電極1112のサイズと位置関係を以下のように規定する。
【0057】
まず図10を使用して、内側電極板8001と内側中間電極板8002との間に求められる条件を説明する。内側中間電極板8002の外径寸法d3は、径の小さいウエハ8020(直径300mm)の外径D1よりも外側に、はみ出し寸法r1だけはみ出す大きさとする。はみ出し寸法r1(=(d3−D1)/2)と制御電極1112の中心の穴(穴径=d0)の半径r0(=d0/2)との比R1(=r1/r0)が0.7以上(≧0.7)になるように、内側中間電極板8002の外径寸法d3を決定する。例えば比R1は、0.75、0.80、0.85、0.90、0.95、1.00、1.05…でも良い。
【0058】
さらに、内側電極板8001の面積(直径d1の円の面積)と、内側中間電極板8002の内径d2とウエハ8020の外径D1とで囲まれた中空円の面積が等しくなるように、内側電極板8001と内側中間電極板8002の寸法を設定する。すなわち、次式を満たすように寸法を設定する。
【0059】
π×(d1/2)=π×{(D1/2)−(d2/2)
【0060】
なお、D1=300mmであるので、(d1/2)={150−(d2/2)}を満たすように直径d1と内径d2を決める。この条件は、形態例1の場合と同様に、内側電極板8001と内側中間電極板8002がウエハに吸着力を作用させる面積を実効的に等しくするために必要となる。また、内側電極板8001に正電圧(+V)を印加し、かつ、内側中間電極板8002に負電圧(−V)を印加する場合において、ウエハ8020に印加される電位を中間電位(すなわち、基準電圧(−V0))に制御するために必須の条件でもある。
【0061】
図11を使用して、外側電極板8004と外側中間電極板8003との間に求められる条件を説明する。外側電極板8004の外径寸法d7は、径の大きいウエハ8021(直径450mm)の外径D2よりも外側に、はみ出し寸法r2だけはみ出す大きさとする。はみ出し寸法r2(=(d7−D2)/2)と制御電極1112の中心の穴(穴径=d0)の半径r0(=d0/2)との比R2(=r2/r0)が0.7以上(≧0.7)になるように、外側電極板8004の外径寸法d7を決定する。例えば比R2は、0.75、0.80、0.85、0.90、0.95、1.00、1.05…でも良い。
【0062】
さらに、この形態例の場合、内側電極板8001の面積(直径d1の円の面積)と外側中間電極板8003の面積(内径d4かつ外径d5の中空円の面積)の和と、内側中間電極板8002(内径d2かつ外径d3の中空円の面積)と外側電極板8004の内径d6とウエハ8021の外径D2で囲まれた中空円の面積の和が等しくなるように、各電極板の寸法を決定する。すなわち、次式を満たすように寸法を設定する。
【0063】
π×(d1/2)+π×{(d5/2)−(d4/2)}
=π×{(d3/2)−(d2/2)}+π×{(D2/2)−(d6/2)
【0064】
なお、D2=450mmであるので、(d1/2)+{(d5/2)−(d4/2)}={(d3/2)−(d2/2)}+{225−(d6/2)}を満たすように、残りの径d3、d4、d5、d6を決定する。この条件は、ウエハに対して作用する吸着力を均一にすると共に、ウエハ8021に印加される電位を中間電位(すなわち、基準電圧(−V0))に制御するために必須の条件である。
【0065】
(2−2)処理手順
以下では、図13に示すフローチャートを使用して、測長SEM装置を用いる具体的な測定処理手順を説明する。なお、図13には図7との対応部分に同一符号を付して示している。この形態例の場合、2種類のウエハのうちいずれかが評価対象となる。このため、電子光学条件を取得する前に、ウエハ情報(小径のウエハ8020か大径のウエハ8021かの情報)を取得する処理(6201)と、静電チャックの駆動条件を決定する処理(6202)が実行される。なお、処理(6202)の決定に従い、スイッチ8012、8014、8016、8018の開閉制御や直流電源8011、8013、8015、8017で発生する電圧値が可変制御される。
【0066】
この形態例の場合も、測長SEM装置が使用する可能性のある全ての評価条件は、ウエハエッジからの距離に応じた印加電圧の条件等として予め求められており、求められた距離と印加電圧の関係は情報処理・装置制御部1300の補正テーブルに格納されている。
