説明

衛星測位システムの初回測位時間を改善する方法およびシステム

衛星測位システム(SPS)アンテナ支援装置(100)は、SPS受信器(102)、方位値、チルト値または加速度値を決定するための環境センサ(106)、およびプロセッサ(104)を有する。前記プロセッサは、方位を決定し(306)、視野内の衛星に対してピークアンテナ利得の推定方向を決定し(304)、ピークアンテナ利得の推定方向と環境データとに基づいて、視野内の衛星の一部の捕捉試行を優先させる(308)ようにプログラムできる。前記プロセッサは、仮定ピーク利得を有する衛星の検索に、より短い滞留時間を用い、より低い利得を有する衛星の検索に、より長い滞留時間を用いるように相関器を分割して分割検索を実行できる(310)。前記装置は、ピークアンテナ利得の推定方向に基づいて、SPS受信器の方位を考慮してユーザに配向ガイドを電子的に提示できる(312)。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は一般に衛星測位システムに関し、より詳細には衛星捕捉を改善する方法およびシステムに関する。
【背景技術】
【0002】
移動型携帯端末装置内の一般的なGPS用途では、アンテナ方向は未知であり、固定アンテナ方向について製品設計者には既知であるアンテナ特性を明らかにするための利用可能な最適パラメータは、GPS検索エンジンには存在しない。
【0003】
既存のシステムの中には、コンパスまたは加速度計を用いて、信号強度を使用して位置決定を行う基地局からのRSSI較正マッピングに対してユニットの方向を決定するものもある。このようなシステムは、位置決定の方法としてGPSを使用しない。
【発明の開示】
【課題を解決するための手段】
【0004】
本発明による実施形態は、ユーザが現在向いている方向についての方位情報が、SPSまたはGPS検索エンジンにアンテナ支援アルゴリズムの一部として組み込まれているときには、はるかに素早く位置を決定できる。近傍の身体または車による妨害に関連して予想される遮蔽効果を伴った方向情報を使って、仮定される信号レベルに関して第1パスにできるだけ近い衛星の捕捉を目指した分割相関器検索を行う。
【0005】
より低いレベルの信号を捕捉するために多数の不要なパスを必要とするのではなく、検索シーケンス内の第1パスまたは最初のいくつかのパス上でより多くの衛星を捕捉することは、初回測位時間(TTFF)に直接的な影響を与える。分割検索には、テストされる設計のアンテナ性能の具体的な知識を追加的に組み込むことができ、これにより視野内の個々の衛星に対する開始検索レベルを調整するために用いられるアルゴリズムを著しく改善できる。実際の性能を推定するためにアンテナパターン用のモデルをSPSまたはGPSソフトウェアシミュレーションに追加して、モバイル装置にアンテナを組み込むことを可能にする。
【0006】
本発明の第一の実施形態では、衛星測位システム(SPS)の初回測位時間を改善する方法は、SPS装置の方位を決定するステップと、視野内の複数の衛星に関連するピークアンテナ利得の推定方向を決定するステップと、前記ピークアンテナ利得の推定方向に基づき、前記SPS装置の方位を考慮して、視野内の衛星の一部の捕捉試行を優先させるステップとを含む。さらに、前記方法は、SPS装置が歩行者環境にあるか、または車両環境にあるかを決定するステップを含む。また、前記方法は、仮定ピーク利得を有する衛星用の検索に、より短い滞留時間が適用され、より低い利得レベルを有する衛星の検索に、より長い滞留時間が適用される場合、仮定ピーク利得を有する衛星と、より低いレベルの利得を有する衛星の検索との間で相関器を分割して分割検索を行うステップを含む。さらに、前記方法は、ピークアンテナ利得の推定方向に基づきSPS装置の方位を考慮して、SPS装置のユーザに配向ガイドを電子的に提示することを含むことができる。前記方位の決定は、チルト決定、コンパス方位決定、または加速度決定を用いてさらに改善し、さらに方位を正確にすることができる。また、前記方法は、特定の設計に対する演繹的に既知のアンテナ利得性能を適用することもできる。
【0007】
本発明の第二の実施形態では、衛星測位システム(SPS)の初回測位時間を改善する別の方法には、GPS支援情報を取得するステップと、おおよそのアジマス値と高度値とを備えた視野内の一組の衛星を決定するステップと、方位値を取得するステップと、衛星優先分割相関を決定するステップと、前記衛星優先分割相関に基づいて分割相関器検索を行うステップとを含む。上記のように、分割検索においては、仮定ピーク利得を有する衛星の検索に、より短い滞留時間を適用し、より低いレベルの利得を有する衛星の検索に、より長い滞留時間を適用する場合には、仮定ピーク利得を有する衛星の検索と、より低いレベルの利得を有する衛星の検索との間で相関器を分割することができる。このような分割をどのように決定するかは、視野内の衛星の中での衛星優先分割相関と、このような衛星の仮定ピーク利得とに基づいて行う。さらに、前記方法は、最小数の衛星が捕捉されているかどうかを決定し、分割相関器検索により最小数の衛星を見つけられなかった場合には方位値をリフレッシュするステップを含む。なお、アルマナック情報またはエフェメリス情報はGPS支援情報に用いることができ、コンパス方位値は方位値に用いることができる。前記方位値には、進行方向の情報および潜在的な遮蔽情報を含むことができる。さらに、前記方法は特定の設計に対する演繹的に既知のアンテナ利得性能値を適用することを含むこともできる。
