説明

複合板および複合成形体

【課題】アルミニウム合金板などの金属板に比べて発泡樹脂層の厚さを増大させ、金属板の板厚を相対的に薄くしても、前記した自動車車体パネルなどの比較的大きな面積を有するパネルでも曲げ剛性および曲げ強度が優れた複合板および複合板を成形加工した複合成形体を提供する。
【解決手段】 心材発泡樹脂3bの両面に金属板2a、2bが接合され、心材発泡樹脂3bが発泡された複合板1aの、金属板2a、2bの板厚が0.05〜0.3mmであり、心材発泡樹脂3bの発泡後における特性として、発泡倍率が2〜20倍、厚みが1〜100mm、ヤング率が0.2〜470MPaであることとする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、自動車車体や部品、各種カバー類などのパネルに適した、これらパネルとしての曲げ剛性および曲げ強度が優れた、軽量な複合成形体に関する。
【背景技術】
【0002】
従来から、アルミニウム合金板を軽量化するとともに、制振性能・遮音性能などを付与するために、心材として発泡樹脂を2枚のアルミニウム合金板間に挟んで積層した軽量複合板、あるいは軽量複合パネルが提案されている。
【0003】
これらは、基本構造として、心材として発泡性樹脂を、接着用樹脂とともに、2枚のアルミニウム合金板間に挟んで積層した後、加熱圧着して、発泡可能樹脂を2倍から5倍の発泡倍率で発泡させたものである。ここで、発泡性樹脂とは、加熱により発泡する乃至加熱により発泡が可能な樹脂を意味する。
【0004】
この基本構造に対して、この軽量複合板の外観性、軽量性、耐衝撃性、耐熱性、保温性、耐久性などの諸特性を向上させるために、これら発泡樹脂の発泡倍率を制御して、異なる発泡倍率の発泡樹脂を積層することなども提案されている(特許文献1参照)。また、発泡性樹脂層の発泡後の剥離を抑制するために、アルミニウム合金板と発泡性樹脂層との間に、接着剤層と非発泡性樹脂層とを介在させることも提案されている(特許文献2参照)。
【0005】
ここで、具体的な用途として、自動車車体用パネルの分野にも、このような軽量複合板が適用できれば、軽量化が図れ、燃費向上や操縦性を向上させることができる。しかし、自動車車体用パネルは、フード、ドアなどのアウタパネルやインナパネル、ルーフパネル、アンダーカバーパネル、あるいは、デッキボード、バルクヘッドなど、周知の通り、2m2 以上の比較的大きな面積を有し、また複雑な形状や大きな成形面積を有する。このため、実際にこれら自動車車体用パネル材料として使用されている鋼板単体や、鋼板よりも成形性が劣るアルミニウム合金板単体でも、張出成形や絞り成形などの、プレス成形することが比較的難しい場合がある。
【0006】
この点、前記発泡樹脂軽量複合板も、自動車の吸音部材や制振部材などの比較的単純な形状や、成形面積が小さい場合には、成形できる。しかし、前記した比較的大きな面積を有する自動車車体用パネルの場合には、しわや割れが発生することなく、大きな面積を有するパネルが成形できることが必要となる。このため、未発泡状態の発泡可能樹脂を積層した積層板の、前記した所定形状の各種自動車車体用パネルへの成形性を向上させる課題がある。
【0007】
これに対して、更に、形状・施工場所・重量に制限を受けることがないとともに、積層板全体として薄く、プレス加工などの塑性加工性がよく、加熱発泡工程を経た最終の使用状態で十分な制振性能などを備え、防音性能を発揮する発泡樹脂積層防音板およびその製造方法も提案されている(特許文献3)。
【0008】
このような発泡樹脂積層防音板は、発泡性樹脂を未発泡状態に保持したままの状態であれば、積層板の厚さを薄くできる。このため、この未発泡状態の発泡可能樹脂を積層した積層板をプレス成形などにより所定パネル形状とし、その後、この複合パネルを加熱し、樹脂発泡温度として、発泡性樹脂を発泡樹脂とし、厚みを増大させることが可能である。そのため、積層板として形状・施工場所・重量に制限を受けることなく、寸法・形状精度を確保して所定形状にプレス成形することができる。また、発泡可能樹脂の厚みを増大することで剛性付与効果や制振性能を高めることができ、防音性能を発揮することができる。
【特許文献1】特開平10−29258号公報
【特許文献2】特開2006−56121号公報
【特許文献3】特開2004−42649号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
しかし、前記した比較的大きな面積を有する自動車車体用パネルには、軽量であることが要求されるとともに、構造材としての耐久性や衝突安全性のための曲げ剛性が要求される。このような要求に対応するためには、アルミニウム合金板に比べて密度の低い発泡樹脂層の厚さを増大させ、アルミニウム合金板の板厚を相対的に薄くする必要がある。しかし、一般に、薄い金属板の成形限界は、薄くなるほど著しく低下するという課題がある。
【0010】
このような課題に対して、前記した特許文献3などの従来の複合成形パネルは曲げ剛性を兼備しているとは言い難い。
【0011】
これらの点に鑑み、本発明は、アルミニウム合金板などの金属板に比べて発泡樹脂層の厚さを増大させ、金属板の板厚を相対的に薄くしても、前記した自動車車体パネルなどの比較的大きな面積を有するパネルでも曲げ剛性および曲げ強度が優れた複合板および複合板を成形加工した複合成形体を提供することを目的とする。
【課題を解決するための手段】
【0012】
