説明

表示装置

【課題】画素アレイ部と駆動回路部とで電気光学物質の厚みに局部的なばらつきが生じ難い表示装置を提供する。
【解決手段】表示装置を構成する一方の基板は、画素アレイ部、及び、駆動回路部を含み、画素アレイ部は、マトリクス状に配列された画素を有し、各画素は、画素電極、及び、画素電極を駆動する画素用薄膜トランジスタ4を備えており、各画素は、画素用薄膜トランジスタ4が形成された非開口領域、並びに、開口領域に分けられ、画素用薄膜トランジスタ4は、層間絶縁膜10及び平坦化膜5で覆われており、開口領域には、非開口領域に形成された平坦化膜5が延在しており、画素アレイ部の開口領域における平坦化膜5の厚さは、駆動回路部における平坦化膜5の厚さよりも厚く、画素アレイ部の開口領域の上方に位置する電気光学物質層3の部分の厚さと、駆動回路部の上方に位置する電気光学物質層3の部分の厚さは同じである。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は表示装置及びその製造方法に関する。より詳しくは、画素電極とスイッチング用の薄膜トランジスタを集積形成したアクティブマトリクス型の表示装置において、薄膜トランジスタやその配線の凹凸を埋めて平坦化された面の上に画素電極を形成する平坦化技術に関する。
【背景技術】
【0002】
従来の表示装置は、所定の間隙を介して互いに接合した一対の基板と、この間隙に保持される液晶などの電気光学物質とからなるパネル構造を有している。一方の基板には、薄膜トランジスタの集合と、これらを被覆する平坦化膜と、この平坦化膜の上に配された画素電極の集合とが形成されている。他方の基板には、画素電極の集合に対面する対向電極が形成されている。
【発明の概要】
【発明が解決しようとする課題】
【0003】
カラー表示装置では、他方の基板にカラーフィルタが形成されており、赤青緑三原色の表示色を各画素電極に割り当てる様にしている。各画素電極は割り当てられた表示色の波長の光を透過もしくは反射して所望のカラー画像を写し出す。その際、割り当てられた表示色に対応する光の波長に合わせて、最適な透過率もしくは反射率を得る為には、画素毎に割り当てられた表示色の波長に応じて液晶などの電気光学物質の厚みを調整すべきである。しかしながら、従来のカラー表示装置ではその様な対策が施されておらず、赤青緑三原色の間でカラーバランスを取ることが困難であった。
【0004】
従来のアクティブマトリクス型の表示装置は、高性能な多結晶シリコン薄膜トランジスタを採用することで、画素アレイ部と周辺の駆動回路部とを同一の基板上に一体的に集積形成した駆動回路内蔵型が知られている。画素アレイ部は、画素電極とこれを駆動する薄膜トランジスタとで構成されている。駆動回路部も同じく薄膜トランジスタで構成されており、画素アレイ部を駆動する。同一の基板上に形成された画素アレイ部と駆動回路部は共に共通の平坦化膜で被覆される。しかしながら、画素アレイ部と駆動回路部とでは基板表面の微細構造が異なる為、必ずしも両部に亘って均一に平坦化できず、液晶など電気光学物質の厚みに局部的なばらつきが生じ、画像品位を損なっていた。
【0005】
更に、反射型の表示装置では、平坦化膜の表面に微細な凹凸を形成し、その上に光反射性の画素電極を形成していた。これにより、画素電極に所望の光拡散性を付与できる。しかしながら、平坦化膜の上に凹凸を形成する為に特殊な工程が必要となり、製造プロセスを複雑化させるという難点があった。
【課題を解決するための手段】
【0006】