【0008】
本発明の第三の実施形態では、衛星測位システム(SPS)アンテナ支援装置は、SPS受信器と、方位値、チルト値、または加速度値を決定するための環境センサと、SPS受信器と環境センサに結合されたプロセッサとを含む。前記プロセッサは、本明細書の発明の構成に関して述べられる処理を実行可能な、任意の適切なハードウェアまたはソフトウェアを含む任意の適切な構成要素または構成要素の組み合わせであってもよい。前記プロセッサは、SPS受信器の方位を決定し(さらに方位を正確にするためのチルト決定、コンパス方位決定、または加速度決定など)、視野内の複数の衛星に関連するピークアンテナ利得の推定方向を決定し、前記ピークアンテナ利得の推定方向に基づいて、SPS受信器の方位を考慮して視野内の衛星の一部の捕捉試行を優先させるようにもプログラムできる。さらに、前記プロセッサは、SPS受信器が歩行者環境にあるか、または車両環境にあるかを決定するようにプログラムできる。また、前記プロセッサは、より短い滞留時間を用いた仮定ピーク利得を有する衛星の検索と、より長い滞留時間を用いたより低いレベルを有する衛星の検索との間で相関器を分割して分割検索を行うようにもプログラムできる。SPSアンテナ支援装置は、ピークアンテナ利得の推定方向に基づいて、かつ、SPS受信器の方位を考慮して、SPSアンテナ支援装置のユーザに配向ガイドを電子的に提示することもできる。さらに、前記プロセッサは、特定の設計に対する演繹的に既知のアンテナ利得性能値を適用することもできる。
【0009】
本明細書で用いられる用語「複数の」は、2つ以上として定義される。本明細書で用いられる用語「別の」は、少なくとも第2の以降のものとして定義される。本明細書で用いられる「含む」および/または「有する」は、備える(つまり、オープンランゲージ)として定義される。本明細書で用いられる「結合した」は、接続したとして定義されるが、必ずしも直接的ではなく、また必ずしも機械的ではない。
【0010】
本明細書で用いられる用語「プログラム」、「ソフトウェアアプリケーション」等は、コンピュータシステム上で実行するために設計された一続きの命令として定義される。プログラム、コンピュータプログラム、またはソフトウェアアプリケーションには、サブルーチン、関数、プロシージャ、オブジェクトメソッド、オブジェクト実装、実行可能アプリケーション、アプレット、サーブレット、ソースコード、オブジェクトコード、共有ライブラリ/ダイナミックロードライブラリおよび/またはコンピュータシステム上で実行するために設計されたその他一続きの命令を含む。用語「方位」は、二次元または三次元空間内の方向を示す。
【0011】
本明細書で開示される発明の構成に従って構成されるとき、他の実施形態は、本明細書で開示される様々な処理および方法を実行させるためのシステム、および機械に実行させるための機械読み取り可能な記憶装置を含む。
【発明を実施するための最良の形態】
【0012】
本明細書は、新規なものと見なされる発明の実施形態の特徴を定義する請求項で完結しているが、本発明は図面と共に以降の記載を考慮することから、さらに良く理解されると考えられ、図面では同じ参照番号が繰り返し使われている。
【0013】
本明細書の実施形態は一般に、アンテナ支援によって衛星信号捕捉の初回測位時間(TTFF)を改善できる。本明細書の実施形態のアンテナ支援自体は一般に2つのカテゴリに分類されるが、必ずしもそれらには限定されない。第1カテゴリでは、ユーザへのアンテナ支援は、最適な物理的配向のために用いられる(例えば、検索エンジン内のソフトウェアは、ユニットの物理的配向に関する知識を持っていない可能性があり、検索を調整することはないが、利得を最大化するための携帯端末ユニットを保持する最善の向きまたはチルト角についてのヒントがユーザに与えられる)。第2カテゴリでは、アンテナ支援はソフトウェア相関を改善するために用いられる(例えば、ユーザは支援を得ることはなく、利得を改善するために物理的に配向を変更しようとする必要もないが、ソフトウェアによってセンサまたはユーザ入力を用いた支援が使用され、検索エンジンがどの衛星が最適分割相関器検索から恩恵を受けられるかを決定する)。
【0014】
移動型携帯端末装置内の一般的なGPSアプリケーションでは、アンテナ配向は未知であり、固定アンテナ配向の場合は、製品設計者には既知のアンテナ特性を明らかにするためにGPS検索エンジンが利用可能な最適化パラメータは存在しない。しかし、ユニットの現在の方向配向の方位情報を供給するためにコンパスを一体化するか、または加速度計などの他の環境センサを一体化すると、検索エンジンにフィードバックを提供でき、これは視野内のどの衛星に対して捕捉を最初に試行するかの優先度を選択する際に役立つことが分かっている。
【0015】
ユーザ環境に関する追加情報は加速度計の使用から得ることができ、加速度計はチルト補正用の磁気コンパスと組み合わせられることが多い。加速度計はさらにユーザの移動速度を測定でき、これを用いて、ユーザが歩行速度で移動しているか車で移動しているかを決定することができる。その性質に関するさらなるヒントにより、特定のユーザ環境に最善の検索アルゴリズムを最適化することができる。図1に示した移動型携帯端末装置100などの装置は、プロセッサまたはGPSチップセット104に結合した、SPSまたはGPS受信器102、環境センサ106、メモリ108および提示装置110を含む。さらに、装置100はユーザインタフェース112を含む。環境センサ106は1つのコンパスまたは加速度計を含むことができるが、方位、チルト、位置または他の因子を測定可能な任意の他の数の環境センサを含むこともできる。メモリ108は、配向ガイドマップ、および本実施形態に従って有用な他の情報のホストを含むことができる。配向ガイドマップまたは他のデータは、既知の遮蔽構造についての情報を含むことができる。さらに、前記メモリには、アンテナ利得性能値(特定の装置用)、アルマナック情報、エフェメリス情報、およびセンサ106から集められた情報に基づく他の情報または設定を格納できる。
