説明

試料を調製するためのシステム及び方法

検体試験のための試料を調製するためのシステム及び方法。該試料調製システムは、自立型容器を含むことができる。該方法は、ソース及び希釈剤を含む液体組成物を提供する工程と、該液体組成物を自立型容器により画定されるリザーバに配置する工程と、を含む。該方法は、該液体組成物をろ過して対象の検体を含むろ液を形成する工程と、該試料調製システムからろ液の少なくとも一部分を取り出して試料を形成する工程と、該対象の検体について該試料を分析する工程と、を更に含むことができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、試料調製システム及び方法、特に検体試験のための試料調製システム及び方法に関する。
【背景技術】
【0002】
様々な食料及び非食料源の微生物(例えば、バクテリア、ウイルス、菌類、胞子)並びに/又はその他の検体(例えば、毒素)を分析することは、公衆衛生にとって重要になり得る。一般住民によって栽培、購入、消費される食料は、それらが位置する場所で、環境の機能として繁茂又は成長することができる微生物、若しくはその他の検体を含む、或いはそれらに感染する場合がある。この成長は、食品の腐敗又は病原体の増殖を加速する原因となる場合があり、それらは毒素又はアレルゲンを生成するかも知れない。
【0003】
貯蔵寿命のある腐りやすい品は、検体を定性的又は定量的に監視することが特に適切である。分析のために、検体をソースから取り出す、便利かつ効率的な手段は、ヒト及び動物消費のための製品の貯蔵寿命並びに安全性を判断する上で重要である。幾つかの既存のシステムは、食料源から検体を離すように設計されている。試料を10,000〜12,000rpmで均質化するブレンダーが食品医薬品局(Food and Drug Administration)、「等均質試料のサンプリング及び調製(Food Sampling and Preparation of Sample Homogenate)」第1章、FDA細菌学マニュアル(FDA Bacteriological Manual)、第8版、1998年、第1.06項によって推奨されている。米国特許第3,819,158号(シャープ(Sharpe)ら)は、2つのへらを使用する混練型動作により、袋内でソース及び希釈剤を混合する、「消化」機器を記載する。攪拌金属リングの内側に設置される袋を採用する、パルシファイヤー(PULSIFIER)(登録商標)として既知である振動機器が米国特許第6,273,600号(シャープ(Sharpe))に記載される。検体懸濁液を攪拌するためのその他の技術が、米国特許第6,273,600号(シャープ(Sharpe))に記載されている。
【発明の開示】
【発明が解決しようとする課題】
【0004】
幾つかの既存の試料調製方法及び機器は、矛盾しており、望ましくない結果をもたらす場合がある。ブレンダーシステムは、試料を均質化することができるが、多量の微粒子残屑を生成することも可能であるため、容器は、後続使用の前に洗浄し、滅菌する必要がある。消化機器及びパルシファイヤー(Pulsifier)(登録商標)システムは、使い捨てであるが、取り扱いが面倒になりかねないプラスチック袋を使用する。袋は、可撓性であり、従って混合機器から取り外された際、自立型ではない。袋の底から液体組成物(又はろ液)の試料を取り出すことは、袋の側面と接触するピペットが汚染される可能性により、多くの場合困難になり得る。更に、硬い物体を含む試料は、袋に穴を開け、液漏れ及び試料汚染を引き起こす場合がある。更に、幾つかの既存のシステムは、個々の試料を調製するための、及びそれ以降の試験のための手段も必要とする。更に、幾つかの既存のシステムは、面倒であり、時間及び費用がかかり、かつ試料間で大規模な洗浄及び滅菌を必要とする。
【課題を解決するための手段】
【0005】
本発明の幾つかの実施形態は、検体試験のための試料を調製するための方法を提供する。本方法は、ソース及び希釈剤を含む液体組成物を提供する工程と、自立型容器を含む試料調製システムを提供する工程と、を含むことができる。本方法は、液体組成物を自立型容器により画定されるリザーバに配置する工程と、該液体組成物をろ過して対象の検体を含むろ液を形成する工程と、を更に含むことができる。本方法は、試料調製システムからろ液の少なくとも一部分を取り出して試料を形成する工程と、対象の検体について試料を分析する工程と、を更に含むことができる。
【0006】
幾つかの実施形態では、検体試験用の試料を調製するための方法が提供される。本方法は、ソース及び希釈剤を含む液体組成物を提供する工程と、変形可能な自立型ライナーと、該変形可能な自立型ライナーよりも硬質な自立型容器と、蓋と、を含む試料調製システムを提供する工程と、を含むことができる。本方法は、液体組成物を、変形可能な自立型ライナーによって画定されかつ該変形可能な自立型ライナーに蓋を連結するリザーバに配置する工程を更に含むことができる。本方法は、変形可能な自立型ライナーを自立型容器に配置する工程と、液体組成物をろ過して対象の検体を含むろ液を形成する工程と、を更に含むことができる。本方法は、試料調製システムからろ液の少なくとも一部分を取り出して試料を形成する工程と、対象の検体について試料を分析する工程と、を更に含むことができる。
【0007】
本発明のその他の特徴及び態様は、発明を実施するための最良の形態及び添付図面を熟考することによって、明らかになるであろう。
【発明を実施するための最良の形態】
【0008】
本発明のいずれの実施形態が詳細に説明される前に、本発明は、以下の記述で説明される、又は以下の図面に図示される構成の詳細及び構成要素の配置の用途に限定されないことが理解されるべきである。本発明は、他の実施形態が可能であり、かつ様々な方法で実践又は実行することができる。又、本明細書で使用される専門語及び専門用語は、説明目的のためであり、制限と見なされるべきではないことが理解されるべきである。本明細書で使用される「含める」、「含む」、「含有する」、又は「有する」、及びそれらの変化形は、その後に記載されるもの、その同等物、並びに追加物を包含することを意味する。別の方法で指定又は制限されない限り、用語「支持される」、及び「連結される」、並びにその変化形は、幅広く使用され、直接的及び間接的支持並びに連結の両方を包含する。その他の実施形態を利用することができ、本開示の範囲から逸脱することなく、構造的又は論理的な変更を行うことができることが理解されるべきである。更に、「前側」、「背側」、「上部」、「下部」、等のような用語は、要素の互いの関係を記載するためにのみ使用され、装置の特定の配向を述べる、若しくは装置に必要である又は要求される配向を指示すること又は暗示すること、或いは本明細書に記載される本発明が、使用中にどのように使用される、搭載される、表示される、又は設置されるかを特定すること、を決して意味しない。
【0009】
本発明は、一般に試料を調製するためのシステム及び方法を対象とする。試料は、様々な検体の存在又は不在を更に分析することができる。
【0010】
用語「ソース」は、一般に、検体を試験することが必要とされる食料又は非食料を指すために使用される。ソースは、固体、液体、半固体、ゼラチン状物質、及びそれらの組み合わせであってもよい。ソースのすべて又は一部分は、試料調製システム及び方法で使用することができる。ソースの一部分が使用される場合、これは、ソースの「試料」と称される場合があってもよい。しかしながら、用語「試料」は、一般に、更なる分析(例えば、検体の検出)のために試料調製システムから抽出される少量の物質を指すために本明細書で使用される。
【0011】
用語「食料」は、一般に、固体、液体、又は半固体の食用組成物を指すために使用される。食料の例には、肉、鶏肉、卵、魚、魚介類、野菜、果物、加工食品(例えば、スープ、ソース、ペースト)、グレイン製品(例えば、小麦粉、穀物、パン)、缶詰、チーズ、牛乳、その他の乳製品(例えば、チーズ、ヨーグルト、サワークリーム)、油脂、油、デザート、香辛料、薬味、パスタ、飲料、水、その他の好適な食材、及びそれらの組み合わせが挙げられるが、それらに限定されない。
【0012】
用語「非食料」は、一般に、「食料」という定義に含まれない対象ソースを指すために使用される。特に、非食料源には、一般に食用ではない物質であり、1つ以上の細胞可溶化物、全血又はその一部分(例えば血清)、その他の体液(例えば、唾液、汗、皮脂、尿)、糞便、細胞、組織、臓器、植物性物質、木材、土、堆積物、動物用飼料、薬剤、化粧品、その他の好適な非食用物質、及びそれらの組み合わせを挙げることができるが、それらに限定されない。
【0013】
用語「検体」は、一般に、検出される物質(例えば、ラボ試験によって)を指すために使用される。ソースは、特定の検体の存在又は不在を試験することができる。該検体は、ソース内(例えば、内部)、又はソースの外部(例えば、外側表面上)に存在することができる。検体の例には、微生物、生体分子、化学物質(例えば、殺菌剤、抗生物質)、金属イオン(例えば、水銀イオン、重金属イオン)、金属イオン含有錯体(例えば、金属イオン及び有機配位子を含む錯体)、及びそれらの組み合わせを挙げることができるが、それらに限定されない。検体を同定及び/又は定量化するために、微生物学的アッセイ、生化学的アッセイ(例えば、イムノアッセイ)、又はその組み合わせを含むが、それらに限定されない、様々な試験方法を使用することができる。使用することができる試験方法の具体的な例には、滴定、熱分析、分光法(例えば、質量分析、核磁気共鳴(NMR)分光法、ラマン分光法、赤外分光法、X線分光法、減衰全反射分光法、フーリエ変換分光法、ガンマ線分光法等)、分光測光法(例えば、吸光、蛍光、発光等)、クロマトグラフィー(例えば、ガスクロマトグラフィー、液体クロマトグラフィー、イオン交換クロマトグラフィー、親和性クロマトグラフィー等)、電気化学分析、成長(例えば、平板培養(例えば、寒天等の成長培地上))、ポリメラーゼ鎖反応(PCR)等の遺伝子技術、又はペトリフィルム(Petrifilm)(商標)プレート(Petrifilm Plate)を使用して便利に行うことができ、ペトリフィルム(Petrifilm)(商標)プレートリーダー(Petrifilm Plate Reader)(ミネソタ州セントポール(St. Paul, MN)の3M社)を使用して定量化することができるもの等、当該技術分野において既知のその他の技術、その他の好適な検体試験方法、又はそれらの組み合わせが挙げられるが、それらに限定されない。
【0014】
用語「微生物」は、一般に、バクテリア(例えば、移動性又は増殖性)、ウイルス(例えば、DNAウイルス、RNAウイルス、外皮、無外皮、等)、胞子、藻類、菌類(例えば、酵母)、プリオン、及び原生生物の1つ以上が挙げられるが、制限はない、微小な生物のいずれをも指すために使用される。場合によっては、特に関心のある微生物は病原性のものであり、用語「病原体」は、本明細書において任意の病原微生物を指すために使用される。病原体の例には、大腸菌O157:H7、緑膿菌、サルモネラ菌、リステリア・モノサイトゲネス、クロストリジウム・ボツリナム(botulinun)、黄色ブドウ球菌、カンピロバクター・ジェジュニ、腸炎エルシニア、ビブリオ・バルニフィカス、及びエンテロバクター・サカザキを挙げることができるが、それらに限定されない。微生物の成長に影響する可能性がある環境要因には、pH、湿分含量、酸化−還元電位、抗菌剤化合物、及び生物学的構造又は障壁を挙げることができる。
【0015】
用語「生体分子」は、一般に、生物によって生じる、又は形成される、分子、若しくはその誘導体を指すために使用される。例えば、生体分子には、アミノ酸、核酸、ポリペプチド、タンパク質、ポリヌクレオチド、脂質、リン脂質、糖、多糖類、及びそれらの組み合わせのうちの少なくとも1つを含むことができるが、それらに限定されない。生体分子の具体的な例には、代謝産物、アレルゲン(例えば、花粉、チリダニ、菌、フケ、タンパク質)、毒素、RNA(例えば、mRNA、全RNA、tRNA等)、DNA(例えば、プラスミドDNA、植物DNA等)、タグ付きタンパク質、抗体、抗原、及びそれらの組み合わせを挙げることができるが、それらに限定されない。