上述した従来の技術の課題を解決するために、以下の手段を講じた。即ち、本発明は、所定の間隙を介して互いに接合した一対の基板と、該間隙に保持される電気光学物質とからなるパネル構造を有し、一方の基板には、薄膜トランジスタの集合と、これらを被覆する平坦化膜と、該平坦化膜の上に配された画素電極の集合とが形成され、他方の基板には、該画素電極の集合に対面する対向電極が形成されている表示装置において、前記平坦化膜は感光性材料からなり、露光処理により該一方の基板内で異なった厚みを有する様に形成されていることを特徴とする。一態様では、前記一方の基板は、画素電極とこれを駆動する薄膜トランジスタとで構成された画素アレイ部と、該画素アレイ部を駆動する為に薄膜トランジスタで構成された駆動回路部とを含み、前記平坦化膜は該画素アレイ部から周辺の該駆動回路部にわたって形成され且つ該画素アレイ部と該駆動回路部とで厚みが異なっている。他の態様では、前記平坦化膜は表面に凹凸が生ずる様に厚みを異ならせた領域を有し、該画素電極は反射膜からなり且つ該凹凸が生じた領域に配されている。別の態様では、各画素電極には異なった表示色が割り当てられており、前記平坦化膜は、各画素電極に対応する部分の厚みが各画素電極に割り当てられた表示色の波長に応じて異なるように形成されている。
【0007】
又本発明は、所定の間隙を介して互いに接合した一対の基板と、該間隙に保持される電気光学物質とからなるパネル構造を有する表示装置の製造方法であって、一方の基板には薄膜トランジスタの集合と、これらを被覆する平坦化膜と、該平坦化膜の上に配された画素電極の集合とを形成し、他方の基板には該画素電極の集合に対面する対向電極を形成する工程を含み、該平坦化膜を形成する工程は、感光性材料からなる平坦化膜を該一方の基板上に塗工する塗工工程と、露光量の平面分布に変化をつけた状態で該平坦化膜の感光処理を行なう露光工程と、感光した平坦化膜の表面をエッチングして、該平坦化膜の厚みを該露光量の平面分布に応じて異なる様に加工する加工工程とを含む。好ましくは、前記露光工程は、透過率の平面分布に変化をつけたマスクを介して該平坦化膜に光を照射して感光処理を行なう。この場合、前記露光工程は、所定のエネルギー量の光を照射するために異なるマスクを用いて、複数回感光処理を行う。或いは、前記露光工程は、同一のマスクで異なるエネルギー量の光を照射するために、所定の部分に異なるエネルギー量となるフィルターを設けたマスクを用いる。この場合、前記露光工程は、該フィルターとして、光を回折可能なパターンを用いることが出来る。或いは、前記露光工程は、該フィルターとして、異なる透過率をもつ二種類以上の遮光物質により形成されたものを用いることができる。好ましくは、前記露光工程は、1%〜50%の透過率を有するフィルターを設けたマスクを用いる。
【0008】
本発明によれば、液晶などを電気光学物質とする表示装置において、薄膜トランジスタなどの能動素子を集積形成した基板の表面に塗工される平坦化膜に工夫を凝らし、基板内で厚みが異なる様に形成している。これにより、カラー表示装置の場合赤青緑各画素毎に最適な液晶の厚みを得ることができる。又、画素アレイと周辺の駆動回路を一体的に形成した駆動回路内蔵型の表示装置では、画素アレイ部と駆動回路部との両者に亘ってパネル内のギャップむらを改善することが可能である。更に、反射型の表示装置では平坦化膜の表面が凹凸形状となる様に平坦化膜の厚みに変化を付けることで、反射膜として機能する画素電極に所望の光散乱機能を付与することが少ない工程で実現できる。
【発明の効果】
【0009】
以上説明した様に、本発明によれば、同一露光マスク内で透過光量を変えたパターンを作成することにより、同一基板上に少ない工程で膜厚の異なる感光性有機平坦化膜を形成することが可能になる。これにより、RGBそれぞれの画素においてマルチギャップのパネルを形成でき、透過率の向上及び色再現性の向上が可能になる。又、周辺の駆動回路部上の有機平坦化膜を薄くすることにより、ギャップむらの改善が可能となり、表示品位を向上できる。更に、反射型表示装置の凹凸形状とコンタクトホールを同一工程において作成することが可能となり、工数削減及びコスト削減が可能となる。
【図面の簡単な説明】
【0010】
【図1】表示装置の参考例を示す模式的な部分断面図である。
【図2】本発明に係る表示装置の第一実施形態を示す断面図である。
【図3】露光時間と平坦化膜エッチング量との関係を示すグラフである。
【図4】表示装置の参考例を示す部分断面図である。
【図5】表示装置の参考例を示す部分断面図である。
【図6】本発明に係る表示装置の第二実施形態を示す模式的な部分断面図である。