【0016】
GPS信号レベルは、アンテナ配向との相関を有する。アンテナと近傍の物体とが近接性することにより、信号が妨害される可能性があることも知られている。ファントムハンド内に置かれたダイヤル位置や、ファントムヘッド付近のコール位置などの異なるユーザ位置で携帯端末装置をテストすると、頭上のスカイビュー面から観察したときのGPSアンテナ(dBi)の平均利得が低減することも十分に確認されている。この減衰は、近傍の身体の遮蔽によるアンテナの離調効果に関連している。身体遮蔽の方向の利得は、このような方向は衛星の信号を受け取る間接的経路であるので、所定の位置で2〜3dB以上低減する可能性があり、アンテナ性能の平均ピーク利得は近傍の身体遮蔽から離れた方向にあることが直感的に理解できる。車内のナビゲーションでは、車の屋根が引き起こす信号遮蔽のために、窓の1つからの視野の直線上にない衛星にはさらに5〜8dBの余分な信号減衰を平均して加えることもできる。
【0017】
GPSチップセットは支援パラメータを用いて、衛星信号の捕捉の高速化に役立たせることが多い。これらの支援パラメータは一般に、TCXO周波数支援、位置支援、GPS時間支援、およびエフェメリスに制限される。他の環境パラメータを用いるアンテナ支援は現在どのハンドセットにも実行されておらず、このような支援は性能上可能な利得を提供できるだけである。GPS検索エンジンは一般にアルマナックから推定される、またはエフェメリス支援から正確に把握される視野内の衛星のリストを用いて、捕捉を完了するために、検索においてどの衛星に重点をおくかを決定する。これらの検索は、所定の衛星コードとの相関をとろうとする間、割り当てられた検索ビンに滞在することによって行われる。高い信号レベルの衛星を捕捉しようとするとき、滞留時間は初期検索段階では短くなる。より低い信号レベルで衛星を捕捉するためには、検索サイクル毎に次第に滞留時間は長くなる(例えば、短い滞留時間で全ての検索ビンを進めた後、やや長い検索時間でサイクルを繰り返し、より多くのレベルで検索を行うにつれてTTFFを次第に増大させながらシーケンスが継続する)。
【0018】
TTFFは、検索が行われる方法のために、測位に用いられる衛星の信号レベルと直接関連する。ネットワークからのエフェメリスを使った十分に支援された測位では、システムアーキテクチャおよび他の支援パラメータの品質により、15〜23dB−Hzの間の低い信号レベルで報告するのに1分以上かかる可能性がある。エフェメリスのない自律または部分支援測位では一般に、測位を報告するのに数分かかる可能性があり、30dB−Hz未満の衛星を通常は捕捉できない。
【0019】
再び図1を参照すると、本明細書の実施形態は、センサ106によって決定されるハンドセット配向に基づいて、ユーザが向いている方向をチップセットまたはプロセッサ104に単純に供給することを含むことができる。(GPS)検索エンジンは視野内の衛星のアジマスおよび高度を認識し、従って、ユーザ方位に垂直な180度面内の衛星に対して、ユーザの身体または車の屋根による遮蔽が少ないことが推定できる。このように、チップセットまたはプロセッサ104は、ピークアンテナ利得の方向を推定できる。例えば、オープンスカイビュー内に利用可能な衛星が8基ある場合、チップセットはTTFFを高速化するために、推定ピーク利得の方向の衛星の捕捉試行を優先させるような選択を行うことができる。用語「ピークアンテナ利得」は、特にそれが一つの装置用の視野内の衛星に関連するとき、もしくは視野内の衛星に対する装置の配向に関連するとき、特定のアンテナ構成に対して最も強く受信される、または最も良く受信される信号のセットを示すことができる。この用語は遮蔽構造を考慮に入れることができるが、必ずしも考慮に入れる必要はない。
【0020】
さらに、ユーザの移動速度を報告可能な加速度情報が組み込まれた場合、チップセットはユーザ環境が車内であるか徒歩であるかを推定または最も良く推量できる。この情報は、相関器を使って分割検索を行うために用いることができる。検索を分割することによって、相関器の所定の部分が方位配向のピーク利得を仮定することができ、短い滞留時間を用いて高い信号レベルでその領域内にあることが既知の衛星を検索できる。相関器の残りは、身体または車による遮蔽方向にある衛星のユーザ環境によって推定される減衰を仮定したより長い滞留時間へと直接それらの検索をジャンプするために割り当てられる。この技術を使用することにより、試行検索(最も失敗となりやすく全体のTTFFを増大させる)のいくつかのパスを行うために必要な時間が削除される。減衰パラメータの選択例は、身体による遮蔽のみでは2〜3dBの減衰を仮定し、車による遮蔽では約5〜8dBの減衰を仮定できる。完全測位計算(最小4)を完了するために十分な衛星の捕捉に必要な検索繰り返しを低減することは、TTFFに良い影響を与える。ユーザの移動に関連した既知の情報が何もない場合でも分割相関器検索を用いることができるが、全ての場合において身体遮蔽モデルが仮の開始点となる。