【0067】
まず、直径が300mmのウエハ8020を評価対象とする場合(図10)の処理動作を説明する。まず、測長SEM装置に搬入されたウエハ8020は、不図示の搬送機構によって、XYステージ1202上の静電チャック1203に設置される(6001)。この場合、静電チャック1203は、内側電極板8001と内側中間電極板8002を使用してウエハ8020を吸着する。この際、内側電極板8001には正電圧(+V)を印加し、内側中間電極板8002には負電圧(−V)を印加する。
【0068】
前述したように、この形態例における内側中間電極板8002の外径d3は、ウエハ8020の外径D1よりも大きく、かつ、はみ出し寸法r1(r1≧0.7×r0)だけウエハ8020の外縁よりもはみ出している。従って、内側中間電極板8002のうちウエハ8020の外縁からはみ出した電極部分には負の電界が発生する。この負の電界により、形態例1の場合と同様に、ウエハ周辺部分での等電位面の落ち込みを上方に押し上げることができる。
【0069】
すなわち、静電チャックを動作させる印加電圧により、ウエハの外周縁の付近が評価対象位置となる場合でも、一次電子ビームの曲がりを抑制することができる。また、この形態例の場合、正電圧(+V)が印加される内側電極板8001の面積と、負電圧(−V)が印加される内側中間電極板8002の内径d2とウエハ8020の外径D1とで囲まれた中空円の面積が等しいので(すなわち、ウエハに吸着力を作用させる双極の面積が実効的に等しいので)、ウエハ8020の電位を、電極板に対する印加電圧の中間電位である基準電圧(−V0)に保持することができる。
【0070】
次に、直径が450mmのウエハ8021を評価対象とする場合(図11)の処理動作を説明する。まず、測長SEM装置に搬入されたウエハ8021は、不図示の搬送機構によって、XYステージ1202上の静電チャック1203に設置される(6001)。この場合、静電チャック1203は、内側電極板8001、内側中間電極板8002、外側中間電極板8003、外側電極板8004の4枚の電極板を使用してウエハ8021を吸着する。この際、内側電極板8001には正電圧(+V)を印加し、内側中間電極板8002には負電圧(−V)を印加し、外側中間電極板8003には正電圧(+V)を印加し、外側電極板8004には負電圧(−V)を印加する。
【0071】
前述したように、この形態例における外側電極板8004の外径d7は、ウエハ8021の外径D2よりも大きく、かつ、はみ出し寸法r2(r1≧0.7×r0)だけウエハ8021の外縁よりもはみ出している。従って、外側電極板8004のうちウエハ8021外縁からはみ出した電極部分には負の電界が発生する。この負の電界により、形態例1の場合と同様に、ウエハ周辺部分での等電位面の落ち込みを上方に押し上げることができる。すなわち、静電チャックを動作させる印加電圧により、ウエハの外周縁の付近が評価対象位置となる場合でも、一次電子ビームの曲がりを抑制することができる。
【0072】
また、この形態例の場合、正電圧(+V)が印加される内側電極板8001の面積(直径d1の円の面積)と外側中間電極板8003の面積(内径d4かつ外径d5を有する中空円の面積)の和と、負電圧(−V)を印加する内側中間電極板8002の面積(内径d2かつ外径d3を有する中空円の面積)と外側電極板8004の内径d6とウエハ8021の外径D2で囲まれた中空円の面積の和が等しいので(すなわち、ウエハに吸着力を作用させる双極の面積が実効的に等しいので)、ウエハ8021の電位を、電極板に対する印加電圧の中間電位である基準電圧(−V0)に保持することができる。
【0073】
(2−3)まとめ
形態例1において説明したように、等電位面の落ち込みを上方に押し上げる効果は、はみ出した電極上の電界が大きいほど、すなわち静電チャックに印加する電圧が大きいほど大きくなる。一次電子ビームの偏向量はウエハの外周縁部に近づくほど大きくなるので、評価対象位置のウエハの外周縁部からの距離に応じて静電チャックに印加する電圧を制御することにより、一次電子ビームの曲がりをより効果的に防止することができる。
【0074】
