説明

負イオンプラズマを生成する処理システム

負イオンプラズマを生成する処理システムが記載されている。当該処理システムでは、負の電荷を有する静かなプラズマが生成される。当該処理システムは、第1プロセスガスを用いてプラズマを発生させる第1チャンバ領域、及び分離部材によって前記第1チャンバ領域から隔離されている第2チャンバ領域を有する。前記第1チャンバ領域内のプラズマから生じる電子は前記第2チャンバ領域へ輸送されて、第2プロセスガスとの衝突によって静かなプラズマを生成する。前記第2チャンバ領域と結合する圧力制御システムが前記第2チャンバ領域内の圧力を制御するのに利用される。前記第2チャンバ領域内の圧力が制御されることによって、前記第1チャンバ領域から生じた電子は前記第2プロセスガスとの衝突を抑制して、負の電荷を有する前記静かなプラズマを生成するエネルギーの小さな電子を生成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は負の電荷を有するイオンによってプラズマを生成するシステムに関する。より詳細には本発明は、負の電荷を有するプラズマから得られる中性ビームを生成するシステムに関する。
【背景技術】
【0002】
たとえば半導体プロセスのような材料プロセス中、プラズマは、半導体基板上にパターニングされた微細線に沿って、又はビア(若しくはコンタクト)内部において、材料を異方的に除去することによってエッチングプロセスを支援するのに通常は利用されている。たとえばパターンエッチングは、放射線感受性を有する材料-たとえばフォトレジスト-の薄膜を基板上面に堆積する工程を有して良い。続いて前記薄膜はパターニングされる。エッチング中、該薄膜の下に存在する基板上の薄膜にこのパターンを転写するためのマスクを供するためである。
【0003】
しかし(正イオンと電子の分布が)電気的に陽性のプラズマ放電を基板処理に利用する従来のプラズマプロセスは、基板上に形成された材料層とデバイスの電荷誘起損傷の危険性を大きくする。たとえばイオンと電子との間には移動度において顕著な差があるため、電子と比較してイオンはデバイスの部位をより深く侵入することで基板上に電荷勾配を生じさせる。その電荷勾配は、電場強度が十分に大きいときには、電気的破壊を引き起こす恐れがある。デバイスがより小さくなり、かつ集積密度が増大してきたことで、絶縁構造及び分離構造の破壊電圧は、多くの場合において顕著に減少していて、その値は大抵の場合10Vよりもはるかに小さな値である。たとえば一部の集積回路(IC)デバイスの設計では、サブミクロンの厚さが必要とされている。
【0004】
同時に材料構造(つまり膜の厚さ、部位の限界寸法等)が縮小し続けていることで、帯電による損傷に対する感受性は劇的に増大している。構造のサイズが減少することで絶縁構造及び分離構造のキャパシタンスが減少し、かつ比較的少量の荷電粒子で絶縁構造及び分離構造を破壊する十分な強度の電場が発生する。従って製造プロセス-たとえばドライエッチングプロセス-中に半導体構造に衝突する粒子によって運ばれる電荷に対するその半導体構造の耐性はかなり制限され、かつ製造中にそのような電荷を消し去る構造がときには必要となる。しかしそのような構造は大抵の場合、半導体デバイスの設計は複雑になる。
【0005】
よってIC製造中の材料プロセスでは、基板の異方的処理を行うため(電気的に陰性であるガスからの)イオン-イオンプラズマ放電を利用することが考えられる。そこで、電荷誘起損傷を緩和又は抑制するため、正イオンと負イオンの両方を、プロセスのために基板へ引き込むことが考えられる。
【0006】
さらに基板を異方的に処理するため、材料プロセスに中性ビームを用いることも考えられる。ここでは大きなエネルギーを有する中性粒子が生成されて、かつ係る異方的プロセスを行うために基板へ導かれる。
【0007】
「中性ビーム」という語は、本明細書では空間電荷が中性化されたビームだが、中性粒子は、存在するとしても少量しか含んでいないビームに用いられている。従ってこの語は、マクロな意味において電子とイオンの割合が実質的に等しい場合にのみ正しい。しかし本明細書で用いられているように、「中性ビーム」という語は、電子とイオンが中性粒子内に束縛されている中性粒子をかなりの割合で含んでいるビームを指称するのに用いられる。
【0008】
中性粒子によるプロセス技術では、基板の処理に適するイオン化したガス成分を含む(密な)プラズマが生成される。これらのイオン化したガス成分には電荷が存在するので、電場は、前記イオン化したガス成分の最初の軌道に影響を及ぼし、かつ一旦これらのイオン種が中性化されると、その軌道を維持するのに十分なエネルギーレベルにまでこれらのイオン種を加速するのに用いられる。例として、複数の開口部を有する中性化装置(neutralizer)が、イオン種からなる大きなエネルギーを有するビームと一致するように設けられて良い。イオン種がこれらの開口部を通過することで、そのイオン種は、正イオンであれば電子と再結合し、又は負イオンであれば1つ以上の電子を失うことで、基板に対して実質的に垂直な軌道を有する大きなエネルギーの中性ビームを生成する。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】米国特許第5468955号明細書