上記目的を達成するための、本発明複合板の要旨は、心材発泡樹脂の両面に金属板が接合され、心材発泡樹脂が発泡された複合板であって、前記金属板の板厚が0.05〜0.3mmであり、前記心材発泡樹脂の発泡後における特性として、発泡倍率が2〜20倍、厚みが1〜100mm、ヤング率が0.2〜470MPaであることとする。
【0013】
ここで、前記複合板の心材発泡樹脂の発泡後における前記発泡倍率が2〜10倍、前記厚みが1〜40mmであることが好ましい。また、前記複合板の心材発泡樹脂がポリオレフィン系樹脂であることが好ましい。更に、上記目的を達成するための、本発明複合成形体の要旨は、上記要旨をや好ましい要旨を有する複合板を成形加工した複合成形体である。
【発明の効果】
【0014】
本発明では、加熱により発泡温度にて発泡された発泡樹脂と硬質なアルミニウム合金板などの金属板とを備える複合板とする基本的な構成は、前記特許文献1などの構成を踏襲する。したがって、この軽量複合板の有する以下の効果は、そのまま発揮される。
1.発泡樹脂を積層した複合板の厚さを薄くできる。このため、複合板のプレス成形が容易となる。
2.そのため、複合板として形状・施工場所・重量に制限を受けることなく、寸法・形状精度を確保して所定形状にプレス成形することができる。
3.また、発泡樹脂の厚みを増大することで、複合成形体の曲げ剛性向上や、制振、防音性能を向上させることができる。
【0015】
更に、これに加えて、本発明では、特徴的に、上記要旨の通り、心材発泡樹脂が発泡した複合板や、これを成形した複合成形体(以下、成形体を成形パネルとも言う)の状態、即ち、前記した自動車車体パネルなどの比較的大きな面積を有する成形パネルでの状態での、心材発泡樹脂の発泡倍率やヤング率などの特性を規定する。
【0016】
これによって、自動車車体パネルなどの比較的大きな面積を有するパネルでも曲げ剛性を優れさせることができる。言い換えると、金属板に比べて発泡樹脂層の厚さを増大させ、金属板の板厚を相対的に薄くしたとしても、前記自動車車体パネルなどの複合成形体として、曲げ剛性が優れる。
【発明を実施するための最良の形態】
【0017】
以下、本発明の実施の形態について、図を用いて説明する。図1は、発泡前の心材樹脂を積層した積層板を示す斜視図である。図2は、図1の積層板を加熱して心材の発泡性樹脂を発泡させ、心材発泡樹脂(発泡させた樹脂)とした状態の複合板の態様を示す一部断面斜視図である。図3は、図1の積層板を成形および加熱して発泡性樹脂を発泡させ、心材発泡樹脂(発泡させた樹脂)とした状態の複合成形体(製品パネル)の態様を示す一部断面斜視図である。
【0018】
図1に示すように、本発明複合板や複合成形体の元の材料である積層板1は、金属板として例えば2枚のアルミニウム合金板2a、2bの間に、図の上から順に、接着用樹脂フィルム4a、発泡性樹脂(未発泡の樹脂)フィルム3a、接着用樹脂フィルム4bを積層した形で、挟み込んでいる。
【0019】
図1の態様では、これら2枚のアルミニウム合金板2a、2bの表面は平坦で平滑な面となっているが、必要により、金属板には、エンボス加工、プレス加工、ロール加工を施すなどして、表面全体に亙って、あるいは部分的に、適宜の範囲と大きさで凹凸を設けてもよい。
【0020】
図2は、図1の積層板1を加熱して、発泡性樹脂3aを発泡させ、心材の発泡樹脂3bとした状態の複合板1a(平板の状態)の態様を示している。図3は、図1の積層板1を加熱および成形して、発泡性樹脂フィルム3aを発泡させ、心材の発泡樹脂3bとした状態の複合成形体(成形されたパネル)1bの態様を示している。
【0021】
ここで、図3の複合成形体(製品パネル)は、前記自動車車体パネルの内、パネルに平坦で比較的大きな面積の四角形の頂部(凸部:カップ)を有するようなアンダーカバーパネルを模擬している。より具体的には、HAT型(カップの高さ:35mm、一辺:70mm)に張出成形した場合を示している。
【0022】
このように、2枚のアルミニウム合金板2a、2bを用い、この2枚の金属板間に、未発泡状態の発泡性樹脂3aと接着用樹脂フィルム4bとを積層した(挟み込む)場合、金属板が片側1枚のみ(単一)である態様に比して、樹脂発泡後の複合板や複合成形体の曲げ剛性向上効果が大きい。
【0023】
また、複合板を複合成形体にプレス成形する場合、2枚の金属板(アルミニウム合金板)2a、2b間に発泡性樹脂3aが挟み込まれて、拘束されながら成形される。このため、この複合板1aをプレス成形した複合成形体1bに反りが発生しにくくなり、複合成形体1bの形状精度が格段に向上する。更に、発泡性樹脂3aを発泡させる場合にも、2枚の金属板2a、2b間での発泡性樹脂3aの発泡度合いを、金属板2a、2bの間隔を調整することで規制でき、樹脂を発泡させた状態の複合板1aや複合成形体1bの形状精度も格段に向上する。
【0024】
また、2枚の金属板2a、2b間に発泡性樹脂3aが挟み込まれた態様では、互いの金属板重量を同じとした場合、片側1枚の金属板に発泡性樹脂を積層した場合に比して、樹脂を発泡させた状態の複合板1aや複合成形体1bの曲げ剛性および曲げ強度が格段に向上する。
【0025】
(心材発泡樹脂)
以上のような複合成形板の構成を前提にして、本発明では、特徴的に、心材発泡樹脂が発泡した複合板、あるいは、この複合板を成形加工した複合成形体の、心材発泡樹脂3bの板厚、発泡倍率やヤング率などの特性を規定する。即ち、心材発泡樹脂3b(発泡後)における特性として、発泡倍率が2〜20倍、厚みが1〜100mm、ヤング率が0.2〜470MPaであることとする。これによって、自動車車体パネルなどの比較的大きな面積を有する複合板や複合成形体の、使用状態での曲げ剛性および曲げ強度を更に向上させる。