【図7】表示装置の参考例を示す部分断面図である。
【図8】本発明に係る表示装置の第三実施形態を示す模式図である。
【図9】本発明に係る携帯電話端末装置の一例を示す模式的な平面図である。
【図10】本発明に係る携帯情報端末装置の一例を示す模式的な斜視図である。
【発明を実施するための形態】
【0011】
以下図面を参照して本発明の実施の形態を詳細に説明する。まず最初に本願発明の背景を明らかにする為、図1を参照してカラー表示装置の一般的な構成を簡潔に説明する。図示する様に、この表示装置は、一対のガラス基板100,135の間に液晶などからなる電気光学物質130を保持したパネル構造となっている。上側のガラス基板135には、対向電極131、偏光層132、カラーフィルタ133及びブラックマトリクス134が形成されている。
【0012】
これに対し、下側の基板100には画素アレイ部とその周辺に配された駆動回路部とが形成されている。画素アレイ部は、画素電極111と、これをスイッチング駆動する画素用の薄膜トランジスタ(TFT−PXL)を含む。TFT−PXLはデュアルゲート型のボトムゲート構造を有し、Nチャネル型である。一方、駆動回路部は、画素用薄膜トランジスタTFT−PXLを駆動する為に回路用の薄膜トランジスタ(TFT−CKT)で構成されている。図では、シングルゲート型でボトムゲート構造を有し、Nチャネル型のTFT−CKT一個のみを示す。各薄膜トランジスタTFT−PXL,TFT−CKTは、半導体薄膜105とゲート電極101とこれらの間に介在するゲート絶縁膜(102,103)とを重ねた積層構造を有する。半導体薄膜105は例えば多結晶シリコンからなる。ゲート絶縁膜は、ゲート窒化膜102とゲート酸化膜103の積層構造からなる。
【0013】
半導体薄膜105は、各薄膜トランジスタの素子領域に合わせて島状にパタニングされている。パタニングされた半導体薄膜105は、ゲート電極101の端部より内側に位置するチャネル領域chと、チャネル領域chの外側に続く低濃度不純物領域(LDD領域)と、低濃度不純物領域(LDD領域)の外側に続く高濃度不純物領域(ソース領域S及びドレイン領域D)とを有する。尚、各薄膜トランジスタのチャネル領域chはストッパー膜106で保護されている。係る構成を有する薄膜トランジスタTFT−PXL,TFT−CKTは、層間絶縁膜107及び保護膜108で被覆されている。保護膜108の上には、配線電極109が形成されている。各配線電極109は、層間絶縁膜107及び保護膜108に開口したコンタクトホールを介して、各薄膜トランジスタのソース領域Sやドレイン領域Dに電気接続している。配線電極109は平坦化膜110により被覆されている。その上には、画素電極111がパタニング形成されている。
【0014】
以上説明した様に、図1に示したカラー表示装置は、液晶などの電気光学物質130を間にして、画素アレイ部と駆動回路部を有する基板100と、カラーフィルタ133や対向電極131を有する対向基板135が互いに対面している。この場合、透過光を制御する画素は、薄膜トランジスタを構成する要素の一つであるゲート絶縁膜や層間絶縁膜の上にパシベーションレイヤーとして有機の平坦化膜110を形成し、その上にITOなどの透明導電膜からなる画素電極111を形成している。又、対向基板135側では、赤青緑三原色のカラーフィルタ133とブラックマトリクス134と、その上のオーバーコート層を兼ねた偏光層132及び対向電極131を形成している。両基板100,135で挟持される液晶層の膜厚は基板内でほぼ一定であり、液晶層の膜厚と屈折率により決まる特定波長領域において最大の透過率を示すことになる。図1に示した単純な構造の場合、パネル透過率を最大にする為特定波長領域を緑色に合わせている。場合によっては、白表示時の色温度を重視する時、特定波長領域が青色に来る様に設計されている。しかしながら、最近の傾向として更なる透過率の向上及び色温度の向上が求められており、その為には赤緑青各色で各波長に適合した最適な液晶の膜厚を設定することが要求されている。しかし、図1に示した構造では、大幅な工程増加を伴うことなく液晶層の膜厚を画素毎に変えることは困難である。