【0021】
本明細書の実施形態は、図2に示すように「スカイプロット」の使用によって描写することができ、図2は空における衛星の位置をそれらのアジマスおよび高度に対して示しており、それらはコンパス方向と見なすこともできる。全てのコンパス方向は、検索開始におけるハンドセットのおおよその仮定位置であるグラフの中心点を規準にしている。(一般に近傍の基地局からの支援として送信される位置)。図1のスカイプロットの中心は、推定ユーザ位置である。衛星が90度真上にある場合、それがスカイプロットの中心に示される。グラフの中心の円は、45度の高度における衛星を表している。外側の円は0度の高度であり、衛星は約5〜10度の高度に近づくと、オープンスカイ状態における地球の水平線のためにユーザの視野外に出ていく。
【0022】
図2の例では、矢印によって表されるようにユーザが北を向いていると、衛星2(ほぼ頭上)、4、7および30が、まさにそのときのユーザ環境(身体または車)から受ける遮蔽は最も少ないと仮定される。衛星2と30は、水平線により近い高度に示されユーザから明らかに離れている衛星4と7よりやや高い信号レベルを有すると予想される。衛星5、9および10は、車内におけるユーザの身体または位置によってある程度遮蔽または減衰されると仮定される。可能な検索方法は次のように最適化される。衛星30と2は優先度1の高い検索レベルにあり、4と7はピーク利得方向では伝搬損失のために1〜2dBだけ衛星30と2より低い信号レベルにあると認識され、分割相関器検索はそれらの捕捉試行のため数レベル低下させることができ、5、9および10は最も低いカテゴリに入り、位置が車内であるか否かにより、2〜3dBまたは5〜8dBの遮蔽が仮定される。
【0023】
従って、相関器間の分割用の滞留時間のいくつかのレベルは、ユーザ方位の簡単な知識に基づいて第1パス検索上の割り当て用に選択できる。これは建物または地理的形状によって引き起こされる他の周囲の遮蔽を考慮することはできないが、全体のTTFFは、特にオープンスカイ環境の(遮蔽物がない)場合、この種の検索アルゴリズムに対してより高速になることが期待できる。
【0024】
図3を参照すると、衛星測位システム(SPS)の初回測位時間を改善する方法300を示すフローチャートには、GPS支援情報を取得し、おおよそのアジマス値と高度値を用いて視野内の衛星を決定するステップ304を含むことができる。GPS支援情報は、エフェメリス、アルマナック、おおよその初期位置、クロックドリフトと時間、衛星状態、および利用可能な場合は正確な時間同期化信号を含むことができるが、それらには必ずしも限定されない。なお、アルマナック情報が使用される場合はおおよその位置および時間だけが必要とされ、そうでない場合はエフェメリスデータを用いることができる。さらに、方法300はSPS装置の方位を決定するステップ306を含むことができ、これには視野内の複数の衛星および潜在的遮蔽情報に関連するピークアンテナ利得の推定方向を決定することを含むことができる。いくつかの実施形態では、方位情報は任意で速度情報を含むことができ、これは所定の遮蔽シナリオの決定にも役立つ(例えば、歩行者または自動車のシナリオ)。さらに、方法300には、衛星優先分割相関の決定、言い換えると、ピークアンテナ利得の推定方向に基づいて、SPS装置の方位を考慮して視野内の衛星の一部の捕捉試行を優先させるステップ308を含むことができる。さらに、前記方法は、SPS装置が歩行者環境にあるか、または車両環境にあるかを決定するステップを含むことができる。また、方法300には、仮定ピーク利得を有する衛星の検索に、より短い滞留時間が適用され、より低いレベルの利得を有する衛星の検索に、より長い滞留時間が適用される場合には、仮定ピーク利得を有する衛星と、より低いレベルの利得を有する衛星の検索との間で相関器を分割して、ステップ310において分割検索を行うステップを含むことができる。さらに、前記方法にはステップ312において、ピークアンテナ利得の推定方向に基づいて、SPS装置の方位を考慮してSPS装置のユーザに配向ガイドまたはスカイプロットを電子的に提示することを含むことができる。方位の決定は磁気コンパスによって行われ、これは加速度計と組み合わせても良い。加速度計は、より高い精度を得るべくコンパスに電子的にジンバルを備えるためのチルト決定用に用いられる。加速度計はユーザの移動速度を推定するために用いることもでき、それはユーザが徒歩であるか車内にいるかを決定するための環境ヒントとして用いることができる。前記方法は、以降でさらに詳しく説明するように、特定の設計に対する演繹的な既知のアンテナ利得性能値を適用することもできる。いずれにせよ、前記方法では、最小数の衛星が決定ブロック314で捕捉されるかどうかを決定できる。捕捉された場合、前記方法は終了する。最小数の衛星が捕捉されなかった場合、前記方法は前に戻ってステップ306で方位情報をリフレッシュし、ステップ308〜314を継続する。
【0025】