【0026】
(心材発泡樹脂3bの発泡倍率)
心材発泡樹脂3bの発泡倍率(発泡後の樹脂厚さ/発泡前の樹脂厚さ)は2倍〜20倍の範囲とする。この発泡倍率が2倍未満では、曲げ剛性か曲げ強度が同じ金属板単体に比して軽量とはならず、複合板や複合成形体を使う意味がなくなる。一方、この発泡倍率が20倍を超えると、複合板や複合成形体の使用状態での曲げ剛性および曲げ強度が著しく低下する。したがって、心材発泡樹脂3bの発泡倍率は2倍〜20倍、好ましくは2〜10倍の範囲とする。心材発泡樹脂3bがこの発泡倍率を満たさないと、金属板の板厚や、心材発泡樹脂の発泡後における他の特性(厚み、ヤング率)が規定範囲内としても、複合板や複合成形体の曲げ剛性および曲げ強度を向上させることが困難となる。
【0027】
(心材発泡樹脂3bの厚み)
心材発泡樹脂3bの厚み(発泡後の厚み)は1〜100mmの範囲とする。未発泡状態の発泡性樹脂3aの厚みは0.5〜5.0mmが好適に用いられるので、この未発泡状態の発泡性樹脂3aの最小厚み0.5mmの、上記最小の発泡倍率2倍である1mmを心材発泡樹脂3bの厚みの下限とする。一方、この未発泡状態の発泡性樹脂3aの最大厚み5mmの、上記最大の発泡倍率20倍である100mmを心材発泡樹脂3bの厚みの上限とする。
【0028】
この心材発泡樹脂3bの厚み(発泡後の厚み)が1mm未満では、発泡倍率が2倍未満であることを意味し、前記した通り、曲げ剛性か曲げ強度が同じ単体の金属板に比して軽量とはならず、複合板や複合成形体を使う意味がなくなる。一方、この心材発泡樹脂3bの厚みが100mmを超えると、自動車車体パネルなどの比較的大きな面積を有する複合板や複合成形体の、使用状態での曲げ剛性および曲げ強度が著しく低下する。したがって、心材発泡樹脂3bの厚みは1〜100mmの範囲、好ましくは1〜40mmの範囲とする。心材発泡樹脂3bがこの発泡後の厚みを満たさないと、金属板の板厚や、心材発泡樹脂の発泡後における他の特性(発泡倍率、ヤング率)が規定範囲内としても、複合板や複合成形体の曲げ剛性および曲げ強度を向上させることが困難となる。なお、発泡後の心材発泡樹脂の厚みに、複合板や複合成形体の部位による「ばらつき」がある場合には、複合板や複合成形体の選択された適当部位における平均値とする。
【0029】
(心材発泡樹脂3bのヤング率)
心材発泡樹脂(発泡後)3bのヤング率は0.2〜470MPaの範囲とする。これは20℃での未発泡状態におけるヤング率が780〜1400MPaのポリオレフィン系発泡性樹脂の、前記2倍〜20倍の発泡倍率にて発泡させた際のヤング率に相当している。ここで、ポリオレフィン系発泡性樹脂の内、ポリプロピレンとポリエチレンなどの混合物であるランダムPPは、780MPa側の比較的低いヤング率を有し、ホモPPは、1400MPa側の比較的高いヤング率を有する。
【0030】
このヤング率が0.2MPa未満では、前記した自動車車体パネルなどの比較的大きな面積を有する複合成形体の、使用状態での曲げ剛性および曲げ強度が著しく低下する。一方、このヤング率を470MPaを超えて大きくする必要はなく、また、ヤング率が470MPaを超えることは、心材発泡樹脂の発泡倍率が2倍未満であることを意味し、前記した通り、軽量化効果が著しく低下し、複合板や複合成形体を使う意味がなくなる。
【0031】
(発泡性樹脂の種類)
発泡性樹脂3aを構成する樹脂は、熱可塑性樹脂の場合には、融点が100℃〜260℃であることが好ましい。融点がこの範囲であると、120℃〜300℃で加熱することで、発泡性樹脂3aを発泡させて、心材発泡樹脂3bとすることができる。心材発泡樹脂としてはポリオレフィン系を用いることが好ましい。ただ、使用温度によってその他の樹脂に変更可能である。例えば、樹脂に加熱分解型の発泡剤を配合し混練したものであって、ポリオレフィン系として、ポリプロピレン(ホモPPなど)、ポリエチレン、あるいはこれらの混合物(ランダムPPなど)、更には、ポリスチレン系、ポリエステル系、ビニール系などをそれぞれ単体で用いても良いし、これらを混ぜ合わせたポリマーブレンドや、無機系や金属系のフィラーを配合したものであってもよい。
【0032】
熱可塑性樹脂として好ましい発泡性樹脂は、ポリオレフィン系、ポリエチレン系、ポリエステル系、ナイロン系等が挙げられる。この中でも、極性がなく、化学反応がしにくい、ポリオレフィン系、ポリプロピレン系、ポリエチレン系、これらの混合系が好ましい。ポリプロピレンの融点は160℃〜170℃、ポリエチレンの融点は100℃〜140℃、ポリエステルテレフタレート(PET)の融点は250℃〜260℃、ナイロンの融点は179℃〜260℃である。このため、これら樹脂を単独、あるいは適宜混合乃至積層して使用し、発泡性樹脂としての融点を調整しても良い。
【0033】
一方、熱硬化性樹脂を、発泡性樹脂3aとして使用する場合、接着用樹脂(非発泡樹脂)4として使用する場合とも、発泡性樹脂3aか接着用樹脂4のどちらに使用されるか、及び、使用される温度条件に応じて決められ、特に限定されない。ただ、ポリウレタン、熱硬化型ポリエステル樹脂またはエポキシ樹脂が用いられることが好ましい。
【0034】
熱可塑性樹脂や熱硬化性樹脂ともに、発泡性樹脂3aとして使用する場合、上記発泡温度は120℃〜300℃に設定されていることが好ましい。発泡性樹脂はその融点より40〜50℃程度高温で加熱すると劣化しやすいため、発泡温度は発泡性樹脂の融点より最大40〜50℃高い温度以下に設定しておく必要がある。そうすると、120℃〜300℃で加熱することで、発泡性樹脂3aを劣化させることなく発泡させることができる。