【0015】
図2は、本発明に係る表示装置の第一実施形態の一例を示す模式的な部分断面図である。図示する様に、本表示装置は、所定の間隙を介して互いに接合した一対の基板1,2と、この間隙に保持される液晶3などの電気光学物質とからなるパネル構造を有する。尚、上下一対の基板1,2は液晶3を間にして、シール材9により互いに接合されている。一方の基板には、画素アレイ部や駆動回路部に含まれる薄膜トランジスタの集合4と、これらを被覆する平坦化膜5と、この平坦化膜5の上で画素アレイ部に配された画素電極の集合とが形成されている。尚、画素電極は図示を省略している。又、薄膜トランジスタの集合4の上には配線6が形成されており、これを被覆する様に前述した平坦化膜5が成膜されている。上述した様に薄膜トランジスタの集合4は、複数の画素PXLが集積形成された画素アレイ部と、周辺の駆動回路部とに分かれている。これに対し、上側の基板2には、画素電極の集合に対面する対向電極が形成されている。但し、図では対向電極は省略されている。特徴事項として、平坦化膜5は感光性材料からなり、露光処理により一方の基板1内で異なった厚みを有する様に形成されている。本実施形態の場合、基板2には対向電極に加えカラーフィルタCFやブラックマトリクス7も形成されており、これらは更に保護膜8によって被覆されている。実際には、この保護膜8の表面に対向電極が形成されている。カラーフィルタCFによって各画素PXLには赤(R)緑(G)青(B)の異なった表示色が割り当てられている。これに対応して、平坦化膜5は、各画素PXLに対応する部分の厚みが各画素に割り当てられた表示色の波長に応じて異なる様に形成されている。
【0016】
以上の様に、図2に示した実施形態では、感光性有機平坦化膜5を加工して、各画素PXLに割り当てた表示色の波長領域において、透過率が最大となる様な液晶3の膜厚を実現する様に設計している。この場合、液晶3は例えばVAモードなどに用いられるECB液晶を採用している。例えば液晶3は、赤色画素の部分が3.7μm、緑色画素の部分が3.5μm、青色画素の部分が2.8μmの厚みとなる様に、基板1側の平坦化膜5の膜厚を変えている。
【0017】
平坦化膜の厚みを局所的に異なる様に調節する為、感光性の平坦化膜材料と、フォトリソグラフィ及びエッチングを組み合わせることができる。一般に、所定の間隙を介して互いに接合した一対の基板と、この間隙に保持される液晶などの電気光学物質とからなるパネル構造を有する表示装置を製造する為には、一方の基板に薄膜トランジスタの集合とこれらを被覆する平坦化膜とこの平坦化膜の上に配された画素電極の集合とを形成し、他方の基板には画素電極の集合に対面する対向電極を形成する。平坦化膜を形成する工程は、上述した様に、感光性材料からなる平坦化膜を一方の基板上に塗工する塗工工程と、露光量の平面分布に変化を付けた状態で平坦化膜の感光処理を行なう露光工程と、感光した平坦化膜の表面をエッチングして平坦化膜の厚みを露光量の平面分布に応じて異なる様に加工する加工工程とを含む。好ましくは、露光工程は、透過率の平面分布に変化を付けたマスクを介して平坦化膜に光を照射して感光処理を行なう。この場合、露光工程は、所定のエネルギー量の光を照射する為に異なるマスクを用いて、複数回感光処理を行なうことができる。あるいは、露光工程は、同一のマスクで異なるエネルギー量の光を照射する為に、所定の部分に異なるエネルギー量となるフィルターを設けたマスクを用いてもよい。露光工程は、このフィルターとして、光を回折可能なパターン(解像できないパターン)を用いることができる。あるいは、露光工程は、フィルターとして、異なる透過率を持つ二種類以上の遮光物質(ハーフトーン物質)により形成されたものを用いることができる。例えば、露光工程は、1%〜50%の透過率を有するハーフトーンのフィルターを設けたマスクを用いることができる。
【0018】