【0016】
用語「可溶物」及び「不溶物」は、一般に、任意の媒体において、特定の条件下で比較的可溶性又は不溶性の物質を指すために使用される。具体的には、任意の一連の条件下で、「可溶物」は、溶液に入り込み、システムの溶媒(例えば、希釈剤)に溶解することができる物質である。「不溶物」は、任意の一連の条件下で、溶液に入り込まず、システムの溶媒に溶解しない物質である。ソースは、可溶物(例えば、対象の検体を含む)及び不溶物(例えば、細胞残屑)を含むことができる。不溶物は、微粒子又は残屑と称される場合があり、ソース物質自体の一部分(即ち、ソースの内側部分又は外側部分(例えば、外側表面)から)、若しくは攪拌プロセスから生じるその他のソース残基又は残屑を含むことができる。
【0017】
用語「攪拌する」及びその派生語は、一般に、例えば、該液体組成物の内容物を混合する又は混和するために、液体組成物に動作を与えるプロセスを記述するために使用される。手動振盪、機械的振盪、超音波振動、ボルテックス攪拌、手動攪拌、機械的攪拌(例えば、機械プロペラ、電磁攪拌棒、又はボールベアリング等の他の攪拌補助手段による)、手動叩解、機械的叩解、混合、混練、及びそれらの組み合わせを含むが、それらに限定されない、様々な攪拌方法を使用することができる。
【0018】
用語「ろ過」は、一般に、可溶物及び溶媒(例えば、希釈剤)を不溶物から分離するプロセスを記述するために使用される。液体組成物がフィルタを通過する方法、沈殿して吸引又は傾しゃ法により移す方法、その他の好適なろ過方法、及びそれらの組み合わせを含むが、それらに限定されない、様々なろ過方法を使用することができる。「沈殿」は、液体組成物中の不溶物を沈降させることを指すために使用される。沈殿は、重力又は遠心分離によって生じてもよい。次いで、不溶物から可溶物及び溶媒を吸引する工程、可溶物又は溶媒を傾しゃ法により移す工程、若しくはその組み合わせによって不溶物を可溶物及び溶媒から分離することができる。
【0019】
「フィルタ」は、一般に、液体組成物中の不溶物から可溶物及び溶媒を分離するために使用される機器を記述するために使用される。フィルタの例には、織布メッシュ(例えば、ワイヤーメッシュ、布メッシュ、プラスチックメッシュ等)、ふるい、剥離フィルム又は膜(例えば、レーザー切除フィルム又は膜、切除フィルム又は膜等)、孔空きフィルム又は膜、ガラス綿、フリット、ろ紙等、及びそれらの組み合わせを挙げることができるが、それらに限定されない。
【0020】
用語「ろ液」は、一般に、液体組成物から不溶物を除去後に残る液体を記述するために使用される。ろ過には幅広い方法が挙げられるため、用語「ろ液」は、不溶物を沈降させることから生じる上澄みを指すために使用することもできる。
【0021】
図1は、本発明の一実施形態による試料調製方法10を図示する。図1に示されるように、試料調製方法10は、ソース12を取得することから開始することができる。希釈剤13は、ソース12のすべて又は一部分と組み合わせ、攪拌し、希釈剤13中に溶解した、分散した、懸濁した、又は乳化したソース12を含む液体組成物14を形成することができる。このように、一般に、液体組成物14は混合物であり、溶液、乳濁液、分散液、懸濁液、又はそれらの組み合わせであってもよい。
【0022】
ソース12は、希釈剤13と組み合わせられる際、ソース12の幾つかの部分(例えば、対象の検体)が希釈剤13に溶解する一方、ソース12の幾つかの部分が希釈剤13に懸濁する、分散する、又は乳化するように、可溶物及び不溶物15を含むことができる。次いで液体組成物14は、ろ過されろ液16を形成する。次いで、更なる分析のためにろ液16の試料18を取り出すことができる。
【0023】
希釈剤13は、一般に液体であり、幾つかの実施形態では、滅菌液である。幾つかの実施形態では、希釈剤13は、界面活性剤、又は後続の検体試験のために、ソースの分散、溶解、懸濁、又は乳化を支援するその他の好適な添加剤、レオロジー剤、抗微生物中和剤(例えば、防腐剤又はその他の抗菌剤を中和するもの)、栄養素(例えば、所望の微生物の選択的成長を促進するもの)、pH緩衝剤、酵素、指標分子(例えばpH又は酸化/還元の指示薬)、又はそれらの組み合わせが含まれるが、それらに限定されない、様々な添加剤を含むことができる。幾つかの実施形態では、希釈剤13は、滅菌水(例えば、滅菌2重蒸留水(ddHO))、ソースを選択的に溶解する、分散する、懸濁する、又は乳化する1つ以上の有機溶媒、水溶性有機溶媒、又はそれらの組み合わせを含む。幾つかの実施形態では、希釈剤13は、滅菌緩衝溶液(例えば、テネシー州メンフィス(Memphis TN)にあるエッジ・バイオロジカル(Edge Biological)から入手可能なバターフィールド緩衝剤(Butterfield’s Buffer))である。幾つかの実施形態では、希釈剤13は、希釈剤13が所望の検体(例えば、バクテリア)を選択的又は半選択的に成長するために使用できるように、選択的又は半選択的栄養製剤である。このような実施形態では、希釈剤13は、ある期間、ソース12で培養し所望の検体の成長を促進することができる。
【0024】
幾つかの実施形態では、ソース12は、希釈剤13を含む。例えば、相当量の水又はその他の液体を含む食料源は、追加希釈剤を添加することなく混合することができる。幾つかの実施形態では、ソース12は希釈剤13に完全に溶解してもよく、その結果液体組成物14が最少量の不溶物15を含み、ろ過工程が不要となる。
【0025】
図2は、本発明の一実施形態による試料調製システム100を図示する。図2に示されるように、試料調製システム100は、容器102、ライナー104、蓋106、カラー108、及びキャップ109を含む。幾つかの実施形態では、蒸気、ガンマ線放射、エチレンオキシド、過酸化水素、過酢酸、ヒドロアルコール性溶液、漂白剤、及びそれらの組み合わせ等の滅菌及び消毒手順によって、試料調製システム100の構成要素の1つ以上を滅菌済み又は減菌可能にすることができる。試料調製システム100と同様の特徴を有するシステムは、それぞれの全体が参照として本明細書に組み込まれる、PCT公開第WO98/32539号、米国特許第6,536,687号、及び米国特許第6,588,681号に記載される。
【0026】
本発明の幾つかの実施形態は、複数の試料調製システム100を採用し、試料調製を迅速に行い、生産性/生産高を向上するために、複数の試料調製システム100を平行して採用できるようにする。このような実施形態では、複数の試料調製システム100は、少なくとも部分的に統合して形成されてもよく、又は個別に形成されてもよい。
【0027】
幾つかの実施形態では、図2に示されるように、容器102は、自立型(即ち、自己支持形)であり、底部127及び側壁129を含む。容器102は、高分子材料、金属類(例えば、アルミニウム、ステンレススチール等)、セラミックス、ガラス類、及びそれらの組み合わせを含むが、それらに限定されない、様々な物質から形成することができる。高分子材料の例には、ポリオレフィン類(例えば、ポリエチレン、ポリプロピレン、それらの組み合わせ等)、ポリカーボネート、アクリル樹脂類、ポリスチレン、高密度ポリエチレン(HDPE)、高密度ポリプロピレン、自己支持形容器を形成することができるその他の好適な高分子材料、又はそれらの組み合わせを挙げることができるが、それらに限定されない。容器102は、分析するソースの種類、量、及びサイズにより、半透明(又は更には透明)、又は不透明であってもよく、いずれの好適なサイズであってもよい。例えば、幾つかの実施形態では、容器102の容量は、50mL、100mL、250mL、又はより大きくてもよい。
【0028】
幾つかの実施形態では、図2に示されるように、試料調製システム100は、容器102の中に収容できる形状及び寸法であるライナー104を含む。ライナー104は、使い捨て(例えば、1回限り使用するように作製された)であってもよく、実質的な汚染のリスクがなく、かつ使用の間で大規模な洗浄を必要とすることなく、容器102を再使用できる。
【0029】
図2に示されるように、容器102は、第1のリザーバ120を画定し、ライナー104は、第2のリザーバ122を画定する。ライナー104は、容器102の第1のリザーバ120の中に収容できるような形状及び寸法である。幾つかの実施形態では、ソース112及び希釈剤113を、第1のリザーバ120に添加することができる。幾つかの実施形態では、図2に示されるように、ライナー104が採用され、ソース112及び希釈剤113が第2のリザーバ122内に配置され、ライナー104が第1のリザーバ120内に配置される。第1のリザーバ120に添加されたとしても、第2のリザーバ122に添加されたとしても、液体組成物114を形成するために、ソース112及び希釈剤113を組み合わせることができる。ライナー104又は容器102は、液体組成物114を含む自立型容器としての役目を果たすことができる。
【0030】
最初にソース112を容器102又ライナー104に添加し、続いて希釈剤113を添加してもよく、最初に希釈剤113を添加し、続いてソース112を添加してもよく、又はソース112及び希釈剤113を同時に添加してもよい。或いは、ソース112及び希釈剤113を試料調製システム100に添加する前に、組み合わせてもよい。最初に希釈剤113が容器102又はライナー104に添加される幾つかの実施形態では、ソース112を添加する直前にカバーを取り外せるように、取り外し可能に連結されるカバーで、事前に測定された量の希釈剤113(例えば、滅菌液体希釈剤)を容器102又はライナー104に密封することができる。或いは、幾つかの実施形態では、取り外し可能に連結されるカバーで、事前に測定された量の乾燥粉末媒体(例えば、栄養媒体)を容器102又はライナー104に密封することができる。このような実施形態では、カバーは取り外すことができ、ソース112が添加される前又は添加されると同時に、溶媒(例えば、ddHO)を添加し、希釈剤113を形成することができる。或いは、ソース112が媒体を溶解することができる十分な液体を含有する場合、ソース112を乾燥粉末媒体に添加し、ソース112及び希釈剤113(例えば、ソース112に提供される溶媒に溶解した媒体)を含む液体組成物114を形成することができる。
【0031】
ライナー104は、ポリプロピレン(例えば低密度ポリエチレ(LDPE)、ポリエチレン、及びポリ(メチルペンテン)、ポリアミド(例えば、ナイロン(NYLON)(登録商標))、又はそれらの組み合わせを含むが、それらに限定されないポリオレフィンを含む様々な高分子材料を含むが、それらに限定されない様々な物質から形成することができる。幾つかの実施形態では、ライナー104は、熱成形プロセス等のモールド成形法で形成される。ライナー104は、半透明(又は更には透明)、又は不透明であってもよい。
【0032】
幾つかの実施形態では、図2に図示されるように、ライナー104は、ライナー104を容器102内に配置する前に、ライナー104が倒壊又は変形することなく、ソース112及び希釈剤113をライナー104に装填できるように、自立型(即ち、自己支持形)かつ半硬質である。更に、自己支持形ライナー104は、ソース及び希釈剤の添加、移送、及び/又は試料の取り出しを支援することができる。
【0033】
幾つかの実施形態では、ライナー104は、変形可能でもあり、かつ自己支持形である。用語「変形可能」は、圧力(例えば、正又は負)又は応力によって、元の形状又は状態から変更することができる構造を指すために使用される。変形可能なライナー104を採用する実施形態では、ライナー104に圧力を印加し、元の寸法(即ち、応力がない状態)からサイズを小さくすることができる。該圧力は、液体組成物114(又はそのろ液)をライナー104から取り出すことを助成するために使用することができる。