【0035】
(接着用樹脂)
接着用樹脂4は、発泡性樹脂3aと金属板2a、2bとの接着が可能な接着用樹脂からなる。心材発泡樹脂としてポリオレフィン系樹脂を主成分として用いた場合には、接着用樹脂4として、ポリエチレンやポリプロピレンを主成分とする熱可塑性樹脂が好適に用いられる。この接着用樹脂4には、当然ながら、発泡性樹脂3aと金属板2a、2bとの十分な接着強度が必要である。
【0036】
(樹脂形状)
これら発泡性樹脂、接着用樹脂は、フィルム・シートであるものに限らない。発泡性樹脂、接着用樹脂のうち、何れか一方(この場合、他方はフィルム・シートでよい)、または両方を、溶融状態または溶媒に溶解させた状態のものを、ロールやスプレーなどで塗布することによっても可能である。なお、この塗布の場合には、塗布後に乾燥する工程があることが好ましい。
【0037】
(樹脂応用例)
樹脂応用例として、樹脂の種類や添加剤を含有させることで、複合成形体の特性をより高機能、多機能とすることができる。例えば、発泡性樹脂、接着用樹脂として、制振性の高い樹脂を用いれば、制振性能や遮音性能が高まる。また、導電性物質を用いれば溶接性能が高まる。上記の発泡性樹脂3aや接着用樹脂4に導電性物質として金属粉末が添加されると、樹脂は高密度となる。このため、遮音性能が高まるとともに、導電性物質を用いれば溶接性が向上できる。
【0038】
更に、上記発泡性樹脂3aに潤滑剤が添加されると、プレス成形時の金型との接触摩擦を低減して樹脂の破断を防止し性形成を向上させることができる。この変形例として、発泡性樹脂3aの表面に潤滑専用のフィルムを貼ったり、潤滑のためのコーティングを行うことでも、同様の効果を得ることができる。
【0039】
(金属板)
積層される金属板2a、2bの各板厚は、各々0.05〜0.3mmの範囲の薄板とする。金属板2a、2bの板厚が、片側一方だけでも0.05mm未満では、心材発泡樹脂の発泡後における前記特性(発泡倍率、厚み、ヤング率)が規定範囲内としても、前記した自動車車体パネルなどの比較的大きな面積を有する複合板や複合成形体の使用状態での曲げ剛性および曲げ強度が著しく低下する。一方、金属板2a、2bの板厚が、片側一方だけでも0.3mmを超えると、重量が重くなり、軽量化が犠牲となって、複合板や複合成形体とする意味が失われる。
【0040】
金属板2a、2bとしては、鋼板やアルミニウム合金板などが好適に使用される。目的に応じて、銅合金板など他の金属板を用いてもよいが、汎用されている点や価格的に鋼板やアルミニウム合金板が有利である。アルミニウム合金板に好適なアルミニウム合金は、通常、この種構造部材用途に汎用される、AA乃至JIS 規格に規定された、あるいは規定に類似の1000系、3000系、5000系、6000系、7000系等のアルミニウム合金が好適に用いられる。これらのアルミニウム合金は比較的成形性も良い。鋼板としては通常の軟鋼板が使用できる。高張力鋼板やステンレス鋼板を使用してもよいが、これらは上記板厚範囲の薄板とすることが難しく、また、使用鋼板をそこまで高張力化や高耐蝕性化する必要はない。
【0041】
前記アルミニウム合金板や鋼板は、前記所定板厚の、通常乃至市販の冷間圧延薄板等が用いられる。これらアルミニウム合金板や鋼板の調質乃至強度などの機械的性質は、パネル部材としての要求特性に応じて適宜選択されて調質されて良い。また、必要により、亜鉛めっきや化成処理など、汎用されている表面処理が施されていても良い。
【0042】
(複合成形体の製造方法)
ここで、材料である複合板や、この軽量複合板をプレス成形および心材樹脂を発泡させた複合パネルの製造方法について、前記した図1〜3も用いて、以下に説明する。
【0043】
発泡性樹脂:
発泡性樹脂3aを構成する樹脂材料を先ず混練する。この材料は、樹脂と熱分解型発泡剤とを含んでおり、必要に応じて、接着強度、制振強度、潤滑性を付与する物質や、金属粉末が添加される。これらの材料が十分混練された後、フィルムあるいはシート化される。フィルム化される場合にはコイル状に巻かれる。このとき、上記材料に含まれる樹脂の融点が、発泡剤の分解温度よりも20℃〜30℃低く設定されていることが好ましい。そうすると、混練されることで樹脂の温度が上昇しても、発泡が起こることを防止することができる。
【0044】
接着用樹脂:
接着用樹脂4を構成する樹脂材料を先ず混練する。この材料は、樹脂に、必要に応じて、接着強度・制振性付与する材質や、導電性を付与するための金属粉末が添加されている。これらの材料が十分混練された後、フィルム化あるいはシート化される。フィルム化の場合には、コイル状に巻かれて別途積層されるか、金属板の表面に塗布される。なお、上記の発泡性樹脂のフィルムあるいはシートと接着用樹脂が熱融着されて、一体化された後にコイル状に巻かれてもよい。既に発泡性樹脂フィルムと接着用樹脂フィルムとが、それぞれ別のコイルとされている場合には、これら2つのコイルから各々引き伸ばすことで、アルミニウム合金板2に、接着用樹脂フィルム4と発泡性樹脂フィルム3aとを同時に積層させることができる。何れの場合であっても、発泡性樹脂3aは未発泡状態であり厚みが薄いため、コイル状にすることが可能である。そのため、コイル状での搬送が可能であり、施工場所でコイルから引き伸ばすことができるため施工場所が制限されない。
【0045】
素材積層板の製作:
切り板とされた金属板2a、2bと、同じく切り板とされた接着用樹脂フィルム4、発泡性樹脂フィルム3aとを、順に積層して、積層板となす方法が最も簡便である。ただ、設備的に可能であれば、連続的に積層してもよい。即ち、金属板2a、2bのいずれか一方か両方をコイルから巻き出し、一方で、上記発泡性樹脂フィルムおよび接着用樹脂フィルムを、各々コイルから巻き出して、引き伸ばしながら、金属板2a、2bのいずれか一方からか、金属板2a、2bの間に同時に積層してもよい。