特に、画素毎に平坦化膜の膜厚を変える場合、平坦化膜の膜厚制御は、各画素においてハーフ露光し、露光量に応じたエッチング量で膜減りを起こさせる様にすればよい。ここで、平坦化膜の露光量と平坦化膜のエッチング量との関係を図3に示す。図3において、横軸に露光量を露光時間(msec)で表わし、縦軸に平坦化膜のエッチング量(μm)を取ってある。平坦化膜に対する露光量制御は回折パターンを利用したマスクを用いている。このマスクを用いて露光し、現像を行なうことで膜厚制御が可能になる。図3のグラフでは、三種類の異なったマスクを用いた場合の露光量/平坦化膜エッチング量の関係を示している。カーブAは、全開マスクを用いた場合のデータであり、露光時間の増加とともに、エッチング量(平坦化膜の膜減り量)が増加している。しかし、露光時間が500msecを超えるとエッチング量は飽和している。これに対し、カーブBは、明部と暗部が交互に配されたストライプパターンで、明部の幅が0.25μm、暗部の幅が同じく0.25μmの回折パターンをマスクに利用した場合である。この時には、露出時間とほぼ比例して平坦化膜のエッチング量を制御することが可能である。更にカーブCは、同じくストライプパターンのマスクを用いた場合であるが、ストライプパターンの明部が0.25μmで暗部が0.75μmとなっており、Bに比べて暗い。従って、露光時間の増加とともにエッチング量は増加するものの、増加レートはBに比べ低くなっている。以上の様な回折パターンを用いた露光量制御に代え、所定の透過率に相当するハーフトーン材料を用いることも可能である。この場合、所定の露光波長において透過率が判明している材料(例えばMoSiなど)の透過光量を調整する様に膜厚を制御した層で、マスクを作成すればよい。この様にして、例えば赤色画素の部分で25%透過率、緑色画素の部分で20%程度の透過率を有する2種類のハーフトーン材料と、青色画素の部分の完全遮光材料とを用い、3レイヤーでマスクを形成すれば、4種類の膜厚(完全に抜く部分を含める)の制御が可能となる。
【0019】
次に、本発明の第二実施形態の説明に入る前に、図4を参照して背景技術を簡単に説明する。図4は、アクティブマトリクス型の表示装置の参考例を示す模式的な部分断面図であり、一画素分を表わしている。この表示装置は、ガラスなどからなる透明な基板201の上にマトリクス状に配列した画素を有する。一つの画素は開口領域と非開口領域に分けられる。開口領域には、基板201を通して光を出射する画素PXLが形成されている。具体的には、この画素PXLは、互いに対向する透明な電極210,219の間に保持された液晶217からなり、所謂液晶セルと呼ばれる。尚、一方の電極210は画素電極としてガラス基板201側に形成され、他方の電極219は対向電極として対向基板220側に形成されている。この液晶セルは、ガラス基板201の裏面側に配されたバックライト(図示せず)から入射した光を表面側に出射するライトバルブとして機能する。画素電極210の表面は配向膜216によって被覆され、対向電極219の表面も配向膜218によって被覆されている。
【0020】
一方、非開口領域は、上述した液晶セルを駆動する薄膜トランジスタTFTが形成されている。図示する様に、この薄膜トランジスタはボトムゲート構造を有し、金属からなるゲート電極202の上に酸化シリコンなどからなるゲート絶縁膜203Oを介して、ポリシリコンなどからなる多結晶半導体薄膜204Pが形成されている。この多結晶半導体薄膜204Pは窒化シリコンからなる層間絶縁膜207Nによって被覆されており、その上にソース電極205S及びドレイン電極205Dが形成されている。これらの電極5S,5Dは有機透明樹脂膜からなる平坦化膜209により被覆されている。この平坦化膜209はガラス基板201の表面を平坦化するとともに、薄膜トランジスタTFTに対する保護膜でもある。平坦化膜209の上には前述した様に画素電極210が形成されており、ドレイン電極205Dを介して薄膜トランジスタTFTに電気接続している。以上に述べたゲート絶縁膜203O、層間絶縁膜207N、平坦化膜209などが重なって第一の膜構成を形成する。この第一の膜構成は非開口領域において薄膜トランジスタTFTを包含している。換言すると、第一の膜構成は薄膜トランジスタを上下から包み込む形で形成されている。一方、非開口領域に隣接する開口領域には、第一の膜構成から延在した第二の膜構成が配されている。図示の例では、第二の膜構成は平坦化膜209のみからなり、画素電極210の上に形成された液晶セルとガラス基板201との間に介在している。