【発明の概要】
【発明が解決しようとする課題】
【0010】
一般的には、中性粒子ビームの生成については正イオンの中性化に焦点が置かれてきた。しかしこの方法は実用的ではないと思われる。正イオンの中性化プロセスは、正イオンの加速及び衝突を介した電荷のやり取りに依拠している。しかしこのプロセスは非効率的であると考えられる。それに代わって、中性粒子ビームが負イオンの中性化に焦点を置くことはより現実的であると考えられる。負イオンの中性化プロセスは電子の剥ぎ取りに依拠している。負イオンの中性化プロセスは大きなエネルギーを必要としないので、より効率的であると考えられる。ただし負イオンを相当な割合で有するプラズマの生成は困難である。
【課題を解決するための手段】
【0011】
本発明は負の電荷を有するイオンによってプラズマを生成するシステムに関する。より詳細には本発明は、負の電荷を有するプラズマから得られる中性ビームを生成するシステムに関する。
【0012】
さらに本発明は、プラズマから引き出された負イオンについて狭帯域エネルギースペクトルの生成を可能にしながら、負イオンを効率的に生成するシステムに関する。引き出された負イオンが中性化される場合、その中性ビームは狭帯域中性ビームエネルギーを有することができる。
【0013】
本発明の実施例によると、負イオンのプラズマを生成する処理システムが記載されている。当該処理システムでは、負に帯電したイオンを有する静かなプラズマが生成される。当該処理システムは、第1プロセスガスを用いてプラズマを発生させる第1チャンバ領域、及び分離部材によって前記第1チャンバ領域から隔離されている第2チャンバ領域を有する。前記第1チャンバ領域内のプラズマから生じる電子は前記第2チャンバ領域へ輸送されて、第2プロセスガスとの衝突によって静かなプラズマを生成する。前記第2チャンバ領域と結合する圧力制御システムが前記第2チャンバ領域内の圧力を制御するのに利用される。前記第2チャンバ領域内の圧力が制御されることによって、前記第1チャンバ領域から生じた電子は前記第2プロセスガスとの衝突を抑制して、負の電荷を有する前記静かなプラズマを生成するエネルギーの小さな電子を生成する。
【0014】
本発明の他の実施例によると、負の電荷を有するイオンを含むプラズマを生成する処理システムが記載されている。当該処理システムは:第1プロセスガスを受け、かつ第1圧力で動作するように備えられた第1チャンバ領域;前記第1チャンバ領域と結合して前記第1プロセスガスを導入するように備えられた第1ガス注入システム;前記第1チャンバ領域と結合して第2プロセスガスを受け、かつ第2圧力で動作するように備えられた第2チャンバ領域であって、基板処理のための基板処理システムと結合するように備えられた排出口を有する第2チャンバ領域;前記第2チャンバ領域と結合して前記第2プロセスガスを導入するように備えられた第2ガス注入システム;前記第1チャンバ領域と結合して前記第1プロセスガスからプラズマを生成するように備えられたプラズマ発生システム;前記第1チャンバ領域と第2チャンバ領域の間に設けられた分離部材であって、前記第2チャンバ領域内に静かなプラズマを生成するため、前記第1チャンバ領域のプラズマから前記第2チャンバ領域へ電子を供給するように備えられた1つ以上の開口部を有する、分離部材;並びに、前記第1及び第2チャンバ領域と結合する圧力制御システムであって、前記第1チャンバ領域から生じた電子が、少なくとも1種類の電気的に陰性のガス種を有する前記第2プロセスガスとの衝突を抑制して、負の電荷を有する前記静かなプラズマを生成するエネルギーの小さな電子を生成するように前記第2圧力を制御するように備えられた圧力制御システムを有する。
【0015】
本発明のさらに他の実施例によると、負に帯電したイオンによって生成される中性ビーム源が記載されている。当該中性ビーム源は:第1プロセスガスを受け、かつ第1圧力で動作するように備えられた第1チャンバ領域と、前記第1チャンバの下流に設けられる第2チャンバ領域であって、第2プロセスガスを受け、かつ第2圧力で動作するように備えられた第2チャンバを有する中性ビーム発生チャンバ;前記第1チャンバ領域と結合して前記第1プロセスガスを導入するように備えられた第1ガス注入システム;前記第2チャンバと結合して前記第2プロセスガスを導入するように備えられた第2ガス注入システム;前記第1チャンバと結合して前記第1プロセスガスからプラズマを生成するように備えられたプラズマ発生システム;前記第1チャンバ領域と第2チャンバ領域の間に設けられた分離部材であって、前記第2チャンバ領域内に静かなプラズマを生成するため、前記第1チャンバ領域から前記第2チャンバ領域へ電子を供給するように備えられた1つ以上の開口部を有する、分離部材;前記中性ビーム発生チャンバと結合する圧力制御システムであって、前記第1チャンバ領域から生じた電子が、前記第2プロセスガスとの衝突を抑制して、負の電荷を有する前記静かなプラズマを生成するエネルギーの小さな電子を生成するように前記第2圧力を制御するように備えられた圧力制御システム;並びに、前記の第2チャンバ領域の排出口と結合して、前記負に帯電したイオンの一部又は全部を中性化するように備えられたデバイ長未満の中性化装置グリッドを有する。