この形態例に係る装置構成や処理手法の採用により、評価対象であるウエハの外径サイズを変更する場合でも、測長SEM装置の部品の組み換えを行うことなくウエハのパターン評価を実行することができる。勿論、ウエハの外周縁部の近傍についても、一次電子ビームの偏向を効果的に抑制して正確な評価を実現できる。
【0075】
(3)形態例3
続いて、3つ目の形態例を、図14、図15及び図16を用いて説明する。この形態例の場合にも、外径サイズの異なる2種類のウエハを、測長SEM装置の部品の交換なく、ウエハの外縁周部まで電子ビームで評価できる測長SEM装置を説明する。この形態例の場合も、外径サイズの異なる2種類のウエハは、直径が300mmのシリコンウエハと直径が450mmのシリコンウエハであるものとする。形態例2との違いは、静電チャック1203を3枚の電極板で構成することである。
【0076】
(3−1)静電チャックの構成
図14は、直径が300mmのウエハ8020を評価する場合におけるウエハの外周縁部と静電チャックとの位置関係を説明する図である。図15は、直径が450mmのウエハ8021を評価する場合におけるウエハの外周縁部と静電チャックとの位置関係を説明する図である。各図は、ウエハ、静電チャック、静電チャックの電極板、対物レンズ、制御電極の位置関係を示している。図16は、図14及び図15に示す静電チャックを上方から見た平面図である。
【0077】
この形態例の場合、静電チャック1203は、3枚の電極板で構成する。これら3枚の電極板は同心円状に配置される。以下では、これら3枚の電極板を、内側から順番に、内側電極板8030、中間電極板8031、外側電極板8032という。なお、内側電極板8030だけが円形状であり、その他2つの電極板はいずれもリング形状である。各電極板は、スイッチを介して直流電源に接続される。例えば内側電極板8030は、スイッチ8042を介して直流電源8041に接続される。中間電極板8031は、スイッチ8044を介して直流電源8043に接続される。外側電極板8032は、スイッチ8046を介して直流電源8045に接続される。
【0078】
この形態例の場合も、前述した2つの形態例の場合と同様に、静電チャックに対する給電電圧は、重畳電圧電源1401による重畳電圧(−V0)を基準電圧とする。この形態例の場合、直流電源8045には、負電圧(−V)を発生するものを使用し、他の2つの直流電源8041、8043には、正電圧(+V)と負電圧(−V)の両方を発生できるものを使用する。直流電源8041、8043、8045の印加電圧はいずれも情報処理・装置制御部1305の制御指示により可変することができる。
【0079】
この形態例の場合、静電チャック1203を構成する3枚の電極板8030、8031、8032と、評価対象である2種類のウエハ8020(直径300mm)、8021(直径450mm)と、制御電極1112のサイズと位置関係を以下のように規定する。
【0080】
まず図14を使用して、内側電極板8030と中間電極板8031との間に求められる条件を説明する。中間電極板8031の外径寸法d3は、径の小さいウエハ8020(直径300mm)の外径D1よりも外側に、はみ出し寸法r1だけはみ出す大きさとする。はみ出し寸法r1(=(d3−D1)/2)と制御電極1112の中心の穴(穴径=d0)の半径r0(=d0/2)との比R1(=r1/r0)が0.7以上(≧0.7)になるように、中間電極板8030の外径寸法d3を決定する。例えば比R1は、0.75、0.80、0.85、0.90、0.95、1.00、1.05…でも良い。
【0081】
さらに、内側電極板8030の面積(直径d1の円の面積)と中間電極板8031の内径d2とウエハ8020の外径D1で囲まれた中空円の面積が等しくなるように、内側電極板8030と中間電極板8031の寸法を設定する。すなわち、次式を満たすように寸法を設定する。
【0082】
π×(d1/2)=π×{(D1/2)−(d2/2)
【0083】
なお、D1=300mmであるので、(d1/2)={150−(d2/2)}を満たすように直径d1と内径d2を決める。この条件は、前述した2つの形態例の場合と同様に、内側電極板8030と中間電極板8031がウエハに吸着力を作用させる面積を実効的に等しくするために必要となる。また、内側電極板8030に正電圧(+V)を印加し、かつ、中間電極板8031に負電圧(−V)を印加する場合において、ウエハ8020に印加される電位を中間電位(すなわち、基準電圧(−V0))に制御するために必須の条件でもある。