【0034】
幾つかの実施形態では、図2に示されるように、容器102は、底部127に形成される開口124を含み、ユーザは、該開口を通してライナー104にアクセスし、圧力を印加し、ライナー104を変形することができる。該圧力は、手で直接印加する、又は追加機器によって印加することができ、手動プロセスであっても自動プロセスであってもよい。開口124は、所望の使用用途と一致する形状及び寸法であってよい。ライナー104を採用しない実施形態では、容器102は、開口124を含む必要がない。
【0035】
幾つかの実施形態では、ライナー104は、ライナー104の長手軸と平行な方向に底部126に圧力が印加される際(例えば、容器102の開口124を介して)、ライナー104が長手方向(例えば、底部126というよりは、側壁128の倒壊の効力により)に変形するように、比較的硬質な底部126及び比較的薄く、かつ変形可能な側壁128を含む。或いは、又は更に、底部126を側壁128よりも厚くすることができる。例としてのみで、幾つかの実施形態では、側壁128の厚さは、少なくとも50μm、幾つかの実施形態では、少なくとも100μm、幾つかの実施形態では、少なくとも150μm、及び幾つかの実施形態では、少なくとも200μmである。幾つかの実施形態では、底部126の厚さは、少なくとも225μm、幾つかの実施形態では、275μm、幾つかの実施形態では、少なくとも300μm、及び幾つかの実施形態では、少なくとも350μmである。
【0036】
ライナー104は、ライナー104の変形性を制御することを助長することができ、及び/又はライナー104の内部容量を更に減少することができる、バッフル、プリーツ、波形、シーム、接合部、ガセット、又はそれらの組み合わせの1つ以上を含むことができる。幾つかの実施形態では、ライナー104は、その内側表面上、特に底部126と側壁128との間の内部接合部に、全く溝を含まない。
【0037】
幾つかの実施形態では、ライナー104は、ライナー104の表面形状を分離するために、意図的に変形される。そのような分離された表面形状は、攪拌中に、ソース112を破断することを助長できる。例えば、幾つかの実施形態では、ライナー104の側壁128に異なる表面形状を形成するために、ライナー104の側壁128と容器102との間に、障害物(例えば、比較的硬質な物質)を配置することができる。
【0038】
図2に示されるように、容器102は、容器102内の内容物のレベル(即ち、容量)を示すための表示130を含むことができる。表示130は、液体組成物114の所望の重量比、例えば、ソース112と希釈剤113の重量比が1:100〜1:1を達成するために使用することができる。好適な表示の一実施例は、米国特許第6,588,681号に記載される。或いは、又は更に、ライナー104が表示を含むことができる。容器102及び/又はライナー104上の表示130を使用できるようにするために、容器102及び/又はライナー104を半透明、又は更には透明にし、容器102の側壁129及び/又はライナー104の側壁128を通して液体組成物114を見ることができるようにすることができる。側壁128及び129には、商標、ブランド名等のような、その他の種類のマーキングがあってもよい。
【0039】
図2に図示される実施形態では、蓋106は、ライナー104に取り外し可能に連結され、カラー108は、蓋106を容器102に更にきつく固定するために採用される。例えば、図2では、容器102は、側壁129の外側表面の上端に、容器102の上端にネジで締められるカラー108(容器102上のネジ山131と嵌合できる内部ネジ山133を有する)のための形状及び寸法のネジ山131を含む。蓋106を容器102に固定するためにカラー108を使用する代わりとして、締め付け及び/又は以下に記載されるその他の連結手段を含む、その他の連結手段を採用することができる。幾つかの実施形態では、ライナー104を採用せずに、蓋106を容器102に直接連結することができる。このような実施形態では、カラー108を採用する必要はない。従って、蓋106は、容器102又はライナー104との密封、特に気密密封を形成することができる。幾つかの実施形態では、蓋106及び容器102(又は蓋106及びライナー104)は、一体化して形成される、又は恒久的に互いに連結される。
【0040】
それぞれの構成要素が取り外し可能に互いに連結できるようするために、重力(例えば、1つの構成要素を別の構成要素の上、又はその噛み合う部分に設置することができる)、ネジ山、プレス嵌め嵌合(「摩擦嵌め嵌合」又は「締まり嵌め嵌合」と称される場合もある)、スナップ嵌め嵌合、磁石、その他の好適な取り外し可能な連結手段、及びそれらの組み合わせを含むが、それらに限定されない様々な連結手段を、蓋106とライナー104との間、蓋106と容器102との間、及び/又はカラー108と容器102との間のいずれかに採用することができる。幾つかの実施形態では、ソース112及び希釈剤113を添加後、試料調製システム100を再び開ける必要がなく、その結果容器102、ライナー104、蓋106、及びカラー108を取り外し可能に互いに連結する必要がなく、むしろ恒久的に、又は半恒久的に互いに連結されることができる。該恒久的又は半恒久的連結手段には、接着剤、縫合、留め金、スクリュー、釘、リベット、無頭釘、圧着、溶接(例えば、音波(例えば、超音波)溶接)、いずれの熱接着技術(例えば、連結する構成要素の一方又は両方に熱及び/又は圧力が印加される)、スナップ嵌め嵌合、プレス嵌合、熱融着、その他の好適な恒久的又は半恒久的連結手段、及びそれらの組み合わせを挙げることができるが、それらに限定されない。
【0041】
図2及び3に示されるように、蓋106は、フィルタ134に連結することができるサンプリングポート132、ライナー104が受け入れられる寸法である円筒形部分136、及び円筒形部分136からサンプリングポート132に延在するほぼ円錐形の(例えば、円錐台形)部分138を更に含む。円筒形部分136と円錐形の部分138との間の接合部では、蓋106は、円筒形部分136及び円錐形の部分138から放射状に外側に向かって延在するへり140を更に含む。
【0042】
幾つかの実施形態では、フィルタは、蓋106に直接連結される。幾つかの実施形態では、図2〜3に示されるように、フィルタ134は、フレーム135によって支持されることができ、フレーム135を介して蓋106に連結することができる。フレーム135は、フィルタ134の一部分を形成することができ、フレーム135は、蓋106の一部分であってもよく、又はフレーム135は、フィルタ134及び蓋106の両方に連結される別個の要素であってもよい。フレーム135は、様々なポリマー類、金属類、セラミックス、ガラス類、及びそれらの組み合わせを含むが、それらに限定されない、様々な物質から形成することができる。図2〜3に図示される実施形態では、フィルタ134は、金属メッシュから形成され、フレーム135は、金属フィルタ134に固着されたポリマーから形成される。フレーム135は、以下により詳細に記載されるように、蓋106に連結される。
【0043】
図2及び3に図示される実施形態のフィルタ134並びにフレーム135は、試料調製システム100が組み立てられる際、フィルタ134及びフレーム135がライナー104の第2のリザーバ122(又は容器102の第1のリザーバ120)の中に延在するように、蓋106の下端の下方に延在するような形状及び寸法である。しかしながら、フィルタ134及びフレーム135は、様々な形状及びサイズを呈することができる。幾つかの実施形態では、例えば、フレーム135は、硬質な上部部分(例えば、蓋106に連結される)及び硬質な下部部分を含むことができ、フィルタ134をその間に連結することができ、フィルタ134は、折り畳み可能であってよい。
【0044】
蓋106の円筒形部分136は、円筒形部分136がライナー104の内側表面にスナップ嵌め又はプレス嵌めできるようにする、外側に向かって張り出す複数の突出部142を円周方向に含む。幾つかの実施形態では、ライナー104の内側表面は、外側に向かって張り出す突出部142の代わりに、又は外側に向かって張り出す突出部142に加えて(例えば、それらの噛み合う関係を形成するために)使用される、内側に向かって張り出す突出部を含むことができる。
【0045】
ライナー104は、ライナー104の側壁128から放射状に外側に向かって張り出すへり144を含むことができ、ライナー104は、試料調製システム100が組み立てられる際、蓋106のへり140と容器102の上面146との間に配置され、密封(例えば、密封封止)が形成されるように、ライナー104のへり144が容器102の上面146及び蓋106のへり140との当接関係を形成できる。図2に示されるように、カラー108は、カラー108が容器102に連結される際、カラー108のへり156が、蓋106のへり140を、容器102の上面146に押し込まれる(例えば、より高い一体性密封を形成するために)ライナー104のへり144に押し込むように、内側に張り出すへり156を含む。例としてのみで、試料調製システム100を組み立てるため、及び試料調製システム100の構成要素間の密封を形成するための上記に述べた手段を記載し、図示する。しかしながら当業者は、試料調製システム100の構成要素を組み立てるため、及び試料調製システム100が通常の作業条件下で漏出しないようにする密封(例えば、液密の密封、気密密封、又はそれらの組み合わせ)を形成するための様々なその他の機構を採用できることを理解するであろう。
【0046】
一方、図2及び3に実施形態の蓋106は、ほぼ円錐形又は円錐台形の形状で図示される。蓋106は、円筒形状、長方形又は正方形の断面積を有する管状形状、又は試料調製システム100のその他の構成要素との連結に好適なその他の形状を含むが、それらに限定されない、様々なその他の形状を有することができることが理解されるべきである。同様に、容器102、ライナー104、及びカラー108は、図2に図示される実質的に円筒形状以外の様々な形状を有することができる。更に、蓋106は、試料調製システム100のその他の構成要素を収容できる寸法であってもよい。
【0047】
蓋106は、容器102に関して上記に記載された材料を含む、様々な材料から形成することができる。蓋106は、使用用途により、半透明(又は更には透明)、又は不透明にすることができる。
【0048】
カラー108は、様々な高分子材料、金属材料、及びそれらの組み合わせを含むが、それらに限定されない、様々な材料から形成することができる。例えば、カラー108は、成形プラスチック構成要素、又は機械加工金属(アルミニウム等)構成要素から形成することができる。幾つかの実施形態では、カラー108は、ガラス繊維強化ポリプロピレンを含む成形プラスチック構成要素から形成される。
【0049】
図2に示されるように、蓋106のサンプリングポート132は、サンプリングポート132が蓋106の内側表面153の部分152、及び蓋106の開口部154を画定するように、ほぼ円筒形で管状の形状である。蓋106は、中空であり、試料調製システム100が組み立てられる際、第2のリザーバ122と液体連通して存在する。サンプリングポート132は、円筒形である必要はなく、代わりに、所定の用途に必要ないずれの形状を呈することができる。図2及び3に図示される実施形態では、フィルタ134は、フィルタ134が第2のリザーバ122に加えて、開口部154を有する蓋と液体連通で存在するように、サンプリングポート132に連結される(即ち、フレーム135を介して)。
【0050】