【図面の簡単な説明】
【0016】
【図1】本発明の実施例による処理システムを図示している。
【図2】本発明の実施例による処理システムを図示している。
【図3A】本発明の実施例による分離部材内の開口部の拡大図を表す。
【図3B】本発明の実施例による中性化装置グリッド内の開口部の拡大図を表す。
【図4】本発明の実施例による基板検査用処理システムを図示している。
【図5】本発明の実施例による処理システムを図示している。
【図6】本発明の実施例による処理システムを図示している。
【発明を実施するための形態】
【0017】
本発明の実施例によると、負イオンのプラズマを生成する処理システムが記載されている。当該処理システムでは、負に帯電したイオンを有する静かなプラズマが生成される。当該処理システムは、第1プロセスガスを用いてプラズマを発生させる第1チャンバ領域、及び分離部材によって前記第1チャンバ領域から隔離されている第2チャンバ領域を有する。前記第1チャンバ領域内のプラズマから生じる電子は前記第2チャンバ領域へ輸送されて、第2プロセスガスとの衝突によって静かなプラズマを生成する。前記第2チャンバ領域と結合する圧力制御システムが前記第2チャンバ領域内の圧力を制御するのに利用される。前記第2チャンバ領域内の圧力が制御されることによって、前記第1チャンバ領域から生じた電子は前記第2プロセスガスとの衝突を抑制して、負の電荷を有する前記静かなプラズマを生成するエネルギーの小さな電子を生成する。
【0018】
「静かな(quiescent)」という語は本明細書においては、第2チャンバ領域で生成されるプラズマと第1チャンバ領域で生成されるプラズマとを区別するのに用いられている。たとえばプラズマは、電磁(EM)エネルギーを第1プロセスガスへ結合させて電子を加熱することによって第1チャンバ領域内に生成されるが、その一方で、第1チャンバ領域から第2チャンバ領域へ電子を輸送して第2プロセスガスと相互作用させることによって第2チャンバ領域内に生成される。第2チャンバ領域と結合する圧力制御システムは、第1チャンバ領域から生じた電子が、少なくとも1種類の負に帯電したガス種を有する前記第2プロセスガスとの衝突を抑制して、負の電荷を有する前記静かなプラズマを生成するエネルギーの小さな電子を生成するように前記第2圧力を制御するのに利用される。
【0019】
当該システムは、負イオン(つまりイオン-イオンプラズマ)の効率的な生成を助けながら、プラズマから引き出された負イオンについて(相対的に)狭いエネルギースペクトルを生成することを可能にする。引き出された負イオンが中性化される場合、その結果発生する中性ビームは(相対的に)狭い中性ビームエネルギーを有することができる。図1を参照すると、負イオンのプラズマ生成及び引き出しを利用して中性ビームを生成する処理システム1が図示されている。
【0020】
当該処理システム1は、第1圧力で第1プロセスガス22を受けるように備えられている第1チャンバ領域20、及び該第1チャンバ領域20の下流に設けられていて第2圧力で第2プロセスガスを受けるように備えられている第2チャンバ領域30を有する中性ビーム発生チャンバ10を有する。第2プロセスガス32は少なくとも1種類の電気的に陰性のガスを有する。プラズマ発生システム70は、第1チャンバ領域20と結合し、かつ第1プロセスガス22から(破線によって表されている)プラズマを生成するように備えられている。
【0021】
さらに図1に図示されているように、プラズマシース12が(破線によって表されているように)中性ビーム発生チャンバ10の閉じ込め面に形成されている。上述したように、プラズマシースは、バルクプラズマと閉じ込め面-たとえば閉じ込め導電性面-との間の境界層を表す。一般的にプラズマシースは、面内の不連続部分-たとえばアパーチャ(たとえば閉じ込め面を貫通するように形成された開口部又は細孔)-付近を除くプラズマを閉じ込める導電性面に近接する。アパーチャサイズ(つまり横方向寸法すなわち直径)がデバイ長未満であるときには、プラズマシースはそのアパーチャのすぐ近くには設けられない。
【0022】
さらに図1を参照すると、分離部材50が第1チャンバ領域20と第2チャンバ領域30の間に設けられている。分離部材50は1つ以上の開口部52を有し、その開口部52は、第2チャンバ領域30内に静かなプラズマを生成するため、第1チャンバ領域20内のプラズマから第2チャンバ領域30内のプラズマへの電子の輸送を可能にするように備えられている。分離部材50内の開口部52は超デバイ長アパーチャを有して良い。つまり横方向寸法すなわち直径がデバイ長よりも長い。開口部は、適切な電子の輸送を可能にするのに十分な大きさであって良く、かつその開口部は、分離部材50にわたる電子の加熱を防止又は緩和するのに十分な小ささであって良い。