【0084】
図15を使用して、外側電極板8032と中間電極板8031との間に求められる条件を説明する。外側電極板8032の外径寸法d5は、径の大きいウエハ8021(直径450mm)の外径D2よりも外側に、はみ出し寸法r2だけはみ出す大きさとする。はみ出し寸法r2(=(d5−D2)/2)と制御電極1112の中心の穴(穴径=d0)の半径r0(=d0/2)との比R2(=r2/r0)が0.7以上(≧0.7)になるように、外側電極板8032の外径寸法d5を決定する。例えば比R2は、0.75、0.80、0.85、0.90、0.95、1.00、1.05…でも良い。
【0085】
さらに、この形態例の場合、内側電極板8030の面積(直径d1の円の面積)と外側電極板の内径d4とウエハ8021の外径D2で囲まれた中空円の面積の和と、中間電極板8031の面積(内径d2かつ外径d3を有する中空円の面積)が等しくなるように、各電極板の寸法を決定する。すなわち、次式を満たすように寸法を設定する。
【0086】
π×(d1/2)+π×{(D2/2)−(d4/2)
=π×{(d3/2)−(d2/2)
【0087】
なお、D2=450mmであるので、(d1/2)+225−(d4/2)={(d3/2)−(d2/2)}を満たすように、残りの径d3、d4を決定する。この条件は、ウエハに対して作用する吸着力を均一にすると共に、ウエハ8021に印加される電位を中間電位(すなわち、基準電圧(−V0))に制御するために必須の条件である。
【0088】
(3−2)処理手順
この形態例における測長SEM装置における測定処理手順は、形態例2の場合(図13)と同じである。以下では、この形態例に特有の処理手順を説明する。
【0089】
まず、直径が300mmのウエハ8020を計測する場合(図14)の処理動作を説明する。まず、測長SEM装置に搬入されたウエハ8020は、不図示の搬送機構によって、XYステージ1202上の静電チャック1203に設置される(6001)。この場合、静電チャック1203は、内側電極板8030と中間電極板8031を使用してウエハ8020を吸着する。この際、内側電極板8030には正電圧(+V)を印加し、中間電極板8031には負電圧(−V)を印加する。
【0090】
前述したように、この形態例における中間電極板8031の外径d3は、ウエハ8020の外径D1よりも大きく、かつ、はみ出し寸法r1(r1≧0.7×r0)だけウエハ8020の外縁よりもはみ出している。従って、中間電極板8031のうちウエハ8020の外縁からはみ出した電極部分には負の電界が発生する。この負の電界により、前述した2つの形態例の場合と同様に、ウエハ周辺部分での等電位面の落ち込みを上方に押し上げることができる。
【0091】
すなわち、静電チャックを動作させる印加電圧により、ウエハの外周縁の付近が評価対象位置となる場合でも、一次電子ビームの曲がりを抑制することができる。また、この形態例の場合、正電圧(+V)が印加される内側電極板8030の面積と、負電圧(−V)が印加される中間電極板8031の内径d2とウエハ8020の外径D1とで囲まれた中空円の面積が等しいので(すなわち、ウエハに吸着力を作用させる双極の面積が実効的に等しいので)、ウエハ8020の電位を、電極板に対する印加電圧の中間電位である基準電圧(−V0)に保持することができる。
【0092】
次に、直径が450mmのウエハ8021を計測する場合(図15)の処理動作を説明する。まず、測長SEM装置に搬入されたウエハ8021は、不図示の搬送機構によって、XYステージ1202上の静電チャック1203に設置される(6001)。この場合、静電チャック1203は、内側電極板8030、中間電極板8031、外側電極板8032の3枚の電極板を使用してウエハ8021を吸着する。
【0093】
この際、内側電極板8030と外側電極板8032には負電圧(−V)を印加し、中間電極板8031には正電圧(+V)を印加する。
【0094】