図2に示される実施形態では、キャップ109は、サンプリングポート132の少なくとも一部分を収容するための形状及び寸法である。結果として、蓋106の開口部を閉締するため、及び試料調製システム100を環境から密封するため(例えば、気密密封)に、キャップ109を蓋106のサンプリングポート132に連結することができる。キャップ109は、上記に記載のいずれかの連結手段を使用して、蓋106に連結することができる。キャップ109は、蓋106と一体化して形成してもよく(例えば、押し上げ式スナップ式キャップ)、又はキャップ109は、蓋106と分離していてもよい(例えば、スクリューキャップ)。キャップ109は、容器102に関して上記に列記された材料を含む、様々な材料から形成することができる。
【0051】
幾つかの実施形態では、蓋106は、膜を貫通して、又はフィルムを取り外して蓋106の内部にアクセスできるように、蓋106の内部の少なくとも一部分を環境から分離する、貫通できる膜又は取り外し可能なフィルムを含む。このような実施形態では、キャップ109を採用する必要はない。
【0052】
図3に示されるように、蓋106の内側表面153は、その他の構成要素(例えば、概念が図5〜6に図示され、以下に記載される、追加又は代替フィルタ)を連結することができる、様々な内周縁を含むことができる。内周縁は、縁部に連結を所望するその他の構成要素に応じて、所望する任意の配向を有することができる。幾つかの実施形態では、内周縁は、図3では縁部がほぼ水平になるように、蓋106の中央長手軸とほぼ直交するように向いている。
【0053】
更に、蓋106は、その他の構成要素(例えば、フィルタ)を連結することができる、内側に向かって延在する様々な部材を含むことができる。例えば、図3に示されるように、フィルタ134は、フレーム135によって支持され、蓋106は、上記に記載のいずれの連結手段を含むが、それらに限定されない、様々な連結手段によって、フレーム135を連結することができる、内側に向かって延在する部材155を含む。内側に向かって延在する部材155は、蓋106と一体化して形成することができる。
【0054】
フィルタ134は、液体組成物114を十分にろ過するためのいずれの幾何学的形状であってもよい。幾つかの実施形態では、フィルタ134は、変形可能であり、かつ/又は折り畳み可能(即ち、フィルタ134がそれ自身の重量下で折り重なるように)である。幾つかの実施形態では、フィルタ134は、硬質であり、その形状を保持する(即ち、それ自身の重量下で折り重ならない)。試料調製システム100で使用されるフィルタ134のサイズ及び数、並びにその多孔度は、ソース112中の所望の検体及び不溶物に応じて、変化してもよい。例としてのみで、幾つかの実施形態では、ソース112は、食料を含み、所望の検体は、バクテリアであり、不溶物は、食料粒子又は残屑である。このような実施形態では、例えば、後続の分析のためにバクテリアがフィルタ134を通過できるようにする一方、食料粒子を保持する及び/又は分離するように、フィルタ134を選択することができる。更なる一例として、幾つかの実施形態では、ソース112は溶解したバクテリア細胞培養を含み、所望の検体は、DNA、RNA、タンパク質、又は代謝産物の1つ以上であり、不溶物は細胞残屑である。このような実施形態では、例えば、後続の分析のために、所望のDNA、RNA、タンパク質、又は代謝産物がフィルタ134を通過できるようにする一方、細胞残屑を保持する及び/又は分離するように、フィルタ134を選択することができる。
【0055】
フィルタ134は、抽出及び/又は採取のために、液体組成物114中の所望の検体がフィルタ134を通過できるようにする一方、液体組成物114から粒子を保持するために十分である、様々な孔径を有することができる。幾つかの実施形態では、フィルタ134は、少なくとも5μm、幾つかの実施形態では、少なくとも40μm、幾つかの実施形態では、少なくとも80μm、及び幾つかの実施形態では、少なくとも120μmの平均孔径又はメッシュサイズを有する。幾つかの実施形態では、フィルタ134は、最大でも2000μm、幾つかの実施形態では、最大でも1000μm、幾つかの実施形態では、最大でも500μm、及び幾つかの実施形態では、最大でも200μmの平均孔径又はメッシュサイズを有する。
【0056】
図2及び3に図示される実施形態では、フィルタ134は、蓋106に設置され、一般に蓋106の中央長手軸と一致する。しかしながら、幾つかの実施形態では、フィルタ134は、蓋106の「軸外」の位置に配置される。例えば、開口158は、蓋106のフィルタ134の可能な「軸外」の位置を示すために、図2に点線で示される。代替又は追加のサンプリングポートを、開口158の位置に配置し、そこに連結することができる。フィルタ134は、恒久的に、又は取り外し可能に、一方又は両方の位置に連結することができる。
【0057】
幾つかの実施形態、特にライナー104を採用しない実施形態では、フィルタ134は、代わりに、又は追加として、容器102の側壁129の開口160又は容器102の底部127の開口124(又は容器102の底部127の異なる位置に形成される開口)を通って、試料調製システム100の内部(即ち、容器102の第1のリザーバ120)にアクセスすることができる。このような実施形態では、フィルタ134は、恒久的に又は取り外し可能に、容器102の側壁129又は底部127に連結することができる。別又は追加のサンプリングポートを、開口160及び124の位置に配置し、そこに連結することができる。幾つかの実施形態では、試料調製システム100は、蓋106のサンプリングポート132、蓋106の開口158の位置での追加のサンプリングポート、容器102の側壁129の開口160の位置での追加のサンプリングポート、及び/又は容器102の底部127の開口124の位置での追加のサンプリングポート等のサンプリングポートを2つ以上含むことができる。試料調製システム100のいずれかの位置でのいずれかのサンプリングポートを密封するために、キャップ109又は同様の密閉機器を使用することができる。
【0058】
フィルタ134に関しては異なる位置でも可能であるため、フィルタ134は、試料調製システム100及び特定の使用用途において、その位置に収容されるような形状及び寸法であってよい。フィルタ134のいずれの可能な位置では、所望のろ過の種類、及びフィルタ134が液体組成物114をどのようにろ過するように意図されるかに応じて、フィルタ134は、液体組成物114のレベル165の完全に上方又は完全に下方に配置することができる、又はフィルタ134に一部分を液体組成物114のレベル165の上方に、及び一部分的を下方に配置することができる。例えば、図2に図示される実施形態では、フィルタ134は、サンプリングポート132に連結され、液体組成物114のレベル165がどれだけ高いかに応じて、典型的には、フィルタ134の一部分を液体組成物114のレベル165の上方に、及び一部分を下方に配置するように、サンプリングポート132から試料調製システム100の内部に延在するであろう。
【0059】
フィルタ134は、ライナー104及び液体組成物114の内部と流体連通し、液体組成物114をろ過するように働き、ろ液116を形成する。ろ液116は、フィルタ134の容積内に配置され、近接するサンプリングポート132から抜き取り、及び/又はサンプリングすることができる。複数の位置でフィルタ134を使用する実施形態では、ろ液116は、サンプリングポート、又は上記のいずれかの開口からサンプリングすることができる。
【0060】
フィルタ134は、ポリプロピレン、ポリエチレン、ナイロン、ポリエステル、ポリカーボネート、ポリメタクリル酸メチルなどのアクリル樹脂類、フッ素化ポリマー類(例えば、ポリテトラフルオロエチレン(PTFE))、セルロース類(例えば、酢酸セルロースなどの変性セルロース)、ファイバーグラス類、ポリウレタン類、金属類、及びそれらの組み合わせの1つ以上を含むが、それらに限定されない、様々な物質から形成することができる。幾つかの実施形態では、フィルタ134は、織布基材(substate)、不織布基材素地、成形構造体から形成することができ、他の織布又は繊維材料から構成でき、及び/又は膜質の材料から形成することができる。フィルタ134の表面積は、フィルタ134にひだを付けることによって、又は他の類似の技術によって増すことができる。
【0061】
幾つかの実施形態では、(フィルタ134がどの位置にあるかに関わらず)、フィルタ134は、ソース112の保有部又は保持部として使用されることができる。この概念の一例は、図4に図示され、以下に説明される。
【0062】
上記のように、ライナー104は、使い捨てであってもよい。更に、幾つかの実施形態では、1つ以上の蓋106、キャップ109及びフィルタ134は、使い捨てであってもよい。例えば、幾つかの実施形態では、蓋106は、ライナー104と連結してもよく、キャップ109及びフィルタ134は蓋106と連結してもよい。ライナー104、蓋106、フィルタ134、及びキャップ109は、容器102を汚染することなく使用できる、試料調製システム100の使い捨て部分を形成してもよい。使い捨て部分は、容器102から取り外し、廃棄することができる。次いで、容器102は、新しいライナー104、蓋106、フィルタ134及びキャップ109と共に再使用することができる。
【0063】
図4は、本発明による別の試料調製システム200を図示し、そこで類似数字は類似要素を表す。試料調製システム200は、図2〜3の図示された実施形態に関連する、多くの同様の上記要素及び特徴部を共有する。従って、図2〜3の図示された実施形態の要素及び特徴部に一致する要素及び特徴部は、200シリーズにおいて同様の参照番号が提供される。参照は、図4に図示される実施形態の特徴部及び要素(及び、このような特徴部及び要素の代替)を更に完全に説明するために、上記の添付図2〜3に対してなされる。
【0064】
試料調製システム200は、ライナーを含まず、蓋206は、容器202に直接連結する。試料調製システム200は、容器202の側壁229に形成される開口260に流体で連結されるフィルタ234を更に含む。試料調製システム100のフィルタ134とは異なり、フィルタ234は、ソース212のための保有部又は保持部として機能する。
【0065】
フィルタ234は、容器202と恒久的に連結することができ、ソース212は、フィルタ234に添加することができるか、又は、フィルタ234は、容器202に取り外し可能に連結することができ、ソース212は、フィルタ234が容器202に連結される前、又は後にフィルタ234に添加することができる。幾つかの実施形態では、フィルタ234は、フィルタ234がソース212を含み、希釈剤213がフィルタ234の内部の内外を流れることができ、ソース212と混合するように、第1のリザーバ220内で浮動性であってもよい。
【0066】
ソース212は、ソース212をフィルタ234内で希釈剤213と組み合わせて液体組成物214を形成できるように、フィルタ234に配置され、フィルタ234の少なくとも一部分が、容器202の希釈剤213のレベルより下方に配置され、容器202の内部と流体連通している。フィルタ234内に配置される液体組成物214は、ソース212からのあらゆる不溶性物質のみならず、希釈剤213中に対象の検体を含む。攪拌中、ソース212及び希釈剤213を混合し、希釈剤213でソース212を溶解、分散、懸濁、及び/又は乳化することができる。希釈剤213及び希釈剤213中のあらゆる対象の検体は、生じたろ液216がフィルタ234の外側に配置されかつ容器202のリザーバ220内に配置され、希釈剤213中に対象の検体を含むように、フィルタ234の内外を自由に流れる。
【0067】