別の実施形態では、本明細書の方法およびシステムには、上記の処理のステップのいくつかまたは全てと組み合わせて所定の設計に対する既知のアンテナ利得性能値のオーバーレイを組み込むことができる。図4と5のチャートは、Motorola社が2つ並べて24時間連続的に衛星を追跡したテスト評価による、2つの別個のモデルのサンプル電話の変動するアンテナ利得特性のサンプルプロットを示している。これらは比較的障害物のない空間状態に固定されているので、これらのプロットでは近傍の身体遮蔽は考慮されていないが、他方のアンテナより高い利得を有する一方のアンテナのパターン内にいくつかのローブがあることが容易に分かる。アンテナは南向きの位置でテストされたが、これはプロットの南側の四分円で追跡された衛星に対して示されたやや高いアンテナ利得の検査によって支持される。このデータは、全体のアンテナ利得が、所定の方向で数dBだけ利得に影響を与える可能性があるハンドセット収容ケース遮蔽の特有の特性に基づいてやや指向性になるという仮定を支持する。この仮定は、ハンドセットを保持している間にユーザの身体によって生じる遮蔽効果へと明確に拡張される。
【0026】
所定のアンテナパターン特性に関する知識は、図6に示したスカイプロットへのオーバーレイとして比較でき、分割相関器検索の実行を最適化し、視野内の各衛星の開始検索レベルを調整できる。さらに、これは、身体または車による遮蔽に関する知識を含むだけでなく、アンテナパターンの特定のローブ上の利得に関する知識を含むこともできる。図6のスカイプロットにおけるユーザ配向は、利得データを取ったときのアンテナの方向性と簡単に比較するために南に向いている。
【0027】
図6の衛星2、5、9および10は両方の種類のアンテナに対しても高い利得検索領域に入り、図4で表されたアンテナの場合にはこれらの全てについてやや平坦な利得が期待されるが、図5に示すアンテナの場合は9と10に対して期待されるレベルより、衛星2と5に対しての方が3〜4dB高い利得を有することが期待される。衛星4と7は、水平線に近いこととアンテナが面しているハウジング側にないことのために、南側の四分円の最も高い信号レベルより7〜10dB低くなる可能性がある。これは、身体の陰影または車の遮蔽を仮定する前のことである。2つのアンテナに対する衛星30への検査は、最も興味深い結果を提供する。図4によって表されたアンテナは、身体遮蔽の数dBを仮定しても、衛星30に対しては比較的高い利得応答を有することが期待されるのである。図5によって表されたアンテナは北西四分円における低利得を有するパターン内に「穴」を示し、ここでも当該衛星は、身体または車による遮蔽を考慮する前でも南側四分円における最大利得より約8dB低くなる可能性がある。検索エンジンの8つの高レベルのパスをスキップし、より低いレベルにおいてその特定の衛星を直接検索するならば、タイミングよくそれを捕捉する機会は増大し、全ての衛星が開始時に同じレベルにあると仮定する検索よりもTTFFは全体的に改善される。
【0028】
従って、ユーザの現在の配向ついての方位情報がアンテナ支援アルゴリズムの一部としてSPSまたはGPS検索エンジンに組み込まれた場合、ユーザははるかに素早く衛星測位を得ることができる。近傍の身体または車による遮蔽に関連して予想される遮蔽効果を伴う方向情報は、それらの仮定された信号レベルに対してできるだけ最初のパスに近い衛星の捕捉を目標とした分割相関器検索を行うために用いることができる。より低いレベルの信号を捕捉するために多数の不要なパスを必要とするのではなく「最初のパス」上でより多くの衛星を捕捉することは、TTFFに直接的な影響を与える。分割検索はテスト設計用のアンテナ性能に関する具体的な知識を追加的に組み込むこともでき、それは視野内の個々の衛星用の開始検索レベルを調整するために用いられるアルゴリズムを著しく改善できる。
【0029】
GPS信号捕捉では、空における視野内の衛星の既知の特性を用いて検索を最適化し、TTFFを高速化する。ネットワーク支援によってエフェメリスが利用可能なセッションでは、携帯端末ユニットはセッションの開始時に視野内の全ての衛星のアジマス角と仰角を認識できる。ネットワークブロードキャストによってGPS時間と粗位置支援が利用可能なセッションでも、携帯端末ユニットはアルマナックを参照することによって、その位置において視野内にあると仮定される衛星リストのおおよそのアジマスと高度を推定できる。既知の開始情報が何もないセッションでも、GPSソフトウェアはそのアルマナックの参照を開始し、1つの衛星の追跡がいったん確立したら他のどの衛星が視野内にあるかを推定できる。
【0030】
低い信号レベルを有する十分に支援されたセッションでは、位置を報告するための測位に1分以上かかる可能性があり、エフェメリス支援がない、または支援がまったくない自律セッションでは、このTTFFが数分以上に増大する可能性がある。これらの全てのセッションでは、最小動作レベルより2〜3dBさえ高ければ、利得の位置測位を計算するために用いられる衛星の平均信号強度(C/N)レベルの増大に対して確立可能なTTFFが著しく改善されることが一般的に知られている。エフェメリス支援の場合(設計のアーキテクチャにより15〜23dB−Hz)より、動作に必要な信号レベルはずっと高い(30dB−Hz C/N)ので、エフェメリス支援なしの測位ではこれがより顕著になる。
【0031】