前述したように、この形態例における外側電極板8032の外径d5は、ウエハ8021の外径D2よりも大きく、かつ、はみ出し寸法r2(r2≧0.7×r0)だけウエハ8021の外縁よりもはみ出している。従って、外側電極板8032のうちウエハ8021外縁からはみ出した電極部分には負の電界が発生する。この負の電界により、前述した2つの形態例と同様に、ウエハ周辺部分での等電位面の落ち込みを上方に押し上げることができる。すなわち、静電チャックを動作させる印加電圧により、ウエハの外周縁の付近が評価対象位置となる場合でも、一次電子ビームの曲がりを抑制することができる。
【0095】
また、この形態例の場合、正電圧(+V)が印加される中間電極板8031の面積(内径d2かつ外径d3を有する中空円の面積)と、負電圧(−V)を印加する内側電極板8030の面積(直径d1の円の面積)と外側電極板8032の内径d4とウエハ8021の外径D2で囲まれた中空円の面積の和とが等しいので(すなわち、ウエハに吸着力を作用させる双極の面積が実効的に等しいので)、ウエハ8021の電位を、電極板に対する印加電圧の中間電位である基準電圧(−V0)に保持することができる。
【0096】
(3−3)まとめ
以上のように、この形態例の場合には、第2の形態例と同じ効果を、3枚の電極板で構成される静電チャックと、3個の直流電源とによって実現することができる。すなわち、この形態例の場合には、形態例2と比較して静電チャックの構造を簡略化でき、かつ、直流電源の省略を実現することができる。
【0097】
ただし、この形態例の場合、内側電極板8030と中間電極板8031に対応する直流電源8041と8043には、直径が300mmのウエハを計測する場合(図14)と直径が450mmのウエハを計測する場合(図15)とで極性を反転できる電源を使用する必要がある。
【0098】
前述したように、等電位面の落ち込みを上方に押し上げる効果は、はみ出した電極上の電界が大きいほど、すなわち静電チャックに印加する電圧が大きいほど大きくなる。一次電子ビームの偏向量はウエハの外周縁部に近づくほど大きくなるので、評価対象位置のウエハ周縁からの距離に応じて静電チャックに印加する電圧を制御することにより、一次電子ビームの曲がりをより効果的に防止することができる。
【0099】
この形態例に係る装置構成や処理手法の採用により、評価対象であるウエハの外径サイズを変更する場合でも、測長SEM装置の部品の組み換えを行うことなくウエハのパターン評価を実行することができる。勿論、ウエハの外周縁部の近傍についても、一次電子ビームの偏向を効果的に抑制して正確な評価を実現できる。
【符号の説明】
【0100】
1100…電子光学系、1200…真空室、1300…情報処理・装置制御部、1101…電子銃、1102…一次電子ビーム、 1103…コンデンサレンズ、1104…対物レンズ、1105、1106…偏向器、1107…アライメントコイル、1108…非点補正コイル、1109…対物レンズ絞り、1110…二次電子検出器、1111…A/D変換器、1112…制御電極、1201…ウエハ(基板試料)、1202…XYステージ、1203…試料保持台(静電チャック)、1301…ステージコントローラ、1302…偏向・焦点制御部、1303…加速電圧制御部、1304…データベース、1305…コンピュータ、1401…重畳電圧電源、2001…一次電子ビームの軌道、2010…誘電体、2011、3010、3011、8001、8002、8003、8004、8030、8031、8032…電極板、2020…等電位面、2030…アース、8011、8013、8015、8017、8041、8043、8045…直流電源、8012、8014、8016、8018、8042、8044、8046…スイッチ、8020…ウエハ(直径300mm)、8021…ウエハ(直径450mm)。

【特許請求の範囲】
【請求項1】
一次荷電粒子線に対する減速電界を発生させる手段と、
評価対象とする試料を保持する保持面と、互いに絶縁された状態で同心円状に配置される円形状の第1の電極板と中空円形状の第2の電極板とを有する静電吸着式の試料保持機構と、
前記試料と対物レンズとの間に配置された制御電極に予定の電圧を印加する手段と、
前記第1の電極板に、前記減速電界を発生させる基準電圧に対して正極性の任意の大きさの電圧を印加する手段と、
前記第2の電極板に、前記基準電圧に対して負極性の任意の大きさの電圧を印加する手段とを有し、