ろ液216は、蓋206のサンプリングポート232、蓋206の開口258、容器202の側壁229の追加の開口、及び/又は容器202の底部227の開口224を含む様々なサンプリングポート又は開口のいずれか、からサンプリングすることができる。幾つかの実施形態では、図4に示すように、1つ以上のサンプリングポートは、試料調製システム100のフィルタ134と同様の方法で機能する追加のフィルタ234’を含むことができる。このような実施形態では、ろ液216は、フィルタ234’によって更にろ過され、生じるろ液216は隣接のサンプリングポート(即ち、図4のサンプリングポート232)から抜き取り及び/又はサンプリングされてもよい。
【0068】
試料調製システム200は、ライナーを更に含み、十分な密封が開口260の位置でライナーと容器202との間に提供されると言う条件で、この場合希釈剤213及び生じるろ液216はライナー内に配置され得る。
【0069】
図5〜6は、本発明による別の試料調製システム300を図示し、類似数字は類似要素を表す。試料調製システム300は、図2〜3の図示する実施形態に関連した、多くの同様の上記要素及び特徴部を共有する。従って、図2〜3の図示された実施形態の要素及び特徴部に一致する、要素及び特徴部は、300シリーズにおいて同様の参照番号が提供される。図5〜6に図示される実施形態の特徴部及び要素(及び、このような特徴部及び要素の代替)の更に完全な説明のための図2〜3を伴う上記の説明の参照がなされる。
【0070】
図5〜6は、試料調製システム300の蓋306のみを示す。試料調製システム300の他の構成要素は、上記に記載の試料調製システム100のものと同じと仮定され、従って、明確にするために、図5〜6には示されない。
【0071】
蓋306が、実質的に平面で、蓋306の内側表面353に連結するフィルタ334を含むことを除き、蓋306は、上記に記載され、図2〜3に図示される蓋106と実質的に同様である。蓋306の内側表面353は、上方内部周縁370及び下方内部周縁368を含む。図5に示すように、上方内部周縁370は、外周371から内周373へ延在し下方に面する表面を含む。同様に、下方内部周縁368は、外周376から内周378へ延在し下方に面する表面を含む。フィルタ334の外周は、内側表面353の上方内側周縁370と連結する。更に、フィルタ334は、保持壁372と接触する。保持壁372は、フィルタ334の外周を保持するために、蓋106の内側表面353から下方に延在する。
【0072】
フィルタ334は、蓋106に対して上記と同様の連結手段を使用して蓋306と連結されてもよい。フィルタ334は、恒久的、又は取り外し可能に蓋306と連結されてもよい。フィルタ334と蓋306との間の連結の程度は、これに限定されないが、フィルタ334の材料、蓋306の材料、連結された表面領域の寸法及び構造、及び使用される連結手段の種類を含む多くの要素に応じて様々であることができる。例えば、フィルタ334がほつれた縁部を含む場合、やや幅広い、及び/又は刻み付きの連結表面領域が使用されてもよい(例えば、上方内側周縁縁部370は刻み付きであってもよい)。このような幅広、及び/又は刻み付きの超音波溶接部は、フィルタ334のほつれ縁部を捕捉することができる。ほつれの量を最小限にするために、フィルタ334は、フィルタ334の縁部を融着することができるレーザーを使用して切断できる。これにより生じたレーザー切断されたフィルタ334は、あったとしても、ほつれの最低量を含むため、より狭い幅の連結領域を使用することができる。幾つかの実施形態では、連結領域は、フィルタ334の外周の周囲で全面的に延在する。幾つかの実施形態では、連結領域は、最大5.0mmの平均幅(即ち、同じ平面内の寸法、及び、フィルタ334の外周に実質的に垂直)を有することが可能であり、幾つかの実施形態では、1.0mm〜3.0mmの範囲であることが可能である。或いは、フィルタ334は、例えば、成形プロセスによって、蓋306内で一体的に形成されることが可能である。
【0073】
フィルタ334は、蓋306と同様の材料、又は異なる材料から形成されてもよい。フィルタ334は、可撓性であるか、又は半剛体であってもよい。幾つかの実施形態では、フィルタ334は、ナイロンの織布又は織布から形成されるが、蓋306は、ポリプロピレンから形成された射出成形部品である。このような実施形態では、ナイロンフィルタ334は、超音波溶接技術を介し、蓋306に結合されてもよい。超音波溶接の間、上方内側周縁370の少なくとも一部分は、フィルタ334と機械的に固着するために融解できる。ナイロンは、ポリプロピレンよりも高い融解温度を有するため、ナイロンフィルタ334は、超音波溶接プロセスの間、その構造的な一体性を維持することが可能である。このような実施形態では、上方内側周縁370の少なくとも一部分は、フィルタ334の一部分となってもよく、これによって、フィルタ334の一部分を密封する。
【0074】
フィルタ334は、所定のアプリケーションによって様々である寸法及び形状を有することができる。フィルタ334は、これに限定されないが、円形状、正方形状、長方形状、三角形状、多角形状、星型形状、他の好適な形状、及びそれらの組み合わせを含む、あらゆる望ましい形状を有することができる。図5及び6に図示する実施形態では、フィルタ334は、実質的に円形状を有する。
【0075】
フィルタ334の寸法は、蓋306の寸法に応じて様々であってもよい。幾つかの実施形態では、フィルタ334はより小さい、又はより大きい寸法を有する場合があるが、フィルタ334は、15mm〜100mmの範囲の最大寸法(即ち、長さ、幅、又は直径)を有する。例えば、幾つかの実施形態では、フィルタ334は、円形状及び56mmの直径を有してもよい。
【0076】
図5及び6を引き続き言及すると、保持壁372は、蓋306と一体的に形成される。幾つかの実施形態では、図5に示すように、蓋306は、2つ以上の保持壁372を含み、(i)それぞれの保持壁372は、その厚さよりも大きい周辺長さを有し、(ii)それぞれの保持壁372は、フィルタ334の外周に沿って配置され、(iii)2つ以上の保持壁372の合計の周辺長さは、フィルタ334の外周の合計の周辺長さよりも短い。
【0077】
図5に示すように、蓋306は、上方内側周縁370の外周371に沿って互いに等しく間隔をおく、4つの保持壁372を含む。幾つかの実施形態では、それぞれの保有壁372は、800μm〜1200μmの範囲の厚さ、外周371に沿って1.0mm〜22.0mmの範囲の距離に延在する長さ(即ち、この例示的な実施形態では、アーク長)、及び1.0mm〜5.0mmの範囲の高さを有する。幾つかの実施形態では、それぞれの保持壁372は、保持壁372の周辺の流量を妨げない(又は影響を最小限にする)ように、セグメント化された構成を有する。
【0078】
蓋306は、開口部354及び内部に延在する部材355を含む。内部に延在する部材355は、図2及び3では、フィルタ134が蓋106に連結するのと同じ方法で、追加のフィルタ(図示せず)が蓋306と連結するために使用することができる。このような実施形態では、フィルタ334は、追加のフィルタの下に設置され、追加のフィルタは、蓋306の上部からフィルタ334の距離よりも短い長さ寸法を有することができる。
【0079】
幾つかの実施形態では、図5及び6に示すように、フィルタ要素334は、蓋306の最小断面積よりも大きい合計表面積を有する。蓋306では、最小断面積は、蓋開口部354の断面積である。幾つかの実施形態では、1つ以上のフィルタが、フィルタ334と同様の様式で蓋306と連結される。例えば、幾つかの実施形態では、フィルタ334、又は追加のフィルタ(図示せず)は、下方の内側周縁368と連結することができる。即ち、1つ以上のフィルタ334は、蓋306と連結し、蓋306の内側表面353に沿ったいずれかの場所に配置することができる。1つ以上のフィルタ334を採用する実施形態では、フィルタ334は、互いに類似であるか、又は互いに異なってもよい。即ち、フィルタ334は、同一、又は異なる材料から形成されてもよく、フィルタ334は、同一、又は実質的により小さい孔径を有してもよい。
【0080】
一例として、第1のフィルタ334は、上方内側周縁370と連結されてもよく、56mmの直径、80μmの要素孔径を有してもよく、1つ以上の保持壁372によって少なくとも部分的に囲まれてもよいが、第2のフィルタ334は、下方内側周縁368と連結されてもよく、96mmの直径を有してもよく、蓋306の内側表面353によって少なくとも部分的に囲まれてもよい。
【0081】
上記のフィルタ134、234、及び334のいずれもが、試料調製システムの1つにおいて、互いの組み合わせで使用されてもよい。例えば、上記に記載されるように、フィルタ134は、異なる用途のための一連のフィルタを提供するため、及び/又は液体組成物から引き続いて、より小さな粒子を除去するために、フィルタ234及び/又は334と組み合わせて使用することができる。
【0082】
或いは、又は加えて、液体組成物から引き続いてより小さな粒子を除去するために、それぞれの種類のフィルタ134、234、又は334の2つ以上を採用する(及び、幾つかの実施形態では、ネスト化)することができる。例えば、ろ液を収集するために連続したより小さい孔径を有する次のフィルタに対し、より大きい孔径の前置フィルタとして働く粗いフィルタであるフィルタが配置されてもよい。フィルタは、直立位置で試料調製システムを使用するために配置されてもよく、及び/又は、システムが反転された場合、試料調製システムを使用するために配置されてもよい。
【0083】
本願に記載される試料調製システム100、200、300のいずれかは、上に記載され、図1に図示される、概して以下の試料調製方法10によって試料を調製するために使用することができる。例示的な方法を、図2及び3の試料調製システム100を使用して詳細にここに説明する。
【0084】
ソース112及び希釈剤113は、容器102の第1のリザーバ120に添加され、液体組成物114を形成するために組み合わせることができる。上記のように、ライナー104又は容器102は、液体組成物114を入れることが可能な、自立型容器としての役目を果たすことができる。蓋106は、ライナー104が容器102内に設置される前、又は後に、ライナー104と連結することができる。カラー108は、構成要素を互いに固定するために容器102と連結することができ、蓋開口部154は、キャップ109を使用して密封することができる。
【0085】
試料調製システム100は、ソース112と希釈剤113とを混合し、希釈剤113にソース112を溶解、分散、懸濁、及び/又は乳化するために攪拌できる。攪拌は、円軌道、楕円軌道、ランダム軌道、それらの組み合わせ、又は、ソース112と希釈剤113とを有効かつ効果的に確実に混合するその他の手段であってもよい。試料調製システム100は、液体組成物114の流出、及び/又は損失を最小限にするために、攪拌中、クランプ、又は他の方法によって固定できる。
【0086】
幾つかの実施形態では、試料調製システム100の液体組成物114は、選択された持続時間、周波数10〜2000サイクル/分、及び、幾つかの実施形態では、周波数200〜500サイクル/分で、バレルモデル75リストアクションシェーカー(Burell Model 75 Wrist Action Shaker)(ペンシルバニア州ピッツバーグ(Pittsburgh, PA)のバレル・サイエンティフィック(Burrell Scientific))によって攪拌することができる。幾つかの実施形態では、試料調製システム100は、シェーカーアームから5cm〜50cm、幾つかの実施形態では、10cm〜20cmの距離に取り付けることができる。幾つかの実施形態では、試料調製システム100は、5度〜30度、幾つかの実施形態では、15度〜20度の弧を描くことが可能である。液体組成物114は、少なくとも10秒、幾つかの実施形態では少なくとも15秒、幾つかの実施形態では少なくとも30秒、幾つかの実施形態では少なくとも40秒、幾つかの実施形態では少なくとも60秒攪拌することができる。幾つかの実施形態では、液体組成物114は、最大で15分、幾つかの実施形態では最大で10分、幾つかの実施形態では最大で5分、及び幾つかの実施形態では最大で3分攪拌することができる。