信号レベルは測位を素早く報告する上で重要であり、数dBの利得で測位がうまく捕捉されるかどうかの違いを生む可能性があるので、ユーザとやり取りしてGPSセッション中にアンテナの指向性の最適化に役立たせる方法が有用となる。このようなユーザ支援は、ユニットが初回捕捉中に手助けを必要とするとき、任意の位置ベースサービス(LBS)セッション中に捕捉される初回測位の初期化に最も直接的に適用でき、いったんセッションが確立されたらその後はより低い信号レベルで追跡可能となる。現在の視野内にある衛星についての容易に利用可能な情報に関する視覚的キューを用いることは、できるだけ素早く測位を捕捉するためには装置をどのように向けたら最適かをユーザが決定するのに有用である。アンテナの物理的配向の改善に役立つユーザ支援を、分割相関器方式への別の実施としてもよい。既に論じたような分割相関器を用いる支援は、非常に低いレベルにおいて使用されるためにモバイル装置のソフトウェアコードに組み込まれる可能性がある。ユーザ支援を、標準的な検索処理を有する既に市場に出回っている任意の製品に用いることもできるが、既存の検索処理ソフトウェアへのソフトウェア改変は必ずしも必要ではない。支援は、物理的に信号レベルを最大化する方向にユーザが電話を向けるのに役立つことを目的とし(コンパス方向を使って、ユーザが視野内に最も多くの衛星を有する方向に向けることができるようにし、またはチルト方向を使って地面を指すことによってアンテナが不良なマルチ経路を得ないようにする)、より高い信号レベルを有する衛星がより速く捕捉され、それによってTTFFが改善される。
【0032】
再び図8〜11に示したスカイプロットを用いると、アジマスおよび高度に対する空における衛星位置はコンパス方向としても見ることができる。全てのコンパス方向は、検索開始時におけるハンドセットのおおよその仮定位置であるグラフの中心点を規準とする。(一般に近傍の基地局から支援箇所として送信される位置)。
【0033】
図7を参照すると、2005年2月1日午前0時に作成されたSpirentシミュレーションの視野内の衛星のセットの例が示されている。ユーザ位置は、緯度37度経度122度の北米西海岸と考えられる(列挙された衛星番号を有していない衛星をxによって示した)。
【0034】
図8を参照すると、チャートは衛星のアースビューが「スカイプロット」にどのように対応するかを示している。スカイプロットの中心はユーザ位置である。衛星が90度真上にある場合、衛星はスカイプロットの中心に示される。既に述べたように、グラフの中間の円は、45度の高度における衛星を表している。外側の円は0度の高度であり、衛星が約5〜10度の高度に近づくにつれて、オープンスカイ状態における地球の水平線のためにユーザから視野外に出ていく。
【0035】
図9を参照すると、GPSセッションの開始時に現在利用可能な衛星が携帯端末装置上のスカイプロットビューを用いて図示される場合、ユーザが決定することを促される方向配向決定が示される。そこには視野内に衛星がないので、ユーザが装置に対して南南東または南東方向に身体(または装置を保持している間の身体による遮蔽)を配置したいことは、衛星の配向から明らかである。これは、視野内の衛星方向を向いている(携帯端末ユニットを保持するユーザの前側および横側にある)GPSアンテナのピーク利得を配置することになる。方向配向は、太陽の方向などの視覚的手がかりをユーザが参照することによって、または携帯端末装置にコンパスを一体化することによって完了できる。
【0036】
コンパスを一体化したユニットは、測位セッションの開始時に視野内にあることが既知の衛星に対するユーザの開始位置を自動的にハンドセット画面上に図示すことができる。図10と11のスカイプロットは、GPS測位試行中に向ける最善の方向を評価する際、ユーザの意志決定処理の一部としてそれらがどのように用いられるかを示すことができる。図10では、緯度37度経度121度で午前10時に生じた2006年6月10日の視野内の衛星のセットが示されている。ユーザは、西に向いてセッションを開始する。視野内の衛星の初期検査は、南東または南西のいずれかに向けることが、視野内の最大数の衛星に向かってピークアンテナ利得を配向する最善位置でありうることを示している。衛星30は、水平線により近い衛星4と10よりも空のやや高い位置にあるので、オープンスカイ状態では最適方法として南西に向けることが選択できる。しかし、ユーザは図11に示すように、最終的な決定を行う前にある方向を別の方向より好ましいものにする可能性がある、建物や山などの地理的形状による近傍の遮蔽を吟味することもできる。従って、図11は、北西に遮蔽となる建物があり、他の方向はオープンスカイビューであることに基づいて、南東に向けることがユーザの最終決定であることを示している。
【0037】
ハンドセットが最善のアンテナ利得を受け取るために必要な配向に関してユーザを支援できる場合、ユーザは、より多くの回数、より多くの場所で測位を得ることができる可能性がある。この利得は、ユーザの方位について関連するコンパス方向性を、またハンドセット画面上に示されるスカイプロットなどの視覚的支援を使用することによって、現在の視野内にある衛星に対して最適化できる。衛星のスカイプロット(視野内の衛星のアジマスおよび高度)を生成するために必要な情報は、おおよその場所と時間が既知であればGPSアルマナックを参照することによって容易に入手可能である。この衛星情報は、AGPS(支援GPS)対応ネットワークによってハンドセットに提供されるエフェメリス支援内で容易に入手可能である。ユーザの方位はユーザ入力によっておおよそ推定でき、ハンドセット内に一体化されたコンパスの使用によってより正確に推定できる。アンテナ利得のいっそうの最適化によって高速測位を実現することは、TTFFの向上に影響を与え、より信頼性の向上がユーザに認識される。
【0038】