【0021】
この参考例では、開口領域から不要な膜を除去し、ガラス基板201上に直接有機樹脂の平坦化膜209のみを形成している。アクリル樹脂を用いた場合、平坦化膜209の屈折率は1.4〜1.6で、透明なガラス基板201とほとんど差がない。よって、この界面では屈折率差による不要反射が発生しなくなる。この様に、開口領域から屈折率が異なる層をでき得る限り除去することにより、多重干渉が減少し、パネルの透過率が向上する。又、干渉効果がなくなる為、固体間で製造上のばらつきが減少可能である。又、パネルの反射を少なくすることができる。その際、非開口領域と開口領域を共通のプロセスで処理できる為、新たな製造上の工程を必要としない。
【0022】
図5は、図4に示した表示装置の画素アレイ部に加え駆動回路部を含めた構成を示す模式的な部分断面図である。尚、理解を容易にする為、図2に示した本発明の第一実施形態と対応する部分には対応する参照番号を付してある。図示する様に、表示装置は画素PXLが集積的に形成された画素アレイ部とその周辺の駆動回路部とに分かれている。前述した図4は、画素アレイ部に形成された画素PXLの一個分を拡大して図示したものである。駆動回路部及び画素アレイ部共に、絶縁基板1の上に形成されており、薄膜トランジスタの集合4を含んでいる。この薄膜トランジスタの集合4は層間絶縁膜10により被覆されており、その表面には配線6がパタニング形成されている。この配線6は、駆動回路部及び画素アレイ部に亘って、平坦化膜5により被覆されている。上側の基板2の内表面にはカラーフィルタCFやブラックマトリクス7が形成されている。上下の基板1,2は液晶3を間にしてシール材9により互いに接合されている。両基板1,2の間隙には、ギャップスペーサ11が配置されている。図4を参照して説明した様に、画素アレイ部の各画素PXLの開口領域から平坦化膜5のみを残して、他の屈折率の異なる膜を除去することにより、干渉による反射を低減し、透過率及び色温度の改善を行なっている。しかしながら、平坦化膜5といえど、ゲート絶縁膜や層間絶縁膜10により形成される段差(例えば、0.6μm程度)を完全にカバーすることは難しく、駆動回路部と画素アレイ部とで平坦化膜5の表面の段差が大きくなってしまう。従って、画素アレイ部に散布されているギャップスペーサ11が駆動回路部の平坦化膜5上に載ってしまうと、パネルの周辺部分でギャップむらが発生するという問題が生じる。
【0023】
図6は、本発明に係る表示装置の第二実施形態の一例を表わしており、図5に示した参考例の問題点を解決した構造となっている。理解を容易にする為、図5に示した参考例と対応する部分には対応する参照番号を付してある。図から明らかな様に、駆動回路部において、点線で示す様に平坦化膜5の表面を画素アレイ部に比べて一定の膜厚だけ薄くしている。これにより、パネルの周辺部でのギャップむらを防いでいる。即ち、周辺の駆動回路部において層間絶縁膜10などの厚みを予め考慮し、その分に相当する厚みを平坦化膜5の表面からエッチングで除去することにより、全体として基板1の全てに亘って平坦化膜5の表面が均一となる様にしている。例えば、基板1の表面に感光性の有機樹脂からなる平坦化膜5を塗工した後、周辺の駆動回路部に、25%の透過光量を有するマスクで局所的に露光処理を行なうことにより、駆動回路部の上部からのみ平坦化膜5の表面をエッチングで取り除くことが可能になる。
【0024】