【0046】
これらの積層後、例えば熱ロールなどにより挟み込んで加熱すれば、図1における金属板2と発泡性樹脂3aとが、接着用樹脂を介して、一体に接着され、素材積層板1が製作できる。この熱ロールの温度は、発泡性樹脂3aの発泡温度よりも低く設定する。なお、これらの接着は、熱によるものと限定されず、例えば、接着用樹脂フィルム4を貼る、あるいは接着用樹脂フィルム4を塗って、発泡性樹脂3aとの間、および接着用樹脂フィルム4と金属板2とを、例えば室温で加圧されることで、互いに接着してもよい。
【0047】
(成形加工)
製造された積層板1や複合板1aは、前記した通り、成形されて、所定の複合成形体(パネル)1b形状とされる。成形加工の方法としては、張出成形、絞り成形、曲げ成形などのプレス成形や曲げ加工を用いることができる。
【0048】
(加熱、発泡)
成形加工によって所定形状とされたパネル1bは、発泡温度まで加熱されることで、発泡性樹脂3aを発泡させ、発泡樹脂3bとされる。なお、積層板1を先ず発泡させ、発泡後の複合板1aを成形加工することにより複合成形体1bを得ても良い。また、発泡前の積層板1を成形加工した後で、加熱して発泡させることにより複合成形体1bを得ても、どちらでも良い。更に、ホットプレスを用いて、積層板1を金型内でプレス成形と加熱発泡とを同時に又は連続して行うことにより、複合成形体1bを得ることもできる。
【実施例】
【0049】
図1に示した積層板1を製作し、この積層板1を加熱して発泡性樹脂3aを発泡させ、図2に示した、心材発泡樹脂3bを有する複合板(平板)1aを製作した。この際、アルミニウム合金板2a、2bの板厚、心材発泡樹脂3bの発泡倍率、厚み、ヤング率の諸特性を種々変えて、製作した複合板1aの曲げ剛性および曲げ強度を調査した。これらの条件と調査結果とを各々図4〜15に示す。
【0050】
複合板1a製作条件:
1.金属板2a、2bには、アルミニウム合金板はAA1050合金のO材、AA3004合金のO材、AA5182合金のO材を用いた。また、金属板2a、2bが鋼板の場合には通常の軟鋼板を用いた。
2.接着用樹脂4a、4bは、各例とも共通して、融点:140℃、厚み0.05mmのポリオレフィン系のホットメルト接着樹脂を用いた。
3.心材発泡性樹脂3aは、各例とも共通して、融点140℃のポリオレフィンをベース樹脂とし、これに熱分解温度が170〜180℃の発泡剤を混錬して、厚みを種々変えたシートに押し出したものを用いた。このポリオレフィン系心材発泡性樹脂3aはは、未発泡状態での20℃におけるヤング率が780MPaである。
4.積層板1は、各例とも共通して、長さ(L方向):600mm、幅(LT方向):1100mmとした四角の平面形状として製作し、幅(LT方向)20mm、長さ(L方向)120mmの短冊状試験片とした。
5.この際、金属板2a、2bの板厚、心材発泡樹脂3bの発泡倍率、心材発泡樹脂3bの厚み、心材発泡樹脂3bのヤング率は、後述する通り種々変えた。
6.心材樹脂3aの発泡は、各例とも共通して、積層板1を175℃×6分間加熱して放冷する、各例とも同じ条件とした。
【0051】
ヤング率測定:
複合板1aの心材発泡樹脂3bのヤング率は、JISK7113法に準じた引張試験機により測定される、張力−歪み曲線における、引張応力とこれに対応するひずみの比である、常温での引張弾性率として求めた。具体的には、各複合板1aから心材発泡樹脂3bのみを抽出して(金属板を取り除いて)、JISK7113法に規定される1号試験片形状に加工し、引張試験を行った。これによって求めた張力−歪み曲線におけるΔσとΔεとから、ヤング率=引張弾性率(E:kgf/mm2 )=Δσ/Δεの式を計算して求めた。ここで、Δσ:張力−歪み曲線における、直線上の2点間の元の断面積による応力の差、Δε:張力−歪み曲線における、同じ2点間の歪みの差である。但し、ここで、張力−歪み曲線に直線部分が無い場合には、張力−歪み曲線の変形開始点における接線の傾斜(勾配)を引張弾性率として求めた。
【0052】
曲げ剛性および曲げ強度測定:
複合板1aの曲げ剛性および曲げ強度は、複合板1aの3点曲げ試験(L方向)を行い、測定した荷重−変位曲線から、曲線の立ち上がり角度が最大となる角度(最大角度)が最大曲げ剛性、荷重最大値を曲げ強度として求めた。
曲げ試験機としては、島津製作所の島津オートグラフAG−50KNGを使用し、治具のローラに対して垂直になるように専用の治具を用いて複合板試験片をセットした。これらの専用治具は、島津オートグラフ専用3点曲げ治具(ASTM−E399準拠)である。複合板1a試験片の長さは120mm、幅は20mm、荷重点は試験片の長さ方向中心位置、支点間距離は100mmとした。負荷速度は2mm/min、フルスケール荷重0.5kN、フルスケール変位10mmとした。
【0053】
発泡倍率と曲げ剛性:
図4、5に、心材発泡樹脂3bの発泡倍率(縦軸)および表面の金属板2a、2bの板厚(横軸:mm)との関係において、未発泡状態の心材樹脂3aの厚みを変化させた場合の、複合板1bの曲げ剛性が最大となる発泡倍率を示す。図4は、前記金属板としてAA1050アルミニウム合金板(O材)、図5は前記金属板として軟鋼板を用いている。
【0054】