【0087】
幾つかの実施形態では、液体組成物114は、選択された持続時間で、200rpm〜5000rpm、及び幾つかの実施形態では1000rpm〜3000rpmの攪拌周波数で、VX−2500マルチチューブ・ボルテクサ(VX-2500 Multi-Tube Vortexer)(ペンシルバニア州ウエストチェスター(West Chester, PA)のVWRサイエンティフィック・プロダクツ(VWR Scientific Products))を用いて攪拌することができる。攪拌軌道は、円、楕円、ランダム、又はそれらの組み合わせであってもよい。幾つかの実施形態では、楕円は、0.25cm〜5cmであり、幾つかの実施形態では、1cm〜3cmである。
【0088】
上記に記載されるように、試料調製システム100、200、及び/又は300の配列又は複数個は、後続の攪拌のために、重力、クランプ、又は他の方法によって固定される、プレート、アーム、又は他の機器に設置することによって、同時に攪拌することができる。例えば、幾つかの実施形態では、単一攪拌機器、又は複数の攪拌機器で、1〜約50個の試料調製システム100、200、及び/又は300が同時に攪拌され、幾つかの実施形態では、約10〜約25個の試料調製システム100、200、及び/又は300が同時に攪拌される。
【0089】
幾つかの実施形態では、液体組成物114は、蓋開口部154(例えば、フィルタ134が存在しないとき)、或いは、他の可能な開口のいずれかを通じて挿入されてもよい、シャフト、及び攪拌ブレードを有する機械的攪拌器を追加することによって攪拌することができる。液体組成物114の攪拌は、ソース112から対象の検体を離すために、希釈剤113におけるソース112の崩壊体、及び/又は分散することを助長するために、鋼球ベアリング、磁気攪拌バー、ブレード、及び他の手段で更に達成されてもよい。上記に記載される攪拌方法は、一例として挙げられるに過ぎず、限定することを意図したものではない。当業者は、他の類似の攪拌方法を採用できることを理解するであろう。
【0090】
液体組成物114は、希釈剤113及び希釈剤113中のあらゆる対象の検体を含む、ろ液116をフィルタ134内に配置して形成するために、フィルタ134を使用してろ過することができる。ろ液116のすべて、又は一部分(例えば試料)は、更なる分析のためにフィルタ134の内部から取り外すことができる。
【0091】
幾つかの実施形態では、液体組成物114のレベル165は、フィルタ134が液体組成物114のレベル165よりも一部は上方に、及び一部は下方に設置されるように、十分に高い。試料調製システム100は、必要に応じて、液体組成物のレベル165を調節するために直立、勾配、傾斜、又は反転することができる。このような実施形態では、蓋開口部154を通してフィルタ134の内部にアクセス可能であり、ろ液116の試料は、フィルタ134の内部から吸引する(例えば、ピペット操作することによって)ことによって取り出すことが可能である。或いは、ろ液116は、蓋開口部154からろ液116を傾しゃ法により移すことによって取り出すことができ、及び/又は、ライナー104は、ライナー104(例えば、容器102の底部127の開口124を経由してライナー104の底部126へ)へ圧力を加えることによって蓋開口部154からろ液116を追い出すことができる。
【0092】
幾つかの実施形態では、液体組成物114のレベル165は、フィルタ134が液体組成物114のレベル165よりも完全に上方に設置されるように、フィルタ134の底よりも下方にある。このような実施形態では、フィルタ134で液体組成物114をろ過し、ろ液116がフィルタ134内に配置されるように、試料調製システム100を反転することができる。上に記載されるように、ろ液116をフィルタ134の内部へ押し込む、及び/又は蓋開口部154から押し出すために、圧力を加えることができる。或いは、フィルタ134は、試料調製システム100が、反転後に直立位置に戻るとき、フィルタ134は、吸引及び/又は傾しゃ法により移すことによって取り出しできるように内部にろ液116を保持するように構成することができる。
【0093】
上に記載されるように、図4に図示される試料調製システム200のような幾つかの実施形態では、フィルタ234は、ソース212の保有部、又は保持部としての役割を果たすことができる。このような実施形態では、希釈剤213は、容器202の第1のリザーバ220に添加することができ(又は、容器202は、希釈剤213の予め計られた量で予め満たすことが可能)、ソース212をフィルタ234内に設置することができる。蓋206は、容器202と連結することができ、試料調製システム200は、キャップ、又は類似の密閉機器を使用して密封することができる。組み立てられ、密封された試料調製システム200は、液体組成物214がフィルタ234内に設置され、ろ液216がフィルタ234の外側、及び容器202の第1のリザーバ220内に設置されるようにして、攪拌し希釈剤213がフィルタ234の内外に流れるようにできる。
【0094】
上に記載されるように、ろ液216は、様々なサンプリングポート(例えば、サンプリングポート232)のいずれかから取り出すことができ、ろ液216に依然として存在する場合がある更なる粒子を除去するために、更にろ過することが可能である。例えば、ろ液216は、第2のろ液216’が第2のフィルタ234’内に形成されるように、容器202の側壁229と連結するフィルタ234のものよりも小さい孔径を有するフィルタ234’によって更にろ過することができる。第2のろ液、又はその試料は、上記に記載される技術のいずれかを使用して取り出すことができる。
【0095】
以下の実施例は、本発明の解説を意図としたものであり、限定的なものではない。
【実施例】
【0096】
すべての溶媒類及び試薬類は、特に記載のない限り、ウィスコンシン州ミルウォーキー(Milwaukee, WI)アルドリッチ・ケミカル社(Aldrich Chemical Company)から入手した。すべてのパーセント及び量は、特に指定のない限り、重量である。3M(商標)社のペイント・プレパレーション・システム(Paint Preparation System)ライナー(部品番号16114)及び自立型容器(部品番号16115)、並びに関連の蓋及びカラーは、ミネソタ州セントポールの3M社によって供給された。使用された振盪器は、ペンシルバニア州ピッツバーグのバレル・サイエンティフィック社(Burrell Scientific Company)によって供給されたバレル(Burrell)モデル75−リストシェーカーである。滅菌希釈剤(バターフィールド緩衝剤(Butterfield’s buffer))は、テネシー州メンフィスのエッジ・バイオロジカル(Edge Biological)から購入した。ボルテックスマシンは、ペンシルバニア州ウエストチェスターのVWRサイエンティフィック・プロダクツ(VWR Scientific Products)からのモデルVX−2500マルチチューブ・ボルテクサ(model VX-2500 Multi-Tube Vortexer)である。好気性菌数は、ミネソタ州セントポールの3M社から入手した、3M(商標)ペトリフィルム(Petrifilm)(商標)生菌数測定用ACプレート(Aerobic Count Plates)及びプレートリーダー(Plate Readers)を使用して測定した。
【0097】
牛挽肉、及び豚挽肉(25%脂質を含有すると推定)試料を地元の食料品店から購入した。部分(150グラム)を切り離し、プラスチック袋に入れ、−20℃の冷凍庫で保管した。ホウレンソウの葉を地元の食料品店から購入し、ホウレンソウの元の容器のまま4℃で保管した。使用に先立ち、牛挽肉及び豚挽肉の必要な部分を冷凍庫から取り出し、室温でおよそ2時間置いた(即ち、使用前に、25℃で試料を解凍し、続いて木製のへらを使用して袋の中で完全に混ぜた)。ホウレンソウ試料は、4℃の保管庫から取り出した後、直ちに試験した。
【0098】
比較例1(C1)
この例は、ストマッキング手順を使用する牛挽肉試料から放出された検体の定量化を示す。牛挽肉の一部分(11g)を、フィルタ処理したストマッカー袋(英国ノーフォーク(Norfolk, UK)のセワード社(Seward, Inc.)のセワード・ストマッカー(Seward STOMACHER)(登録商標)ラボラトリー・ブレンダー、モデル400フィルタ袋)のフィルタ内に設置し、バターフィールド緩衝剤(Butterfield’s buffer)(99mL)を添加後、袋をストマッカー(STOMACHER)(登録商標)ラボラトリー・ブレンダー(英国ノーフォークのセワード社(Seward, Inc.)のモデル400)に設置した。液体組成物を、表1に記載される指定の時間、230rpmでストマッキングした。ろ液は、フィルタと袋壁との間の容積に形成された。それぞれの時間間隔の後、2mLのろ液を、フィルタの外と袋壁との間の空間からピペットで収集し、滅菌検査チューブに移動した。収集したろ液(500μL)の一部分を、バターフィールド緩衝剤(Butterfield’s Buffer)(99mL)で希釈し、それぞれのフィルタの好気性菌数を測定し、表1に記録後、およそ10秒間手動で振盪した。
【0099】
比較例2(C2)
この例は、ストマッキング手順を使用する豚挽肉試料から放出された検体の定量化を示す。豚挽肉の一部分(11g)を、フィルタ処理したストマッカー袋(英国ノーフォークのセワード社(Seward, Inc.)のセワード・ストマッカー(Seward STOMACHER)(登録商標)ラボラトリー・ブレンダー、モデル400フィルタ袋)のフィルタ内に設置し、バターフィールド緩衝剤(Butterfield’s buffer)(99mL)を添加後、袋をストマッカー(STOMACHER)(登録商標)ラボラトリー・ブレンダー(英国ノーフォークのセワード社(Seward, Inc.)のモデル400)に設置した。液体組成物を、表1に記載される指定の時間、230rpmでストマッキングした。ろ液は、フィルタと袋壁との間の容積に形成された。それぞれの時間間隔の後、2mLのろ液を、フィルタの外と袋壁との間の空間からピペットで収集し、滅菌検査チューブに移動した。収集したろ液(1000μL)の一部分を、バターフィールド緩衝剤(Butterfield’s Buffer)(9mL)で希釈し、それぞれのフィルタの好気性菌数を測定し、表1に記録後、およそ10秒間手動で振盪した。
【0100】
比較例3(C3)
この例は、ストマッキング手順を使用するホウレンソウの葉から放出された検体の定量化を示す。ホウレンソウの葉の一部分(11g)を、フィルタ処理したストマッカー袋(英国ノーフォークのセワード社(Seward, Inc.)のセワード・ストマッカー(Seward STOMACHER)(登録商標)ラボラトリー・ブレンダー、モデル400フィルタ袋)のフィルタ内に設置し、バターフィールド緩衝剤(Butterfield’s buffer)(99mL)を添加後、袋をストマッカー(STOMACHER)(登録商標)ラボラトリー・ブレンダー(英国ノーフォークのセワード社(Seward, Inc.)のモデル400)に設置された。液体組成物を、表1に記載される指定の時間、230rpmでストマッキングした。ろ液は、フィルタと袋壁との間の容積に形成された。それぞれの時間間隔の後、2mLのろ液を、フィルタの外と袋壁との間の空間からピペットで収集し、滅菌検査チューブに移動した。収集したろ液の一部分(1000μL)は、1:20,000の最終濃度までバターフィールド緩衝剤(Butterfield’s Buffer)で順次希釈後、それぞれのフィルタの好気性菌数を測定し、表1に記録した。