前記第2の電極板の外径は前記試料の外径より大きい値であり、かつ、前記第2の電極板の内径と前記試料の外径とで囲まれる中空円の面積と、前記第1の電極板の面積とがほぼ同じ大きさである
ことを特徴とする荷電粒子線装置。
【請求項2】
前記第2の電極板の外径寸法と前記試料の外径寸法との差は、前記制御電極に荷電粒子を通過させるために設けられた孔の70%以上である
ことを特徴とする請求項1に記載の荷電粒子線装置。
【請求項3】
一次荷電粒子線に対する減速電界を発生させる手段と、
評価対象とする試料を保持する保持面と、互いに絶縁された状態で同心円状に配置される円形状の第1の電極板と、その外側に順番に配列される中空円形状の第2、第3、第4の電極板とを有する静電吸着式の試料保持機構と、
前記試料と対物レンズとの間に配置された制御電極に予定の電圧を印加する手段と、
前記第1の電極板と前記第3の電極板に、前記減速電界を発生させる基準電圧に対して正極性の任意の大きさの電圧を印加する手段と、
前記第2の電極板と前記第4の電極板に、前記基準電圧に対して負極性の任意の大きさの電圧を印加する手段とを有し、
前記第2の電極板の外径は径が小さい方の試料の外径より大きい値であり、かつ、前記第2の電極板の内径と前記径が小さい方の試料の外径とで囲まれる中空円の面積と、前記第1の電極板の面積とがほぼ等しい大きさであり、
前記第4の電極板の外径は径が大きい方の試料の外径より大きい値であり、かつ、前記第4の電極板の内径と前記径が大きい方の試料の外径とで囲まれる中空円の面積と前記第2の電極板の面積との和が、前記第1の電極板の面積と前記第3の電極板の面積の和とほぼ同じ大きさである
ことを特徴とする荷電粒子線装置。
【請求項4】
前記第2の電極板の外径寸法と前記径が小さい方の基板の外径寸法との差と、前記第4の電極板の外径寸法と前記径が大きい方の基板の外径寸法との差は、ともに前記制御電極に荷電粒子を通過させるために設けられた孔の70%以上である
ことを特徴とする請求項3に記載の荷電粒子線装置。
【請求項5】
一次荷電粒子線に対する減速電界を発生させる手段と、
評価対象とする試料を保持する保持面と、互いに絶縁された状態で同心円状に配置される円形状の第1の電極板と、その外側に順番に配列される中空円形状の第2、第3の電極板とを有する静電吸着式の試料保持機構と、
前記試料と対物レンズとの間に配置された制御電極に予定の電圧を印加する手段と、
前記第1の電極板と前記第2の電極板に、前記減速電界を発生させる基準電圧に対して正極性又は負極性の任意の大きさの電圧を相補的に印加する手段と、
前記第3の電極板に、前記基準電圧に対して負極性の任意の大きさの電圧を印加する手段とを有し、
前記第2の電極板の外径は径が小さい方の試料の外径より大きい値であり、かつ、前記第2の電極板の内径と前記試料の外径とで囲まれる中空円の面積と、前記第1の電極板の面積とがほぼ等しい大きさであり、
前記第3の電極板の外径は径が大きい方の試料の外径より大きい値であり、かつ、前記第3の電極板の内径と前記径が大きい方の試料の外径とで囲まれる中空円の面積と前記第1の電極板の面積との和が、前記第2の電極板の面積とほぼ等しい大きさである
ことを特徴とする荷電粒子線装置。
【請求項6】
前記第2の電極板の外径寸法と径が小さい方の試料の外径寸法との差と、前記第3の電極板の外径寸法と径が大きい方の試料の外径寸法との差は、ともに前記制御電極に荷電粒子を通過させるために設けられた孔の70%以上である
ことを特徴とする請求項5に記載の荷電粒子線装置。
【請求項7】
評価対象位置に照射する荷電粒子線の条件と、前記評価対象位置の試料外縁からの距離と、前記電極板に印加して最適な電圧を対応付けて格納するテーブル手段と、
現在の評価対象位置の試料外縁からの距離を算出する手段と、
現在の評価対象位置に照射される荷電粒子線の条件と算出された前記距離とに基づいて、前記電極板に印加する電圧を制御する手段と
を有することを特徴とする請求項1〜6のいずれか1項に記載の荷電粒子線装置。
【請求項8】
荷電粒子線装置を利用した評価方法において、
前記荷電粒子線装置が、一次荷電粒子線に対する減速電界を発生させる手段と、評価対象とする試料を保持する保持面を有する静電吸着式の試料保持機構と、前記試料と対物レンズとの間に配置された制御電極に予定の電圧を印加する手段とを有し、