図4、5において、発泡後の心材発泡樹脂3bの発泡倍率(縦軸)は2〜15倍の範囲で変化させ、金属板の板厚(横軸)は0.05〜0.30mmの範囲で変化させた。また、心材発泡樹脂は、発泡前の厚みが、図4、5において図中に記載している通り、0.5〜5.0mmの範囲(丸印: 0.5mm、三角印: 1.0mm、四角印: 2.0mm、菱形印: 5.0mm)のものを用いている。
【0055】
図4において、例えば、横軸のアルミニウム合金板の板厚が最小の0.05mmの場合には、心材発泡樹脂の発泡前の厚さが丸印: 0.5mmの場合、縦軸の心材発泡樹脂の発泡倍率が20倍で曲げ剛性が最大となる。また、心材発泡樹脂の発泡前の厚さが菱形印: 5mmの場合、心材発泡樹脂の発泡倍率が5倍で曲げ剛性が最大となる。一方、アルミニウム合金板の板厚が最大の0.3mmの場合には、心材発泡樹脂の発泡前の厚さが丸印: 0.5mmの場合に、心材発泡樹脂の発泡倍率が5倍で曲げ剛性が最大となる。また、心材発泡樹脂の発泡前の厚さが菱形印: 5mmの場合、心材発泡樹脂の発泡倍率が2倍で曲げ剛性が最大となる。
【0056】
図4では、この他の例も含めて、横軸のアルミニウム合金板の板厚が最小の0.05mmから、最大の0.30mmの範囲では(心材発泡樹脂の発泡前の厚さ0.5〜5mmの範囲で)、縦軸の心材発泡樹脂の発泡倍率が2〜20倍の範囲で、複合板1bの所定の曲げ剛性が得られることが分かる。
【0057】
図5において、例えば、横軸の鋼板の板厚が最小の0.05mmの場合には、心材発泡樹脂の発泡前の厚さが丸印: 0.5mmの時、縦軸の心材発泡樹脂の発泡倍率が8倍で曲げ剛性が最大となる。また、心材発泡樹脂の発泡前の厚さが菱形印: 5mmの場合、心材発泡樹脂の発泡倍率が3倍で曲げ剛性が最大となる。一方、鋼板の板厚が最大の0.30mmの場合には、心材発泡樹脂の発泡前の厚さが丸印: 0.5mmの時、心材発泡樹脂の発泡倍率が3倍で曲げ剛性が最大となる。また、心材発泡樹脂の発泡前の厚さが菱形印: 5mmの場合に、心材発泡樹脂の発泡倍率が2倍で曲げ剛性が最大となる。
【0058】
図5では、この他の例も、横軸の鋼板の板厚が最小の0.05mmから、最大の0.30mmの範囲では(心材発泡樹脂の発泡前の厚さ0.5〜5mmの範囲で)、縦軸の心材発泡樹脂の発泡倍率が2〜8倍の範囲で、複合板1bの所定の曲げ剛性が得られることが分かる。
【0059】
これら図4、5から、金属板がアルミニウム合金板と鋼板とで違っても、発泡倍率と曲げ剛性との相関関係はほぼ同じであることが分かる。即ち、横軸の金属板の板厚が最小の0.05mmから、最大の0.30mmの範囲では(心材発泡樹脂の発泡前の厚さ0.5〜5mmの範囲で)、縦軸の心材発泡樹脂の発泡倍率が2〜20倍の範囲で複合板1bの所定の曲げ剛性が得られることが分かる。
【0060】
発泡倍率と曲げ強度:
図6、7、8に、アルミニウム合金板の種類を変えた場合の、複合板1bの、曲げ強度が最大となる発泡倍率を示す。図6、7、8は、心材発泡樹脂3bの発泡倍率(縦軸)および表面の金属板2a、2bの板厚(横軸:mm)との関係において、心材発泡樹脂3bの厚みを種々変えた場合の、曲げ強度が最大となる発泡倍率を示す。図6は、金属板としてAA1050アルミニウム合金板(O材)、図7はAA3004アルミニウム合金板(O材)、図7はAA5182アルミニウム合金板(O材)を用いている。
【0061】
図6、7、8において、心材発泡樹脂の発泡倍率(縦軸)は2〜20倍の範囲で変化させ、金属板の板厚(横軸)は0.05〜0.30mmの範囲で変化させた。心材発泡樹脂の発泡前の厚さは、図6、7、8の図中に記載する通り、0.5〜5.0mmの範囲(丸印: 0.5mm、三角印: 1.0mm、四角印: 2.0mm、菱形印: 5.0mm)で変化させた。
【0062】
図6において、例えば、横軸のアルミニウム合金板の板厚が最小の0.05mmの場合には、心材発泡樹脂の発泡前の厚さが菱形印: 5.0mmの時、縦軸の心材発泡樹脂の発泡倍率が20倍で曲げ強度が最大となる。また、心材発泡樹脂の発泡前の厚さが丸印: 0.5mmの時、心材発泡樹脂の発泡倍率が5倍で曲げ強度が最大となる。一方、アルミニウム合金板の板厚が最大の0.30mmの場合には、心材発泡樹脂の発泡前の厚さが菱形印: 5.0mmの時、心材発泡樹脂の発泡倍率が7倍で曲げ強度が最大となる。また、心材発泡樹脂の発泡前の厚さが丸印: 0.5mmの時、心材発泡樹脂の発泡倍率が略4倍で曲げ強度が最大となる。
【0063】
図6では、この他の例も、横軸のアルミニウム合金板の板厚が最小の0.05mmから、最大の0.30mmの範囲では(心材発泡樹脂の発泡前の厚さ0.5〜5mmの範囲で)、縦軸の心材発泡樹脂の発泡倍率が略4〜20倍の範囲で、複合板1bの所定の曲げ強度が得られることが分かる。
【0064】
そして、これらの傾向は、程度の差はあるが、図7、8でも同様である。したがって、これら図6、7、8から、横軸のアルミニウム合金板の板厚が最小の0.05mmから、最大の0.30mmの範囲では、心材発泡樹脂の発泡前の厚さ0.5〜5mmの範囲で、また、縦軸の心材発泡樹脂の発泡倍率が2〜20倍の範囲で、複合板1bの所定の曲げ強度が得られることが分かる。
【0065】
発泡樹脂厚みと曲げ剛性:
図9、10に、心材発泡樹脂3bの発泡後の厚み(縦軸)および表面の金属板2a、2bの板厚(横軸:mm)との関係において、曲げ剛性が最大となる心材発泡樹脂3bの発泡後の厚みを示す。図9は、金属板としてAA1050アルミニウム合金板(O材)、図10は金属板として軟鋼板を用いている。
【0066】