【0101】
(実施例1)(E1)
この例は、機械的振盪及び本開示の試料調製システムを使用し、牛挽肉から放出された検体の定量化を示す。空のライナーを秤に設置し、ソースとしての役割を果たす牛挽肉(11g)をライナーに移動した。ライナーを秤から取り出し、容器に設置した。滅菌希釈剤(99mL)を、牛挽肉ソースを含有するライナーに添加し、蓋をライナー及び容器と連結した。蓋は、図2及び3のフィルタ134の形状のフィルタを含む。組み立てられた状態の試料調製システムを固定するために、ネジ付きカラーを容器上にネジ止めした。蓋の開口部を別個のキャップで密封した。牛挽肉及び希釈剤を含む液体組成物を含有する試料調製システムを、振盪器のアームに固定するためにクランプに設置した。試料調製システムの中心から振盪器のロッドまでの距離は、およそ20cmであった。試料は、およそ17度の弧度で1秒間におよそ6回転の頻度に相当する、10の装置ダイアル設定で、15秒振盪した。この期間の後、キャップを取り外し、およそ2mLの液体組成物を蓋のフィルタを通じて(即ち、ろ液として)滅菌検査チューブへ傾しゃ法により移した。試料調製システムをキャップし、振盪機器へ戻し、必要に応じて、更なる時間に渡って攪拌した。混合/傾しゃ法により移すサイクルを、記載のように繰返し、ろ液を60秒、120秒、240秒時点で収集した。収集したろ液(500μL)の一部分を、バターフィールド緩衝剤(Butterfield’s Buffer)(99mL)で希釈し、それぞれのフィルタの好気性菌数を測定し、表1に記録後、およそ10秒間手動で振盪した。
【0102】
(実施例2)(E2)
この例は、ボルテックス・ミキサー及び本開示の試料調製システムを使用し、牛挽肉試料から放出された検体の定量化を示す。空のライナーを秤に設置し、ソースとしての役割を果たす牛挽肉(11g)をライナーに移動した。次いで、ライナーを秤から取り出し、容器に設置した。滅菌希釈剤(99mL)を、牛挽肉ソースを含有するライナーに添加し、蓋をライナー及び容器と連結した。蓋は、図2及び3のフィルタ134の形状のフィルタを含む。組み立てられた状態の試料調製システムを固定するために、ネジ付きカラーを容器上にネジ止めした。蓋の開口部を別個のキャップで密封した。牛挽肉及び希釈剤を含む液体組成物を含有する試料調製システムを、偏心軌道(およそ6mm×4mm)のボルテックスマシンの土台に設置し、固定した。液体組成物を、およそ2500rmpの回転速度と一致する、10の装置ダイアル設定で15秒間混合した。この期間の後、キャップを取り外し、およそ2mLの液体組成物を蓋のフィルタを通じて(即ち、ろ液として)滅菌検査チューブへ傾しゃ法により移した。試料調製システムをキャップし、ボルテックス機器へ戻し、必要に応じて、更なる時間に渡って混合した。混合/傾しゃ法により移すサイクルを、記載のように繰返し、ろ液を60秒、120秒、240秒時点で収集した。収集したろ液(500μL)の一部分を、バターフィールド緩衝剤(Butterfield’s Buffer)(99mL)で希釈し、それぞれのフィルタの好気性菌数を測定し、表1に記録後、およそ10秒間手動で振盪した。
【0103】
(実施例3)(E3)
この例は、ボルテックス・ミキサー及び本開示の試料調製システムを使用し、豚挽肉試料からの検体の定量化を示す。空のライナーを秤に設置し、ソースとしての役割を果たす牛挽肉(11g)をライナーに移動した。ライナーを秤から取り出し、容器に設置した。滅菌希釈剤(99mL)を、豚挽肉肉ソースを含有するライナーに添加し、蓋をライナー及び容器と連結した。蓋は、図2及び3のフィルタ134の形状のフィルタを含む。組み立てられた状態の試料調製システムを固定するために、ネジ付きカラーを容器上にネジ止めした。蓋の開口部を別個のキャップで密封した。豚挽肉及び希釈剤を含む液体組成物を含有する試料調製システムを、偏心軌道(およそ6mm×4mm)のボルテックスマシンの土台に設置し、固定した。液体組成物を、およそ2500rmpの回転速度と一致する、10の装置ダイアル設定で15秒間混合した。この期間の後、キャップを取り外し、およそ2mLの液体組成物を蓋のフィルタを通じて(即ち、ろ液として)滅菌検査チューブへ傾しゃ法により移した。試料調製システムをキャップし、ボルテックス機器へ戻し、必要に応じて、更なる時間に渡って混合した。混合/傾しゃ法により移すサイクルを、記載のように繰返し、ろ液を60秒、120秒、240秒時点で収集した。収集したろ液(1000μL)の一部分を、バターフィールド緩衝剤(Butterfield’s Buffer)で希釈し、それぞれのフィルタの好気性菌数を測定し、表1に記録後、およそ10秒間手動で振盪した。
【0104】
(実施例4)(E4)
この例は、機械的振盪器及び本開示の試料調製システムを使用し、ホウレンソウの葉試料から放出された検体の定量化を示す。空のライナーを秤に設置し、ソースとしての役割を果たすホウレンソウの葉(11g)をライナーに移動した。ライナーを秤から取り出し、容器に設置した。滅菌希釈剤(99mL)を、ホウレンソウの葉ソースを含有するライナーに添加し、蓋をライナー及び容器と連結した。蓋は、図2及び3のフィルタ134の形状のフィルタを含む。組み立てられた状態の試料調製システムを固定するために、ネジ付きカラーを容器上にネジ止めした。蓋の開口部を別個のキャップで密封した。ホウレンソウの葉及び希釈剤を含む液体組成物を含有する試料調製システムを、該振盪器のアームに固定するためにクランプに設置した。試料調製システムの中心から振盪器のロッドまでの距離はおよそ20cmであった。液体組成物は、およそ17度の弧度で1秒間におよそ6回転の頻度に相当する、10の装置ダイアル設定で、15秒間振盪した。この期間の後、キャップを取り外し、およそ2mLの液体組成物を蓋のフィルタを通じて(即ち、ろ液として)滅菌検査チューブへ傾しゃ法により移した。試料調製システムをキャップし、振盪機器へ戻し、必要に応じて、更なる時間に渡って攪拌した。混合/傾しゃ法により移すサイクルを、記載のように繰返し、ろ液を60秒、120秒、240秒時点で収集した。収集したろ液の一部分(1000μL)を1:20,000の最終濃度までバターフィールド緩衝剤(Butterfield’s Buffer)で連続的に希釈した後、それぞれのろ液の好気性菌数を測定し、表1に記録した。
【0105】
(実施例5)(E5)
この例は、ボルテックス・ミキサー及び本開示の試料調製システムを使用し、ホウレンソウの葉ソースから放出された検体の定量化を示す。空のライナーを秤に設置し、ホウレンソウの葉(11g)をライナーに移動した。次いで、ライナーを秤から取り出し、容器に設置した。滅菌希釈剤(99mL)を、ホウレンソウの葉ソースを含有するライナーに添加し、蓋をライナー及び容器と連結した。蓋は、図2及び3のフィルタ134の形状のフィルタを含む。組み立てられた状態の試料調製システムを固定するために、ネジ付きカラーを容器上にネジ止めした。蓋の開口部を別個のキャップで密封した。ホウレンソウの葉及び希釈剤を含む液体組成物を含有する試料調製システムを、偏心軌道(およそ6mm×4mm)のボルテックスマシンの土台に設置し、固定した。液体組成物を、およそ2500rpmの回転速度と一致する、10の装置ダイアル設定で15秒間混合した。この期間の後、キャップを取り外し、およそ2mLの液体組成物を蓋のフィルタを通じて(即ち、ろ液として)滅菌検査チューブへ傾しゃ法により移した。試料調製システムをキャップし、ボルテックス機器へ戻し、必要に応じて、更なる時間に渡って混合した。混合/傾しゃ法により移すサイクルを、記載のように繰返し、ろ液を60秒、120秒、240秒時点で収集した。収集したろ液の一部分(1000μL)を1:20,000の最終濃度までバターフィールド緩衝剤(Butterfield’s Buffer)で連続的に希釈した後、それぞれのろ液の好気性菌数を測定し、表1に記録した。
【0106】
表1は、ソースから離された検体に対する異なる技術を使用し、それぞれの以下の時間(秒)で取得されたろ液の好気性菌数データを含む。
【0107】
【表1】

【0108】
表1の結果は、本発明の試料調製システムを使用する検体の回収が、ストマッキング機器のものと同程度であることを示す。液体組成物の調製は、機械的振盪、及びボルテックス混合を併用する本開示の試料調製システムを使用することによって、大幅に容易になった。
【0109】
上記に記載され、例示され、図に示される実施形態は、例としてであり、本発明の概念及び原理において限定を意図したものではない。当然、本発明の精神及び範囲を逸脱することなく、要素における様々な変更及びその構成並びに配置が可能であることは、当技術分野に精通する者に容易に理解されるであろう。本発明の種々の特徴及び態様は、添付の請求項に定める。
【0110】
本発明の試料調製システムの例示的な構造を、類似要素は類似数字を表す以下の図に示す。
【図面の簡単な説明】
【0111】
【図1】本発明の一実施形態による試料調製方法を描写する、概略フローチャート。
【図2】本発明の一実施形態による、蓋を含む試料調製システムの分解斜視図。
【図3】図2の蓋の近接断面図。
【図4】本発明の別の実施形態による試料調製システムの透視図。
【図5】本発明の別の実施形態による試料調製システムの蓋の底面図。
【図6】図5の線6−6に沿った図5の蓋の断面図。

【特許請求の範囲】
【請求項1】
検体試験のための試料を調製するための方法であって、
ソース及び希釈剤を含む液体組成物を提供する工程と、
自立型容器を含む試料調製システムを提供する工程と、
該自立型容器により画定されるリザーバに該液体組成物を配置する工程と、
該液体組成物をろ過して対象の検体を含むろ液を形成する工程と、
該ろ液の少なくとも一部分を該試料調製システムから取り出して試料を形成する工程と、
該対象の検体について該試料を分析する工程と、を含む、方法。
【請求項2】
前記液体組成物を攪拌する工程を更に含む、請求項1に記載の方法。
【請求項3】
前記液体組成物を攪拌する工程は、前記試料調製システムを攪拌する工程を含む、請求項2に記載の方法。
【請求項4】
前記液体組成物を攪拌する工程は、手動振盪する工程、機械的振盪する工程、超音波振動する工程、ボルテックス攪拌する工程、手動攪拌する工程、機械的攪拌する工程、手動叩解する工程、機械的叩解する工程、混合する工程、混練する工程、及びそれらの組み合わせ、の中の少なくとも1つを含む、請求項2に記載の方法。
【請求項5】
前記液体組成物を攪拌する前に、前記試料調製システムを閉締する工程を更に含む、請求項2に記載の方法。
【請求項6】
前記試料調製システムを閉締する工程は、前記自立型容器に蓋を連結する工程を含む、請求項5に記載の方法。
【請求項7】
前記ろ液の少なくとも一部分を前記試料調製システムから取り出す工程は、
該試料調製システムを傾ける工程、
該試料調製システムを反転する工程、
該試料調製システムから該ろ液を傾しゃ法により移す工程、
該試料調製システムから該ろ液を吸引する工程、
前記自立型容器に圧力を印加する工程、及びそれらの組み合わせ、の中の少なくとも1つを含む、請求項1に記載の方法。
【請求項8】
前記試料調製システムは、前記リザーバと液体連通にありかつ前記自立型容器に連結されるフィルタを含み、ろ液の少なくとも一部分を取り出す工程は、該自立型容器のサンプリングポートから、ろ液の少なくとも一部分を取り出す工程を含む、請求項1に記載の方法。
【請求項9】
前記試料調製システムは、
サンプリングポートを有する蓋と、
前記リザーバと液体連通にありかつ該蓋に連結されるフィルタと、を更に含み、ろ液の少なくとも一部分を取り出す工程は、該蓋の該サンプリングポートから、該ろ液の少なくとも一部分を取り出す工程を含む、請求項1に記載の方法。