続いて本発明に係る表示装置の第三実施形態を説明する前に、図7を参照して背景技術を簡潔に説明する。図示する様に、この表示装置は、所定の間隙を介して互いに接合した前後一対の基板301,302とこの間隙に保持された液晶層303などからなる電気光学物質とを含み、マトリクス状に配された画素を備え前面側からの外光を前面側に反射する。この反射領域は、前後一対の基板301,302に形成された電極310,322と、これらの電極310,322に挟持された液晶層303と、後面側の基板302に形成された反射層308とからなり、所謂反射型の液晶表示素子LCを構成している。
【0025】
前側基板301の外表面には偏光層340と四分の一波長板309が形成されている。基板301の内表面には着色層350からなるカラーフィルタCFが形成されている。カラーフィルタCFを画素毎に区切る様にブラックマトリクスBMが同じく基板301の内面に形成されている。カラーフィルタCF及びブラックマトリクスBMの表面には各画素に亘って共通に形成された対向電極310が形成されている。その上には配向膜307が成膜されている。更に、複屈折性を有する液晶層303が介在しており、その下に後側の基板302が配されている。基板302の表面は配向膜315によって覆われており、前側基板301の配向膜307と協働して液晶層303を例えば水平配向している。配向膜315の下には画素電極となる反射層308が形成されている。反射層308は平坦化膜314の凹凸面に形成された金属膜からなり画素電極を構成する。平坦化膜314の下には薄膜トランジスタ308が形成されている。この薄膜トランジスタ308はボトムゲート構造を有しており、下から順にゲート電極316、ゲート絶縁膜317、半導体薄膜318を重ねた積層構造を有している。半導体薄膜318は例えば多結晶シリコンからなり、ゲート電極316と整合するチャネル領域は上側からストッパー319により保護されている。係る構成を有するボトムゲート構造の薄膜トランジスタ308は層間絶縁膜320により被覆されている。層間絶縁膜320には一対のコンタクトホールが開口しており、これらを介してソース電極321及びドレイン電極322が薄膜トランジスタ308に電気接続している。これらの電極321及び322は例えばアルミニウムをパタニングしたものである。ドレイン電極322には前述した反射層308が接続している。即ち、平坦化膜314に形成したコンタクトホール312を介して反射層308はドレイン電極322に電気接続している。一方、ソース電極321には信号電圧が供給される。
【0026】
上述した反射型の表示装置では、基板302の表面に塗工された平坦化膜314にランダムな凹凸を形成し、反射光の視認性を改善している。しかしながら、従来の製造方法では、このランダムな凹凸形状を形成する為に、二層の有機平坦化膜の露光処理を用いるなど、生産性に問題があった。そこで、本発明では、第三実施形態として、図8に示す構造並びに製造方法を提案している。理解を容易にする為、図8は表示装置のうち下側の基板1のみを表わしている。基板1の上には平坦化膜5が形成されている。この平坦化膜5には反射膜用の凹凸12とコンタクトホールCONが形成されている。この凹凸12とコンタクトホールCONを形成する為に、フォトリソグラフィ及びエッチング技術を採用している。即ちマスクMを用いて、感光性を有する平坦化膜5の露光処理を行ない、その膜厚を局部的に制御している。具体的には、マスクMにおいて、完全に有機平坦化膜5を除去するコンタクトホールCONの部分は100%の透過率とし、凹凸12を形成する部分は20%のハーフトーン材料51と完全遮光層52で形成する。即ち、マスクMの基材50の上に、ハーフトーン材料51と完全遮光材料52を成膜する。これにより、凹凸12とコンタクトホールCONの同時形成が可能になる。凹凸形状を制御する上で、g線やh線など露光波長の長い露光装置を用いることが望ましい。又、露光時にデフォーカスをかけるとなだらかな凹凸形状を形成することが容易になる。又、有機平坦化膜5を加熱してリフローを施せば、更になだらかな凹凸形状を形成することが可能になる。この方法によれば、従来数回の工程を有していた凹凸12の作成が簡便になり、コストダウンが可能となる。本説明では、代表的なボトムゲート型トランジスタを用いたが、それに限定されるわけではなく、他のトップゲート型トランジスタ、a−Siトランジスタ、もしくは、単純マトリクス型の液晶の場合にも応用可能である。