【0023】
それに加えて圧力制御システム42は、処理システム1と結合し、かつ第2圧力を制御するように備えられている。第1チャンバ領域20から生じた電子は、第2プロセスガスとの衝突を抑制することで、第2チャンバ領域内の負の電荷を有する静かなプラズマを生成するエネルギーの小さな電子を生成する。
【0024】
処理システム1はまた、該処理システム1の排出口と結合して、かつ負の電荷を有するイオンの一部又は全部を中性化するように備えられた中性化装置グリッド80をも有する。中性化装置グリッド80はグランドと結合しても良いし、又は電気的にバイアス印加されていても良い。中性化装置グリッド80は、以降で詳述するようにデバイ長未満の中性化装置グリッドであって良い。
【0025】
任意で処理システム1は第2チャンバ領域30の下流に設けられた第3チャンバ領域40を有して良い。第3チャンバ領域40の排出口は中性化装置グリッド80と結合する。圧力バリア60は、第2チャンバ領域30と第3チャンバ領域40の間に設けられ、かつ第2チャンバ領域30の第2圧力と第3チャンバ領域40の第3圧力との間の差圧を生成するように備えられて良い。ここで第3圧力は第2圧力よりも小さい。圧力バリア60の開口部は超デバイ長アパーチャを有して良い。開口部は、第2チャンバ領域30と第3チャンバ領域40との間の差圧が生じうる程度に十分小さくて良い。
【0026】
任意で処理システム1は、第1チャンバ領域20の周辺に設けられていて、かつプラズマと接するように備えられている1つ以上の電極65を有して良い。電源は、1つ以上の電極65と結合して、かつ電圧と1つ以上の電極65とを結合するように備えられて良い。1つ以上の電極65は、円筒形中空陰極として機能するように備えられた電源電極(powered electrode)を有して良い。たとえば1つ以上の電極65は、第1チャンバ領域20内に生成されたプラズマのプラズマ電位、及び/又は電子温度を減少させるのに利用されて良い。
【0027】
図1に図示されているように、電子は第1チャンバ領域20から分離部材50を介して第2チャンバ領域30へ輸送される。電子の輸送は拡散による駆動でも良いし、又は電場が促進する拡散による駆動でも良い。電子は分離部材50から飛び出して第2チャンバ領域30へ入り込むので、その電子は第2プロセスガスとの衝突を起こしてエネルギーを失うことで、電子温度を減少させる(図1参照)。例示目的のため、第2プロセスガス32は負の電荷を有するガスとして塩素(Cl2)を有する。
【0028】
電子温度が減少するとき、第2プロセスガスの電気的に陰性のガス種(たとえばCl2)は、Cl2+e→Cl-+Cl、によって(分解性の)電子付着を起こす。
【0029】
電子温度が減少することで、電子濃度(e-)は減少し、かつ負に帯電した塩素イオン(Cl-)の濃度が上昇する(図1参照)。(複数の)種類の電気的に陰性のガス種が第1プロセスガスに導入されて良い。しかし負に帯電したイオンを生成する効率は減少する。
【0030】
ここで図2を参照すると、本発明の実施例による負イオンのプラズマを生成する処理システムが供されている。当該処理システム100は、第1圧力で第1プロセスガスを受けるように備えられている第1チャンバ領域120、及び該第1チャンバ領域120の下流に設けられていて第2圧力で第2プロセスガスを受けるように備えられている第2チャンバ領域130を有する。
【0031】
第1ガス注入システム122は、第1チャンバ領域120と結合し、かつ第1プロセスガスを導入するように備えられている。第1プロセスガスは、電気的に陽性のガス(たとえばAr又は他の希ガス)、電気的に陰性のガス(たとえばCl2、O2等)、又はこれらの混合ガスを有して良い。たとえば第1プロセスガスは、たとえばArのような希ガスを有して良い。第1ガス注入システム122は、1つ以上のガス供給体すなわちガス源、1つ以上の制御バルブ、1つ以上のフィルタ、1つ以上のマスフローコントローラ等を有して良い。
【0032】
第2ガス注入システム132は、第2チャンバ領域130と結合し、かつ第2プロセスガスを導入するように備えられている。第2プロセスガスは、少なくとも1種類の電気的に陰性のガス(たとえばO2、N2、Cl2、HCl、CCl2Cl2、SF6等)を有する。第2ガス注入システム132は、1つ以上のガス供給体すなわちガス源、1つ以上の制御バルブ、1つ以上のフィルタ、1つ以上のマスフローコントローラ等を有して良い。
【0033】
プラズマ発生システム160は、第1チャンバ領域120と結合し、かつ第1プロセスガスからプラズマ125(実線で示されている)を生成するように備えられている。プラズマ発生システム160は、容量結合性プラズマ源、誘導結合性プラズマ源、変成器と結合するプラズマ源、マイクロ波プラズマ源、表面波プラズマ源、又はヘリコン波プラズマ源のうちの少なくとも1つを有する。
【0034】