前記試料保持機構が、互いに絶縁された状態で同心円状に配置される円形状の第1の電極板と中空円形状の第2の電極板とを有し、前記第2の電極板の外径は前記試料の外径より大きい値であり、かつ、前記第2の電極板の内径と前記試料の外径とで囲まれる中空円の面積と、前記第1の電極板の面積とがほぼ同じ大きさであるとき、
前記第1の電極板に、前記減速電界を発生させる基準電圧に対して正極性の任意の大きさの電圧を印加する処理と、
前記第2の電極板に、前記基準電圧に対して負極性の任意の大きさの電圧を印加する処理と
を実行する荷電粒子線装置を利用した試料評価方法。
【請求項9】
荷電粒子線装置を利用した評価方法において、
前記荷電粒子線装置が、一次荷電粒子線に対する減速電界を発生させる手段と、評価対象とする試料を保持する保持面を有する静電吸着式の試料保持機構と、前記試料と対物レンズとの間に配置された制御電極に予定の電圧を印加する手段とを有し、
前記試料保持機構が、互いに絶縁された状態で同心円状に配置される円形状の第1の電極板と、その外側に順番に配列される中空円形状の第2、第3、第4の電極板とを有し、前記第2の電極板の外径は径が小さい方の試料の外径より大きい値であり、かつ、前記第2の電極板の内径と前記径が小さい方の試料の外径とで囲まれる中空円の面積と、前記第1の電極板の面積とがほぼ等しい大きさであり、前記第4の電極板の外径は径が大きい方の試料の外径より大きい値であり、かつ、前記第4の電極板の内径と前記径が大きい方の試料の外径とで囲まれる中空円の面積と前記第2の電極板の面積との和が、前記第1の電極板の面積と前記第3の電極板の面積の和とほぼ同じ大きさであるとき、
前記第1の電極板と前記第3の電極板に、前記減速電界を発生させる基準電圧に対して正極性の任意の大きさの電圧を印加する処理と、
前記第2の電極板と前記第4の電極板に、前記基準電圧に対して負極性の任意の大きさの電圧を印加する処理と
を実行する荷電粒子線装置を利用した試料評価方法。
【請求項10】
荷電粒子線装置を利用した評価方法において、
前記荷電粒子線装置が、一次荷電粒子線に対する減速電界を発生させる手段と、評価対象とする試料を保持する保持面を有する静電吸着式の試料保持機構と、前記試料と対物レンズとの間に配置された制御電極に予定の電圧を印加する手段とを有し、
前記試料保持機構が、互いに絶縁された状態で同心円状に配置される円形状の第1の電極板と、その外側に順番に配列される中空円形状の第2、第3の電極板とを有し、前記第2の電極板の外径は径が小さい方の試料の外径より大きい値であり、かつ、前記第2の電極板の内径と前記試料の外径とで囲まれる中空円の面積と、前記第1の電極板の面積とがほぼ等しい大きさであり、前記第3の電極板の外径は径が大きい方の試料の外径より大きい値であり、かつ、前記第3の電極板の内径と前記径が大きい方の試料の外径とで囲まれる中空円の面積と前記第1の電極板の面積との和が、前記第2の電極板の面積とほぼ等しい大きさであるとき、
前記第1の電極板と前記第2の電極板に、前記減速電界を発生させる基準電圧に対して正負両極性の任意の大きさの電圧を反転的に印加する処理と、
前記第3の電極板に、前記基準電圧に対して負極性の任意の大きさの電圧を印加する処理と
を実行する荷電粒子線装置を利用した試料評価方法。
【請求項11】
現在の評価対象位置の試料外縁からの距離を算出する処理と、
評価対象位置に照射する荷電粒子線の条件と、前記評価対象位置の試料外縁からの距離と、前記電極板に印加して最適な電圧を対応付けて格納するテーブル手段を参照し、前記現在の評価対象位置に照射される荷電粒子線の条件と算出された前記距離とに基づいて、前記電極板に印加する電圧を制御する処理と
を実行することを特徴とする請求項8〜10のいずれか1項に記載の荷電粒子線装置を利用した試料評価方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公開番号】特開2010−282825(P2010−282825A)
【公開日】平成22年12月16日(2010.12.16)
【国際特許分類】
【出願番号】特願2009−134962(P2009−134962)
【出願日】平成21年6月4日(2009.6.4)
【出願人】(501387839)株式会社日立ハイテクノロジーズ (4,325)
【Fターム(参考)】