【0027】
図9は、本発明に係る携帯電話端末装置の一例を示す模式的な平面図である。図示する様に、携帯電話端末装置400は、発呼及び着呼に関する操作を行なう操作部と、この操作に応じて通話を可能にする通話部と、少なくともこの操作に関する情報を表示可能な表示部とを一体的に組み込んだコンパクト構造となっている。具体的には、携帯電話端末装置400は、無線送受信用のアンテナ431、受話器(スピーカ)432及び送話器(マイクロフォン)433を備えるとともに、ダイヤルキーなどの操作キー434と表示部435とを備えている。この表示部は本発明に従って製造された表示装置からなる。携帯電話端末装置400は、個人名と電話番号などの電話帳情報を、表示部435に表示することができる。場合によっては、受信した電子メールを表示部435に表示することも可能である。
【0028】
図10は、本発明に係る携帯情報端末装置を示す模式的な斜視図である。携帯情報端末装置(PDA)500は、命令を入力する操作部511と、命令に応じて情報を処理する処理部510と、処理された情報を表示する表示部S20とを一体的に組み込んだコンパクト構造となっている。処理部510は、PDAとしての基本機能(通信部、音声処理部、制御部及び記憶部など)を備えている。これらの機能を、CPUなどからなる制御部が制御することで、電話機能、メール機能、パソコン機能、パソコン通信機能、個人情報管理機能などが実現できる。更に、操作部511を備えており、これを操作することにより、各種機能を選択できる。処理部510は実行する処理内容に応じて画像情報を生成する。表示部520は、情報処理部510が生成した画像情報を表示する。ここで、表示部520は、本発明に従って作成されたカラー表示装置、反射型表示装置、駆動回路一体型表示装置の何れかである。
【符号の説明】
【0029】
1・・・基板、2・・・基板、3・・・液晶、4・・・薄膜トランジスタの集合、5・・・平坦化膜、6・・・配線、7・・・ブラックマトリクス、9・・・シール材、CF・・・カラーフィルタ

【特許請求の範囲】
【請求項1】
所定の間隙を介して互いに接合された一対の基板と、該間隙に保持された電気光学物質とから成るパネル構造を有し、
一方の基板は、画素アレイ部、及び、駆動回路部を含み、
画素アレイ部は、マトリクス状に配列された画素を有し、
各画素は、画素電極、及び、画素電極を駆動する画素用薄膜トランジスタを備えており、
各画素は、画素用薄膜トランジスタが形成された非開口領域、並びに、開口領域に分けられ、
非開口領域に形成された画素用薄膜トランジスタは、層間絶縁膜及び平坦化膜で覆われており、
開口領域には、非開口領域に形成された平坦化膜が延在しており、
画素電極は、平坦化膜の上に形成されており、
駆動回路部には、画素用薄膜トランジスタを駆動する回路用薄膜トランジスタが形成されており、回路用薄膜トランジスタは層間絶縁膜及び平坦化膜で覆われており、
他方の基板には、画素電極の集合に対面する対向電極が形成されており、
画素アレイ部の開口領域における平坦化膜の厚さは、駆動回路部における平坦化膜の厚さよりも厚く、
画素アレイ部の開口領域の上方に位置する電気光学物質層の部分の厚さと、駆動回路部の上方に位置する電気光学物質層の部分の厚さは同じである表示装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2013−15866(P2013−15866A)
【公開日】平成25年1月24日(2013.1.24)
【国際特許分類】
【出願番号】特願2012−224073(P2012−224073)
【出願日】平成24年10月9日(2012.10.9)
【分割の表示】特願2011−265729(P2011−265729)の分割
【原出願日】平成13年2月5日(2001.2.5)
【出願人】(000002185)ソニー株式会社 (34,172)
【Fターム(参考)】