たとえばプラズマ発生システム160は誘導コイルを有して良い。高周波(RF)出力は、任意のインピーダンス整合ネットワークによってRF発生装置を介して前記誘導コイルと結合する。RF周波数でのEMエネルギーは、誘導コイルから誘電体窓(図示されていない)を介してプラズマ125と誘導結合する。誘導コイルへのRF出力の印加は、約10MHzから約100MHzの範囲であって良い。それに加えて、スロットファラデーシールド(図示されていない)が、誘導コイルとプラズマ125の間の容量結合を減少させるのに用いられて良い。
【0035】
インピーダンス整合ネットワークは、反射出力を減少させることによってプラズマ125へのRF出力の伝送を改善するように機能して良い。整合ネットワークの幾何学形状(たとえばL型、π型、T型等)及び自動制御法は当業者には周知である。
【0036】
誘導コイルはヘリカルコイルを有して良い。あるいはその代わりに誘導コイルは、上述した変成器結合プラズマ(TCP)のようなプラズマ125とやり取りする「螺旋状」又は「パンケーキ型」コイルであって良い。誘導結合プラズマ(ICP)源又は変成器結合プラズマ(TCP)源は当業者には周知である。
【0037】
電気的に要請の放電においては、プラズマの組成するものには電子と正イオンが含まれる。擬中性プラズマ近似を用いることによって、自由電子の数は個々の帯電した正イオンの数に等しい。例として電気的に陽性の放電においては、電子密度は約1010cm-3〜約1013cm-3の範囲であって良く、電子温度は約1eV〜約10eVの範囲であって良い(利用されるプラズマ源の種類に依存する)。
【0038】
さらに図2を参照すると、分離部材150が第1チャンバ領域120と第2チャンバ領域130の間に設けられている。分離部材150は1つ以上の開口部152を有する。1つ以上の開口部152は、第2チャンバ領域130内に静かなプラズマ135(破線で示されている)を生成するため、第1チャンバ領域120内のプラズマ125から第2チャンバ領域130への電子の輸送を可能にするように備えられている。分離部材150内の1つ以上の開口部152は超デバイ長アパーチャを有して良い。つまり横方向寸法すなわち直径がデバイ長よりも長い。1つ以上の開口部152は適切な電子の輸送を可能にするのに十分な大きさであって良く、かつ分離部材150にわたる電子加熱を防止又は緩和するのに十分小さくて良い。図3Aは分離部材を貫通する開口部の概略的断面積を与えている。図3Aは前記開口部の横方向寸法に対するプラズマシースの寸法を図示している。ここで電子(e-)がプラズマから放出される。
【0039】
第2チャンバ領域130では、処理チャンバ110及び分離部材150が誘電材料-たとえばSiO2又は石英-から作られて良い。誘電材料は電荷損失を抑制し、かつチャンバを通り抜ける電流路を除去することができる。
【0040】
それに加えて圧力制御システムは、処理システム100と結合し、かつ第2圧力を制御するように備えられている。第1チャンバ領域120からの電子は、第2プロセスガスとの衝突を抑制することでエネルギーの小さな電子を生成して良い。そのエネルギーの小さな電子は第2チャンバ領域130内において静かなプラズマ135を生成する。たとえば分離部材150を介して放出される電子は約1eVの電子温度を有して良く、かつ電子温度が約0.05eV〜0.1eVに減少するときには、効率的な負イオンの生成を実現することができる。図2に図示されているように、圧力制御システムは第2チャンバ領域130と結合する。しかし圧力制御システムは、第1チャンバ領域120と結合して良いし、又は第1チャンバ領域120及び第2チャンバ領域130と結合しても良い。
【0041】
圧力制御システムは、排気ダクト172を介して処理チャンバ110と結合する排気システム170、排気システム170と処理チャンバ110の間に設けられていて排気ダクト172と結合するバルブ174、及び処理チャンバ110と結合して第2圧力を測定するように備えられている圧力測定装置176を有する。圧力測定装置176、排気システム170、及びバルブ174と結合する制御装置180は、第2圧力の監視、調節、又は制御のうちの少なくとも1つを行うように備えられて良い。
【0042】
排気システム170はたとえば、最大で5000l/sec(以上)の排気速度での排気が可能なターボ分子真空ポンプ(TMP)を有して良い。ドライプラズマエッチングに用いられる従来のプラズマ処理装置では、1000〜3000l/secのTMPが一般に用いられている。TMPは、典型的には50mTorr未満の低圧処理にとって有用である。高圧(約50mTorrよりも高い圧力)での処理については、メカニカルブースターポンプ及びドライ粗引きポンプが用いられて良い。さらにチャンバ圧力を監視する圧力測定装置176が処理チャンバ110と結合して良い。圧力測定装置176はたとえば、MKSインスツルメンツによって市販されている相対又は絶対キャパシタンスマノメータであって良い。
【0043】