図9、10において、心材発泡樹脂3bの発泡後の厚み(縦軸)は、未発泡状態の発泡性樹脂の厚さ0.5〜5.0mmのものを2倍から20倍発泡させた結果として、1.0〜40mmの範囲で変化させた。また、金属板の板厚(横軸)は0.05〜0.30mmの範囲で変化させた。心材発泡樹脂は、発泡前の厚さが0.5〜5.0mmの範囲(丸印: 0.5mm、三角印: 1.0mm、四角印: 2.0mm、菱形印: 5.0mm)のものを用いている。
【0067】
図9において、例えば、横軸のアルミニウム合金板の板厚が最小の0.05mmの場合には、心材発泡樹脂の発泡前の厚さが菱形印:5mmで、心材発泡樹脂の発泡後の厚み(縦軸)が40mmで、曲げ剛性が最大となる。また、心材発泡樹脂の発泡前の厚さが丸印: 0.5mmの時、心材発泡樹脂の発泡後の厚み(縦軸)が10mmで、曲げ剛性が最大となる。一方、アルミニウム合金板の板厚が最大の0.30mmの場合には、心材発泡樹脂の発泡前の厚さが菱形印: 5mmで、心材発泡樹脂の発泡後の厚み(縦軸)が10mmで、曲げ剛性が最大となる。また、心材発泡樹脂の発泡前の厚さが丸印: 0.5mmの時、心材発泡樹脂の発泡後の厚み(縦軸)が4mmで、曲げ剛性が最大となる。図9では、この他の例も、曲げ剛性が最大となる発泡樹脂厚みが、この範囲に含まれる。
【0068】
図10において、例えば、横軸の鋼板の板厚が最小の0.05mmの場合には、心材発泡樹脂の発泡前の厚さが菱形印:5mmの時、心材発泡樹脂の発泡後の厚み(縦軸)が15mmで、曲げ剛性が最大となる。また、心材発泡樹脂の発泡前の厚さが丸印: 0.5mmの時、心材発泡樹脂の発泡後の厚み(縦軸)が4mmで、曲げ剛性が最大となる。一方、鋼板の板厚が0.15mmの場合には、心材発泡樹脂の発泡前の厚さが菱形印: 5mmの時、心材発泡樹脂の発泡後の厚み(縦軸)が10mmで、曲げ剛性が最大となる。また、鋼板の板厚が最大の0.3mmの場合には、心材発泡樹脂の発泡前の厚さが丸印: 0.5mmで、心材発泡樹脂の発泡後の厚み(縦軸)が1mmで、曲げ剛性が最大となる。図10では、この他の例も、曲げ剛性が最大となる発泡樹脂厚みが、この範囲に含まれる。
【0069】
これら図9、10から、金属板がアルミニウム合金板と鋼板とで違っても、心材発泡樹脂の発泡後の厚みと曲げ剛性との相関関係はほぼ同じであることが分かる。即ち、図9、10から、横軸の金属板の板厚が最小の0.05mmから、最大の0.30mmの範囲では、心材発泡樹脂の発泡前の厚さ0.5〜5mmの範囲で、また、縦軸の心材発泡樹脂の厚さが1〜40mmの範囲で、所定の曲げ剛性が得られることが分かる。
【0070】
発泡樹脂ヤング率と曲げ強度:
図11、12、13に、心材発泡樹脂3bの発泡後のヤング率(縦軸:MPa)および表面の金属板2a、2bの板厚(横軸:mm)との関係において、心材発泡樹脂3bの厚みを種々変えた場合の、曲げ強度が最大となるヤング率を示す。図11は、金属板としてAA1050アルミニウム合金板(O材)、図12はAA3004アルミニウム合金板(O材)、図13はAA5182アルミニウム合金板(O材)を用いている。
【0071】
図11、12、13において、心材発泡樹脂の発泡後のヤング率(縦軸)は0.2〜85MPaの範囲で変化させ、金属板の板厚(横軸)は0.05〜0.30mmの範囲で変化させた。心材発泡樹脂は、発泡前の厚さが、図11、12、13の図中に記載する通り、0.5〜5.0mmの範囲(丸印: 0.5mm、三角印: 1.0mm、四角印: 2.0mm、菱形印: 5.0mm)のものを用いている。ここで、上記発泡後のヤング率は、心材発泡樹脂としては、ポリオレフィン系の未発泡状態発泡性樹脂(未発泡状態での20℃におけるヤング率が780MPaのもの)を2〜20倍発泡させて測定した結果を示している。
【0072】
図11では、例えば、横軸のアルミニウム合金板の板厚が最小の0.05mmの場合には、心材発泡樹脂の発泡前の厚さが菱形印: 5.0mmの時、縦軸の心材発泡樹脂の発泡後のヤング率が0.2MPa程度で曲げ強度が最大となる。また、心材発泡樹脂の発泡前の厚さが丸印: 0.5mmの時、心材発泡樹脂の発泡後のヤング率が9.5MPa程度で曲げ強度が最大となる。一方、アルミニウム合金板の板厚が最大の0.30mmの場合には、心材発泡樹脂の発泡前の厚さが菱形印: 5.0mmの時、心材発泡樹脂の発泡後のヤング率が3〜4MPaで曲げ強度が最大となる。また、心材発泡樹脂の発泡前の厚さが丸印: 0.5mmの時、心材発泡樹脂の発泡後のヤング率が20〜30MPaで曲げ強度が最大となる。図11では、この他の例も、曲げ強度が最大となる発泡樹脂ヤング率が、この範囲に含まれる。
【0073】
これらの傾向は、程度の差はあるが、図12、13でも同様である。したがって、これら図11、12、13から、横軸のアルミニウム合金板の板厚が最小の0.05mmから、最大の0.30mmの範囲では、心材発泡樹脂の発泡前の厚さ0.5〜5mmの範囲で、また、縦軸の心材発泡樹脂の発泡後のヤング率が0.2〜85MPaの範囲で、最大の曲げ強度が得られることが分かる。したがって、心材発泡樹脂の発泡後のヤング率の下限値0.2MPaの意味が曲げ強度の点から裏付けられる。
【0074】
発泡樹脂ヤング率と曲げ剛性:
図14、15に、心材発泡樹脂3bの発泡後のヤング率(縦軸:MPa)および表面の金属板2a、2bの板厚(横軸:mm)との関係において、心材発泡樹脂3bの厚みを種々変えた場合の、曲げ剛性が最大となるヤング率を示す。図14は、金属板としてAA1050アルミニウム合金板(O材)、図15は金属板として軟鋼板を用いている。
【0075】