本発明のさらに別の実施形態では、同様にTTFFを改善するために他の環境センサを用いることができる。モバイル携帯端末装置内の一般的なGPSアプリケーションでは、信号利得を増大可能な最適化のヒントを提供するためのインタフェースがなく、アンテナ配向はユーザに任される。しかし、チルトセンサとして加速度計を一体化すると、ユーザインタフェースが、より最適な信号利得配向を得られる双方向支援を提供でき、測位を実現する機会を増大して、TTFFを短縮できる。
【0039】
加速度計は一般に微細加工された装置であり、地球の重力場に加えて慣性力、衝撃、および振動に対するチルトまたは傾斜を検知できる。MEMS加速度計は、低コストである、面実装が可能で、基板スペースをほとんど必要とせず(一般的なパッケージサイズでは5×5または6×6mm)、動作電流が低く、モバイル装置内の多くの機能を改善可能な多目的の機能性を有するので、省スペースの携帯端末装置実装の優れた選択肢である。二軸加速度計は、図12に示すように地球の重力場に対してXY方向で正および負のチルトを検知できる。装置の水平位置は、名目上は0チルトとなる。
【0040】
GPSチップセット用のアンテナ支援機能としてチルト検知を実行して、信号利得に悪影響を与える可能性がある次善の位置にユニットを保持しているかどうかをユーザに知らせることができる。これは任意の種類のアンテナに対して有用であるが、特に強い方向性を有するアンテナに対して最も有用である。既に述べたように、不適切な方向に向けられたアンテナは、捕捉に影響を与える間接的な信号経路(マルチ経路)のために、一般的な携帯端末装置の利得に2〜3dBの影響を与える可能性がある。
【0041】
アンテナの利得は一般に、製品の設計段階で測定される。この方式では、図13に示した配向において、アンテナの予想平均利得(dBi)に対するチルト増分の度合いの簡単な表を実現できる。これは、利得対配向が許容可能であるかユーザが性能改善を望む場合、調整すべきかどうかのチルト範囲の決定マトリクスを生成する。配向が次善であると判断された場合、メッセージをユーザに表示し、より良い結果を得るためにチルト配向をどのように調整可能であるかを提案できる。このようにして、ユーザのアンテナは、通常の使用の場合では視野内の衛星に対してより良いスカイビューを有することができ、この結果低レベルのGPS信号を受け取るための見通し線がより直線的となるはずである。
【0042】
アンテナのエアインタフェースにおいてGPS用に一般的に受け取る信号は、信号遮蔽のないオープンスカイ状態ではおおよそ−125〜−130dBmの範囲であり、室内状態では−150dBm以下の範囲内であってもよい。このような低い信号レベルにおいては、受け取った信号ができるだけ減衰しない位置測位を報告することが、TTFFにとって非常に有用である。これは、ネットワークからエフェメリス支援が提供されない自律動作の場合には、30dB−HzのC/Noレベル未満では測位を実現できないため、これがいっそう重要である。エフェメリス支援の場合は、測位は23dB−Hz以下のレベルで実現できる。
【0043】
図14を参照すると、GPSセッション中に衛星の捕捉を試みながらチルト対利得の表を用いる可能な決定処理400のフローチャートが示されている。ステップ402でGPS配向処理が開始され、決定ブロック404で装置(電話など)が最適な配向にあるかどうかの決定が行われる。装置が最適位置にある場合、決定ブロック410で全てのGPS衛星が捕捉されるかどうかの決定が行われる。決定ブロック404で配向が最適でない場合、ステップ406で参照表に基づいてより最適な角度に装置をチルトさせることがユーザに通知される。それから、ステップ408で電話の配向を確認できる。決定ブロック410で全ての適切なGPS衛星が捕捉されるか、またはユーザが機能を終了させると、処理は終了可能になる。
【0044】
より低い信号利得は、TTFFに直接的な影響を与えることが知られている。アンテナ利得をさらに最適化することによってより速い測位を実現することは、ユーザによって認識される信頼性の向上に影響を与えることができる。加速度計の使用によってハンドセットが最善のアンテナ利得を受け取るために必要な配向に関してユーザを支援できる場合、ユーザは、より多くの回数、より多くの場所で測位を得ることができる可能性がある。
【0045】
上記の観点では、本発明による実施形態はハードウェア、ソフトウェア、またはハードウェアとソフトウェアの組み合わせで実現可能であることが認識されるべきである。本発明によるネットワークまたはシステムは、1つのコンピュータシステムまたはプロセッサの集中型で実現することも、いくつかの相互接続したコンピュータシステムまたはプロセッサ(マイクロプロセッサおよびDSPなど)に異なる要素を拡散させる分散型で実現することもできる。任意の種類のコンピュータシステム、または本明細書で述べた機能の実行に対応した他の装置が適している。ハードウェアとソフトウェアの一般的な組み合わせは、コンピュータプログラムを有する汎用コンピュータシステムであってもよく、前記コンピュータプログラムがロードおよび実行されると、本明細書で述べた機能を実行するように、コンピュータシステムを制御する。
【0046】
上記の観点では、本発明による実施形態は、請求項の範囲および精神内にあると考えられる様々な構成で実現可能であることも認識されるべきである。さらに、以上の記述は例示的なものにすぎず、以降の請求項に記載のものを除いて、いずれにせよ本発明を限定するものではない。
【図面の簡単な説明】
【0047】
【図1】本発明の一実施形態による衛星測位システム(SPS)のアンテナ支援装置のブロック図である。
【図2】本発明の一実施形態による視野内の衛星の別の「スカイプロット」である。