圧力制御システムは処理チャンバ110と結合する排出シリンダ178をさらに有して良い。排出シリンダ178を介して処理チャンバ110は(たとえば大気圧未満である真空圧力にまで)減圧するように排気されて良い。排出シリンダ178は1つ以上の開口部を有し、その1つ以上の開口部は、デバイ長よりも短い(デバイ長未満)横方向寸法(すなわち直径)を有するか、又はデバイ長よりも長い(超デバイ)横方向寸法(すなわち直径)を有して良い。それに加えて排出シリンダ178は電気的にバイアス印加されて良いし、又はグランドに結合しても良い。
【0044】
一例によると、排出シリンダ178は1つ以上のデバイ長未満の開口部を有し、かつ排出チャンバ178は負の電圧にバイアス印加される。正の電荷を有するイオン中性ガスが排出シリンダ178を介して排気されて良い。1つ以上の開口部はたとえば、直径約1mmで、かつ長さ約3mmであって良い。
【0045】
他の例によると、排出シリンダ178は1つ以上の超デバイ長開口部を有し、かつ排出チャンバ178はグランドと結合する。ガスは、比較的高いフローコンダクタンスを有する排出シリンダ178を介して排気されて良い。
【0046】
排出シリンダ178は伝導性材料から作られて良い。たとえば排出シリンダ178はRuO2(酸化ルテニウム)又はHf(ハフニウム)から作られて良い。処理システム100は、処理チャンバ110の排出口と結合して負に帯電したイオンの一部又は全部を中性化するように備えられた中性化装置グリッド190をも有する。中性化装置グリッド190は1つ以上のアパーチャ192を有する。イオン種は1つ以上のアパーチャ192を通過することで、中性化される。中性化装置グリッド190はグランドに結合して良いし、又は電気的にバイアス印加されても良い。中性化装置グリッド190はデバイ長未満の中性化装置グリッドであって良い。1つ以上のアパーチャ192はたとえば、直径約1mmで、かつ長さが12mmであって良い。
【0047】
1つ以上のアパーチャ172の直径(すなわち(複数の)横方向寸法)がデバイ長のオーダー又はそれ以下(つまりデバイ長未満)であり、かつアスペクト比(つまり図3Bにおける横方向寸法Dに対する縦方向寸法Lの比)が約1:1以上に維持されている場合、プラズマシースの幾何学形状は、開口部を有していない中性化装置グリッド(つまり平坦な壁)によって引き起こされる幾何学形状の影響を実質的に受けず、かつ実質的に平坦なままである。
【0048】
従って、イオンと電子の再結合が起こりやすい領域がアパーチャに隣接しているが、この領域は必ずしもそのアパーチャ内部というわけではなく、かつ大きなエネルギーを有する中性粒子数はイオン密度に対して増大する。さらに中性化装置グリッドの上流に生成されるプラズマは、閉じ込められ、かつアパーチャを通り抜ける荷電粒子束を生成しない。しかし噴出する中性ビーム成分は1つ以上のアスペクト比を増大させることによって減少させることができるが、アパーチャを通り抜ける粒子束はまた噴出する中性ビーム成分をも含んで良い。
【0049】
中性化装置グリッド190は伝導性材料から作られて良い。たとえば中性化装置グリッド190はRuO2(酸化ルテニウム)又はHf(ハフニウム)から作られて良い。
【0050】
デバイ長未満の中性化装置グリッドを有する高熱中性ビーム源についてのさらなる詳細は特許文献1で与えられている。
【0051】
さらに図2を参照すると、処理システム100は制御装置180をさらに有する。制御装置180は、マイクロプロセッサ、メモリ、及びデジタルI/Oポートを有する。デジタルI/Oポートは、処理システム100からの出力を監視するのみならず、プロセスシステム100の入力をやり取りし、かつ起動させるのに十分な制御電圧を発生させる能力を有する。しかも制御装置180は、プラズマ発生装置160、圧力制御システム、第1ガス注入システム122、第2ガス注入システム132、及び中性化装置グリッド190と結合する電気バイアスシステム(図示されていない)と結合し、情報をやり取りする。メモリ内に記憶されたプログラムは、記憶されたプロセスレシピに従って処理システム100の上記構成要素を制御するのに利用される。プロセスシステムの一例はデルコーポレーション(Dell Corporation)から販売されているDELL PRECISION WORKSTATION610(商標)である。制御装置180はまた、汎用コンピュータ、デジタル信号プロセッサ等として実装されても良い。
【0052】
制御装置180は、処理システム100に対して局所的に設置されても良いし、又はインターネット若しくはイントラネットを介して処理システム100に対して離れた場所に設置されても良い。よって制御装置180は、直接接続、イントラネット、インターネット及びワイヤレス接続のうちの少なくとも1を用いることによって処理システム100とのデータのやり取りをして良い。制御装置180は、たとえば顧客側(つまりデバイスメーカー等)のイントラネットと結合して良いし、又はたとえば売り手側(つまり装置製造者等)のイントラネットと結合しても良い。さらに別なコンピュータ(つまり制御装置、サーバー等)が、たとえば制御装置とアクセスすることで、直接接続、イントラネット及びインターネットのうちの少なくとも1つを介してデータのやり取りをして良い。
【0053】