【請求項10】
前記蓋の前記サンプリングポートから、前記ろ液の少なくとも一部分を取り出す工程は、
該サンプリングポートから該ろ液を傾しゃ法により移す工程、
該サンプリングポートから該ろ液を吸引する工程、及びそれらの組み合わせ、の中の少なくとも1つを含む、請求項9に記載の方法。
【請求項11】
前記試料調製システムは、
蓋と、
前記リザーバと液体連通しているフィルタと、を更に含み、該フィルタはほぼ平面であり、かつ該蓋の内側表面に連結される、請求項1に記載の方法。
【請求項12】
前記試料調製システムは、前記リザーバと液体連通しているフィルタを更に含み、該フィルタは実質的に管状であり、かつ前記リザーバに向けられた長手軸を含む、請求項1に記載の方法。
【請求項13】
前記対象の検体は、微生物、生体分子、化学物質、金属イオン、金属イオンを含む錯体、及びそれらの組み合わせ、の中の少なくとも1つを含む、請求項1に記載の方法。
【請求項14】
前記ソースは、前記希釈剤を含む、請求項1に記載の方法。
【請求項15】
前記ソースは、食料源及び非食料源の少なくとも1つを含む、請求項1に記載の方法。
【請求項16】
前記希釈剤は、界面活性剤、レオロジー剤、抗微生物中和剤、栄養素、pH緩衝剤、酵素、指標分子、滅菌水、有機溶媒、及びそれらの組み合わせ、の中の少なくとも1つを含む、請求項1に記載の方法。
【請求項17】
前記液体組成物を前記自立型容器により画定されるリザーバに配置する工程は、該液体組成物を硬質容器により画定されるリザーバに配置する工程を含む、請求項1に記載の方法。
【請求項18】
前記液体組成物を前記自立型容器により画定されるリザーバに配置する工程は、該液体組成物を変形可能なライナーにより画定されるリザーバに配置する工程を含む、請求項1に記載の方法。
【請求項19】
前記変形可能なライナーを、該変形可能なライナーよりも硬質な自立型容器により画定される第2のリザーバ内に配置する工程を更に含む、請求項18に記載の方法。
【請求項20】
前記液体組成物をリザーバに配置する工程は、
前記希釈剤を含む前記ソースを該リザーバに配置する工程、
該ソース及び該希釈剤を同時に該リザーバに添加する工程、
該希釈剤を該リザーバに添加する前に、該ソースを該リザーバに添加する工程、
該ソースを該リザーバに添加する前に、該希釈剤を該リザーバに添加する工程、
及び該ソース及び該希釈剤を組み合わせて液体組成物を形成し、該液体組成物を該リザーバに添加する工程、の中の少なくとも1つを含む、請求項1に記載の方法。
【請求項21】
前記試料調製システムは、前記リザーバと液体連通しているフィルタを含み、前記液体組成物をろ過して対象の検体を含むろ液を形成する工程は、該リザーバが該液体組成物を含み、そして該フィルタが該ろ液を含むように、前記希釈剤及び該対象の検体を該リザーバから該フィルタの内部に通過させる工程を含む、請求項1に記載の方法。
【請求項22】
前記希釈剤及び前記対象の検体を前記リザーバから前記フィルタの内部に通過させることによって前記液体組成物をろ過する工程は、
前記試料調製システムを反転する工程、
前記自立型容器に圧力を印加する工程、
該リザーバ内の該液体組成物のレベルの少なくとも部分的に下方に該フィルタを配置する工程、及びそれらの組み合わせ、の中の少なくとも1つを含む、請求項21に記載の方法。
【請求項23】
前記試料調製システムは、前記リザーバと液体連通しているフィルタを含み、前記液体組成物をろ過して対象の検体を含むろ液を形成する工程は、該フィルタが該液体組成物を含み、そして該リザーバが該ろ液を含むように、前記希釈剤及び該対象の検体を該フィルタの内部から該リザーバに通過させる工程を含む、請求項1に記載の方法。
【請求項24】
前記試料調製システムから前記ろ液の少なくとも一部分を取り出す前に、前記液体組成物をある期間培養する工程を更に含む、請求項1に記載の方法。
【請求項25】
前記試料調製システムは、前記リザーバと液体連通しているフィルタを含み、そして該フィルタは折り畳み可能である、請求項1に記載の方法。
【請求項26】
前記試料調製システムは、前記リザーバと液体連通しているフィルタを含み、そして該フィルタは硬質である、請求項1に記載の方法。
【請求項27】
前記試料調製システムは、前記リザーバと液体連通している複数のフィルタを含み、前記液体組成物をろ過する工程は、該液体組成物を該複数のフィルタに連続して通過させる工程を含む、請求項1に記載の方法。
【請求項28】
検体試験のための試料を調製する方法であって、
ソース及び希釈剤を含む液体組成物を提供する工程と、
変形可能な自立型ライナー、該変形可能な自立型ライナーよりも硬質な自立型容器及び蓋を含む試料調製システムを提供する工程と、
該液体組成物を該変形可能な自立型ライナーにより画定されるリザーバ内に配置する工程と、
該蓋を該変形可能な自立型ライナーに連結する工程と、
該変形可能な自立型ライナーを該自立型容器内に配置する工程と、
該液体組成物をろ過して対象の検体を含むろ液を形成する工程と、
該ろ液の少なくとも一部分を該試料調製システムから取り出して試料を形成する工程と、
該対象の検体について該試料を分析する工程と、を含む、方法。
【請求項29】
前記液体組成物を攪拌する工程を更に含む、請求項28に記載の方法。
【請求項30】
前記液体組成物を攪拌する工程は、前記試料調製システムを攪拌する工程を含む、請求項29に記載の方法。
【請求項31】
前記液体組成物を攪拌する工程は、手動振盪する工程、機械的振盪する工程、超音波振動する工程、ボルテックス攪拌する工程、手動攪拌する工程、機械的攪拌する工程、手動叩解する工程、機械的叩解する工程、混合する工程、混練する工程、及びそれらの組み合わせ、の中の少なくとも1つを含む、請求項29に記載の方法。
【請求項32】
前記液体組成物を攪拌する前に、前記試料調製システムを閉締する工程を更に含む、請求項29に記載の方法。
【請求項33】
前記試料調製システムを閉締する工程は、前記蓋を閉締する工程を含む、請求項32に記載の方法。
【請求項34】
前記試料調製システムは、前記変形可能な自立型ライナーに連結される前記蓋を含む使い捨て部分を含み、該試料調製システムの該使い捨て部分を前記自立型容器から取り外す工程と、該使い捨て部分を廃棄する工程と、を更に含む、請求項28に記載の方法。
【請求項35】
前記試料調製システムから前記ろ液の少なくとも一部分を取り出す工程は、
該試料調製システムを傾ける工程、
該試料調製システムを反転する工程、
該試料調製システムから該ろ液を傾しゃ法により移す工程、
該試料調製システムから該ろ液を吸引する工程、
前記変形可能な自立型ライナーに圧力を印加する工程、及びそれらの組み合わせ、の中の少なくとも1つを含む、請求項28に記載の方法。
【請求項36】
前記試料調製システムは、前記リザーバと液体連通にありかつ前記自立型容器に連結されるフィルタを含み、前記ろ液の少なくとも一部分を取り出す工程は、該自立型容器のサンプリングポートから該ろ液の少なくとも一部分を取り出す工程を含む、請求項28に記載の方法。
【請求項37】
前記試料調製システムは、前記リザーバと液体連通にありかつ蓋に連結されるフィルタを含み、前記ろ液の少なくとも一部分を取り出す工程は、該蓋のサンプリングポートから該ろ液の少なくとも一部分を取り出す工程を含む、請求項28に記載の方法。
【請求項38】
前記蓋のサンプリングポートから前記ろ液の少なくとも一部分を取り出す工程は、
該ろ液を該サンプリングポートから傾しゃ法により移す工程、
該サンプリングポートから該ろ液を吸引する工程、及びそれらの組み合わせ、の中の少なくとも1つを含む、請求項37に記載の方法。
【請求項39】
前記試料調製システムは、前記リザーバと液体連通しているフィルタを含み、該フィルタはほぼ平面であり、かつ前記蓋の内側表面に連結される、請求項28に記載の方法。
【請求項40】
前記試料調製システムは、前記リザーバと液体連通しているフィルタを含み、該フィルタは実質的に管状であり、かつ前記リザーバに向けられた長手軸を含む、請求項28に記載の方法。
【請求項41】
前記対象の検体は、微生物、生体分子、化学物質、金属イオン、金属イオンを含む錯体、及びそれらの組み合わせ、の中の少なくとも1つを含む、請求項28に記載の方法。
【請求項42】
前記ソースは、前記希釈剤を含む、請求項28に記載の方法。
【請求項43】
前記ソースは、食料源及び非食料源の少なくとも1つを含む、請求項28に記載の方法。
【請求項44】
前記希釈剤は、界面活性剤、レオロジー剤、抗微生物中和剤、栄養素、pH緩衝剤、酵素、指標分子、滅菌水、有機溶媒、及びそれらの組み合わせ、の中の少なくとも1つを含む、請求項28に記載の方法。
【請求項45】
前記液体組成物を前記リザーバに配置する工程は、
前記希釈剤を含む前記ソースを該リザーバ内に配置する工程、
該ソース及び該希釈剤を同時に該リザーバに添加する工程、
該希釈剤を該リザーバに添加する前に、該ソースを該リザーバに添加する工程、
該ソースを該リザーバに添加する前に、該希釈剤を該リザーバに添加する工程、
及び該ソース及び該希釈剤を組み合わせて液体組成物を形成し、該液体組成物を該リザーバに添加する工程、の中の少なくとも1つを含む、請求項28に記載の方法。
【請求項46】
前記試料調製システムは、前記リザーバと液体連通しているフィルタを含み、前記液体組成物をろ過して対象の検体を含むろ液を形成する工程は、該リザーバが該液体組成物を含み、そして該フィルタが該ろ液を含むように、前記希釈剤及び該対象の検体を該リザーバから該フィルタの内部に通過させる工程を含む、請求項28に記載の方法。
【請求項47】
前記希釈剤及び前記対象の検体を前記リザーバから前記フィルタの内部に通過させることによって前記液体組成物をろ過する工程は、
前記試料調製システムを反転する工程、
前記変形可能な自立型ライナーに圧力を印加する工程、
該リザーバ内の該液体組成物のレベルの少なくとも部分的に下方に該フィルタを配置する工程、及びそれらの組み合わせ、の中の少なくとも1つを含む、請求項46に記載の方法。
【請求項48】
前記試料調製システムは、前記リザーバと液体連通しているフィルタを含み、前記液体組成物をろ過して対象の検体を含む前記ろ液を形成する工程は、該フィルタが該液体組成物を含み、そして該リザーバが該ろ液を含むように、前記希釈剤及び該対象の検体を該フィルタの内部から該リザーバに通過させる工程を含む、請求項28に記載の方法。
【請求項49】
前記試料調製システムから前記ろ液の少なくとも一部分を取り出す前に、前記液体組成物をある期間培養する工程を更に含む、請求項28に記載の方法。
【請求項50】
前記試料調製システムは、前記リザーバと液体連通しているフィルタを含み、該フィルタは折り畳み可能である、請求項28に記載の方法。
【請求項51】
前記試料調製システムは、前記リザーバと液体連通しているフィルタを含み、該フィルタは硬質である、請求項28に記載の方法。
【請求項52】
前記試料調製システムは、前記リザーバと液体連通している複数のフィルタを含み、前記液体組成物をろ過する工程は、該複数のフィルタを使用して、該液体組成物を連続してろ過する工程を含む、請求項28に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公表番号】特表2009−543026(P2009−543026A)
【公表日】平成21年12月3日(2009.12.3)
【国際特許分類】
【出願番号】特願2009−512261(P2009−512261)
【出願日】平成19年5月22日(2007.5.22)
【国際出願番号】PCT/US2007/069460
【国際公開番号】WO2007/137257
【国際公開日】平成19年11月29日(2007.11.29)
【出願人】(505005049)スリーエム イノベイティブ プロパティズ カンパニー (2,080)
【Fターム(参考)】