【図3】本発明の一実施形態による、衛星測位システム(SPS)の初回測位時間の改善方法を示す図である。
【図4】本発明の一実施形態によるアンテナ利得特性のプロットである。
【図5】本発明の一実施形態によるアンテナ利得特性の別のプロットである。
【図6】本発明の一実施形態に従ってTTFFを改善するために、図4または図5のアンテナ利得特性プロットと共に用いることができる別のスカイプロットである。
【図7】本発明の一実施形態に従って、空の衛星位置をそれらのアジマスおよび高度に対して示すスカイプロットである。
【図8】本発明の一実施形態に従って、図7からの視野内の衛星を示すスカイプロットである。
【図9】本発明の一実施形態に従って、ユーザが向けるように促される配向方向を示す別のスカイプロットである。
【図10】ユーザが西に向いているときの視野内の衛星の初期検査を示す別のスカイプロットである。
【図11】本発明の一実施形態に従って、最適方向として南東を選択するユーザを示す別のスカイプロットである。
【図12】本発明の一実施形態による二軸加速度計チルト検知用の上面図である。
【図13】本発明の一実施形態に従って測定データを、参照チルト対アンテナ利得に入れる方法を示す参照表である。
【図14】本発明の一実施形態による、SPSシステムの初回測位時間の改善方法を示すフローチャートである。

【特許請求の範囲】
【請求項1】
衛星測位システム(SPS)の初回測位時間を改善する方法であって、
SPS装置の方位を決定するステップと、
視野内の複数の衛星に関するピークアンテナ利得の推定方向を決定するステップと、
前記ピークアンテナ利得の推定方向に基づき、前記SPS装置の方位を考慮して、視野内の衛星の一部の捕捉試行を優先させるステップと
を備える方法。
【請求項2】
前記SPS装置が歩行者環境にあるか、または車両環境にあるかを決定するステップをさらに備える、請求項1に記載の方法。
【請求項3】
仮定ピーク利得を有する衛星の検索と、より低いレベルの利得を有する衛星の検索との間で相関器を分割して分割検索を行うステップをさらに備える、請求項1に記載の方法。
【請求項4】
仮定ピーク利得を有する衛星の前記検索により短い滞留時間を適用し、より低いレベルの利得を有する衛星の前記検索により長い滞留時間を適用するステップをさらに備える、請求項3に記載の方法。
【請求項5】
ピークアンテナ利得の前記推定方向に基づき、前記SPS装置の前記方位を考慮して、前記SPS装置のユーザに配向ガイドを電子的に提示するステップをさらに備える、請求項1に記載の方法。
【請求項6】
前記方位を決定する前記ステップが、磁気コンパス、または加速度計と組み合わせた磁気コンパスを用いて、前記方位をさらに正確にすることを含む、請求項1に記載の方法。
【請求項7】
特定の設計に対する経験的な既知のアンテナ利得性能値を適用するステップをさらに備える、請求項1に記載の方法。
【請求項8】
SPS受信器と、
方位値、チルト値、または加速度値を決定するための環境センサと、
前記SPS受信器および前記環境センサに結合されたプロセッサと
を備える、衛星測位システム(SPS)アンテナ支援装置であって
前記プロセッサが、
前記SPS受信器の方位を決定し、
視野内の複数の衛星に関するピークアンテナ利得の推定方向を決定し、
前記ピークアンテナ利得の推定方向に基づき、前記SPS受信器の前記方位を考慮して視野内の衛星の一部の捕捉試行を優先させるようにプログラムされている、衛星測位システム(SPS)アンテナ支援装置。
【請求項9】
前記プロセッサが、前記SPS受信器が歩行者環境にあるか、または車両環境にあるかを決定するようにさらにプログラムされている、請求項8に記載のSPSアンテナ支援装置。
【請求項10】
前記プロセッサが、より短い滞留時間を用いた仮定ピーク利得を有する衛星の検索と、より長い滞留時間を用いたより低いレベルを有する衛星の検索との間で相関器を分割して検索を行うようにさらにプログラムされている、請求項8に記載のSPSアンテナ支援装置。
【請求項11】
前記プロセッサが、ピークアンテナ利得の前記推定方向に基づき、前記SPS受信器の前記方位を考慮して、前記SPSアンテナ支援装置のユーザに配向ガイドを電子的に提示するようにさらにプログラムされている、請求項8に記載のSPSアンテナ支援装置。
【請求項12】
前記プロセッサが、チルト決定、コンパス方位決定、または加速度決定を用いて方位を決定し、前記方位をさらに正確にするようにさらにプログラムされている、請求項8に記載のSPSアンテナ支援装置。
【請求項13】
前記プロセッサが、特定の設計に対する経験的な既知のアンテナ利得性能値を適用するようにさらにプログラムされている、請求項8に記載のSPSアンテナ支援装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公表番号】特表2009−537015(P2009−537015A)
【公表日】平成21年10月22日(2009.10.22)
【国際特許分類】
【出願番号】特願2009−509904(P2009−509904)
【出願日】平成19年3月29日(2007.3.29)
【国際出願番号】PCT/US2007/065493
【国際公開番号】WO2008/060652
【国際公開日】平成20年5月22日(2008.5.22)
【出願人】(390009597)モトローラ・インコーポレイテッド (649)
【氏名又は名称原語表記】MOTOROLA INCORPORATED
【Fターム(参考)】