さらに本発明の実施例は、ある形態の処理コアで実行されるか、又はさもなければ機械が読み取り可能な媒体で実装若しくは実現されるソフトウエアプログラムを支持するのに用いられて良い。機械が読み取り可能な媒体は、機械(たとえばコンピュータ)によって読み取ることのできる形式で情報を記憶する任意の機構を含む。たとえば機械が読み取り可能な媒体は、リードオンリーメモリ(ROM)、ランダムアクセスメモリ(RAM)、磁気ディスク記憶媒体、及びフラッシュメモリデバイス等を有する。
【0054】
ここで図4を参照すると、本発明の実施例による負イオンプラズマを生成する処理システム100が供される。図4に図示されているように、処理システム100は基板処理システム102と結合し、基板処理システム102は基板ホルダ104上で基板105を処理するための基板処理領域103を供する。基板105は中性ビームによって処理されて良いし、又は、中性化装置グリッド190が省略されるか若しくは超デバイ長アパーチャを備えるように設計されている場合には負イオンプラズマによって処理されても良い。
【0055】
基板ホルダ104は、冷却システム及び/又は加熱システムを有する温度制御システムを有して良い。たとえば冷却システム又は加熱システムは再循環流体流を有して良い。その再循環流体流は、冷却時には、基板ホルダ104から熱を受け取って、熱を熱交換システム(図示されていない)へ輸送し、又は、加熱時には、熱交換システムから流体流へ熱を輸送する。それに加えてたとえば、冷却システム又は加熱システムは加熱/冷却素子を有して良い。加熱/冷却素子とはたとえば、抵抗加熱素子、又は基板ホルダ104内部に設けられた熱電ヒーター/クーラーである。
【0056】
しかも基板ホルダ104は、背面のガス供給システムを介した基板105の背面への伝熱ガスの供給を助けることで、基板105と基板ホルダ104の間のガスギャップ熱伝導を改善することが可能である。係るシステムは、昇温又は降温させるような基板の温度制御が必要なときに利用されて良い。たとえば背面ガスシステムは2領域ガス分配システムを有して良い。背面ガス(たとえばヘリウム)圧力は、基板105の中心と端部の間で独立に変化して良い。
【0057】
他の実施例では、加熱/冷却素子-たとえば抵抗加熱素子又は熱電ヒーター/クーラー-は、基板処理システム102のチャンバ壁内、又は基板処理システム102内部の任意の部品内に含まれて良い。
【0058】
基板処理システム102が基板105のプラズマ処理を行うように備えられている場合、基板ホルダは電気的にバイアス印加されて良い。たとえば基板ホルダ104は任意のインピーダンス整合ネットワークを介してRF発生装置と結合して良い。基板ホルダ104(又は下部電極)へ出力を印加する際の典型的な周波数は約0.1MHz〜約100MHzの範囲であって良い。
【0059】
ここで図5を参照すると、本発明の実施例による負イオンを生成する処理システム200が供される。処理システム200は、第1チャンバ領域120の周囲に設けられていてプラズマ125と接するように備えられている1つ以上の電極210を有する。電源220は、1つ以上の電極210と結合し、かつ1つ以上の電極210と電圧を結合するように備えられている。1つ以上の電極210は、円筒形の中空の陰極として機能するように備えられている円筒形の電源電極を有して良い。たとえば1つ以上の電極210は、第1チャンバ領域120内に生成されるプラズマ125のプラズマ電位及び/又は電子温度を減少させるのに利用されて良い。
【0060】
電源220は直流(DC)電源を有して良い。DC電源は可変DC電源を有して良い。それに加えてDC電源は両極性DC電源を有して良い。DC電源は、そのDC電源の極性、電流、電圧、若しくはon/off状態、又はこれらの結合を監視、調節、又は制御を実行するように備えられたシステムをさらに有して良い。電気フィルタが、DC電源からのRF出力を分離するのに利用されて良い。
【0061】
電源220によって電極210へ印加されるDC電圧は約-5000ボルト(V)〜約1000Vの範囲であって良い。望ましくはDC電圧の絶対値は約100V以上の値を有する。より望ましくはDC電圧の絶対値は約500V以上の値を有する。それに加えてDC電圧は負の極性を有することが望ましい。たとえばDC電圧は約-1V〜約-5kVの範囲であって良い。望ましくは、DC電圧は約-1V〜約-2kVの範囲であって良い。
【0062】
さらにDC電圧は、プラズマ125のプラズマ電位及び/又は電子温度を減少させるのに適した負の電圧であることが望ましい。たとえば静かなプラズマ135に対するプラズマ125のプラズマ電位を減少させることによって、第1チャンバ領域120と第2チャンバ領域130の間での電場によって促進される電子拡散を起こすことができる。さらにたとえばプラズマ125の電子温度を減少させることによって、負イオンを効率的に生成するための電子エネルギーを発生させるのに必要とされる衝突が少なくなる。
【0063】
1つ以上の電極210は伝導性材料から作られて良い。たとえば1つ以上の電極210はRuO2(酸化ルテニウム)又はHf(ハフニウム)から作られて良い。