図14、15において、心材発泡樹脂の発泡後のヤング率(縦軸)は40弱〜500弱MPaの範囲で変化させ、金属板の板厚(横軸)は0.05〜0.30mmの範囲で変化させた。心材発泡樹脂は、発泡前の厚さが、図14、15の図中に記載する通り、0.5〜5.0mmの範囲(丸印: 0.5mm、三角印: 1.0mm、四角印: 2.0mm、菱形印: 5.0mm)のものを用いている。ここで、上記発泡後のヤング率は、心材発泡樹脂としては、ポリオレフィン系の未発泡状態発泡性樹脂(未発泡状態での20℃におけるヤング率が780MPaのもの)を2〜20倍発泡させて測定した結果を示している。
【0076】
図14では、例えば、横軸のアルミニウム合金板の板厚が最小の0.05mmの場合には、心材発泡樹脂の発泡前の厚さが菱形印: 5.0mmの時、縦軸の心材発泡樹脂の発泡後のヤング率が90〜100MPa程度で曲げ剛性が最大となる。また、心材発泡樹脂の発泡前の厚さが丸印: 0.5mmの時、心材発泡樹脂の発泡後のヤング率が40MPa弱程度で曲げ剛性が最大となる。一方、アルミニウム合金板の板厚が最大の0.30mmの場合には、心材発泡樹脂の発泡前の厚さが菱形印: 5.0mmの時、心材発泡樹脂の発泡後のヤング率が470MPa程度で曲げ剛性が最大となる。また、心材発泡樹脂の発泡前の厚さが丸印: 0.5mmの時、心材発泡樹脂の発泡後のヤング率が90〜100MPa程度で曲げ強度が最大となる。図14では、この他の例も、曲げ剛性が最大となる発泡樹脂ヤング率が、この範囲に含まれる。
【0077】
これらの傾向は、程度の差はあるが、図14のアルミニウム合金板の範囲に含まれる形で、図15の鋼板の場合でも同様である。したがって、これら図14、15から、横軸の金属板の板厚が最小の0.05mmから、最大の0.30mmの範囲では、心材発泡樹脂の発泡前の厚さ0.5〜5mmの範囲で、また、縦軸の心材発泡樹脂の発泡後のヤング率が40弱〜470MPaの範囲で、最大の曲げ剛性が得られることが分かる。したがって、心材発泡樹脂の発泡後のヤング率の上限値470MPaの意味が曲げ剛性の点から裏付けられる。
【0078】
したがって、これらの結果から、曲げ剛性および曲げ強度が最大となる、金属板の板厚範囲0.05〜0.3mm、心材発泡樹脂の発泡後における発泡倍率2〜20倍、厚み1〜100mm、ヤング率0.2〜470MPaの範囲の臨界的な意義が裏付けられる。
【産業上の利用可能性】
【0079】
以上のように、本発明は、アルミニウム合金板や鋼板などの金属板単体に比べて発泡樹脂層の厚さを増大させ、金属板の板厚を相対的に薄くしても、前記した自動車車体パネルなどの比較的大きな面積を有するパネルでも曲げ剛性および曲げ強度が優れた複合板および複合板を成形加工した複合成形体を提供できる。したがって、本発明は、フード、ドアなどのアウタパネルやインナパネル、ルーフパネル、アンダーカバーパネル、あるいは、デッキボード、バルクヘッドなどの、比較的大きな面積を有する自動車車体用パネルに好適である。
【図面の簡単な説明】
【0080】
【図1】発泡前の積層板の一実施形態を示す斜視図である。
【図2】図1の積層板樹脂を発泡させた本発明複合板を示す斜視図である。
【図3】図1の積層板樹脂を発泡させた本発明複合成形体を示す斜視図である。
【図4】実施例における樹脂発泡倍率と曲げ剛性との関係を示す説明図である。
【図5】実施例における樹脂発泡倍率と曲げ剛性との関係を示す説明図である。
【図6】実施例における樹脂発泡倍率と曲げ強度との関係を示す説明図である。
【図7】実施例における樹脂発泡倍率と曲げ強度との関係を示す説明図である。
【図8】実施例における樹脂発泡倍率と曲げ強度との関係を示す説明図である。
【図9】実施例における発泡樹脂厚みと曲げ剛性との関係を示す説明図である。
【図10】実施例における発泡樹脂厚みと曲げ剛性との関係を示す説明図である。
【図11】実施例における発泡樹脂ヤング率と曲げ強度との関係を示す説明図である。
【図12】実施例における発泡樹脂ヤング率と曲げ強度との関係を示す説明図である。
【図13】実施例における発泡樹脂ヤング率と曲げ強度との関係を示す説明図である。
【図14】実施例における発泡樹脂ヤング率と曲げ剛性との関係を示す説明図である。
【図15】実施例における発泡樹脂ヤング率と曲げ剛性との関係を示す説明図である。
【符号の説明】
【0081】
1:積層板、1a:複合板、1b:複合成形体、2:アルミニウム合金板、3a:発泡性樹脂フィルム、3b:発泡樹脂、4:接着用樹脂フィルム

【特許請求の範囲】
【請求項1】
心材発泡樹脂の両面に金属板が接合され、心材発泡樹脂が発泡された複合板であって、前記金属板の板厚が0.05〜0.3mmであり、前記心材発泡樹脂の発泡後における特性として、発泡倍率が2〜20倍、厚みが1〜100mm、ヤング率が0.2〜470MPaであることを特徴とする複合板。
【請求項2】
前記複合板の心材発泡樹脂の発泡後における前記発泡倍率が2〜10倍、前記厚みが1〜40mmであることを特徴とする請求項1に記載の複合板。
【請求項3】
前記複合板の心材発泡樹脂がポリオレフィン系樹脂であることを特徴とする請求項1または2に記載の複合板。
【請求項4】
請求項1ないし3に記載の複合板を成形加工した複合成形体。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2009−90522(P2009−90522A)
【公開日】平成21年4月30日(2009.4.30)
【国際特許分類】
【出願番号】特願2007−262574(P2007−262574)
【出願日】平成19年10月5日(2007.10.5)
【出願人】(000001199)株式会社神戸製鋼所 (5,860)
【Fターム(参考)】