【0064】
ここで図6を参照すると、本発明の実施例による負イオンプラズマを発生させる処理システム300が供される。処理システム300は、第2チャンバ領域130の下流に設けられた第3チャンバ領域140をさらに有して良い。ここで第3チャンバ領域140の排出口は中性化装置グリッド190と結合する。圧力バリア310は、第2チャンバ領域130と第3チャンバ領域140の間に設けられて良く、かつ第2チャンバ領域130内の第2圧力と第3チャンバ領域140内の第3圧力の間に圧力差を生じさせるように備えられて良い。ここで第3圧力は第2圧力よりも小さい。圧力バリア310は、超デバイ長アパーチャを有して良い1つ以上の開口部312を有する。1つ以上の開口部312は、第2チャンバ領域130と第3チャンバ領域140の間で圧力差が生じることを可能にするのに十分な小ささであって良い。圧力バリア310を導入することによって、第2圧力を増大させることが可能である。第2圧力の増大は、第2チャンバ領域130内での効率的な衝突の抑制にとって有利となりうる。
【0065】
圧力バリア310は誘電材料-たとえばSiO2又は石英-から作られて良い。
【0066】
一例によると、基板処理領域(たとえば図4の基板処理領域103)内で基板を処理するための中性ビームを生成するとき、第1圧力は約10mTorr〜約100mTorrの範囲(たとえば約50〜70mTorr)であって良く、第2圧力は約10mTorr〜約100mTorrの範囲(たとえば約50〜70mTorr)であって良く、第1圧力は約1mTorr〜約10mTorrの範囲(たとえば約3〜5mTorr)であって良く、かつ基板処理領域内での圧力は約1mTorr未満であって良い(たとえば約0.1〜0.3mTorr)。第3チャンバ領域と結合する真空排気システムは約1000l/sec(以上の)排気速度を供して良い。基板処理領域と結合する真空排気システムは約3000l/secの排気速度を供して良い。圧力バリアを流れるフローコンダクタンスは約10l/sec〜500l/sec(たとえば約50l/sec)であって良い。中性化装置グリッドを流れるフローコンダクタンスは約100l/sec〜1000l/sec(たとえば約300l/sec)であって良い。

【特許請求の範囲】
【請求項1】
負の電荷を有するイオンを含むプラズマを生成する処理システムであって:
第1プロセスガスを受け、かつ第1圧力で動作するように備えられた第1チャンバ;
前記第1チャンバと結合して前記第1プロセスガスを導入するように備えられた第1ガス注入システム;
前記第1チャンバと結合して第2プロセスガスを受け、かつ第2圧力で動作するように備えられた第2チャンバであって、基板処理のための基板処理システムと結合するように備えられた排出口を有する第2チャンバ;
前記第2チャンバと結合して前記第2プロセスガスを導入するように備えられた第2ガス注入システム;
前記第1チャンバと結合して前記第1プロセスガスからプラズマを生成するように備えられたプラズマ発生システム;
前記第1チャンバと第2チャンバの間に設けられた分離部材であって、前記第2チャンバ内に静かなプラズマを生成するため、前記の第1チャンバのプラズマから前記第2チャンバへ電子を供給するように備えられた1つ以上の開口部を有する、分離部材;並びに、
前記第1及び第2チャンバと結合する圧力制御システムであって、前記第1チャンバから生じた電子が、少なくとも1種類の電気的に陰性のガス種を有する前記第2プロセスガスとの衝突を抑制して、負の電荷を有する前記静かなプラズマを生成するエネルギーの小さな電子を生成するように前記第2圧力を制御するように備えられた圧力制御システム;
を有する処理システム。
【請求項2】
前記プラズマ発生システムが、容量結合性プラズマ源、誘導結合性プラズマ源、変成器と結合するプラズマ源、マイクロ波プラズマ源、表面波プラズマ源、又はヘリコン波プラズマ源のうちの少なくとも1つを有する、請求項1に記載の処理システム。
【請求項3】
前記プラズマ発生システムは変成器結合プラズマ源を有し、
前記変成器結合プラズマ源は誘導コイルを有し、
前記誘導コイルは、前記第1チャンバの上方に設けられていて、かつ誘電体窓を介して前記第1チャンバ内部へ電磁(EM)エネルギーを結合するように備えられている、
請求項1に記載の処理システム。
【請求項4】
前記第1チャンバの周囲に設けられていて前記プラズマと接するように備えられている1つ以上の電極;及び
前記1つ以上の電極と結合し、かつ該1つ以上の電極と電圧を結合するように備えられている電源;
をさらに有する、請求項1に記載の処理システム。
【請求項5】
前記第1チャンバの周辺を取り囲み、かつ前記プラズマと接するように備えられている円筒形電極;及び、
前記円筒形電極と結合し、かつ前記円筒形電極に電圧を結合するように備えられている、電源;
をさらに有する、請求項1に記載の処理システム。
【請求項6】
前記円筒形電極が円筒形の中空の陰極として機能し、かつ
前記電圧が-1V乃至-5kVの範囲の直流電圧を有する、
請求項5に記載の処理システム。
【請求項7】
前記電圧が-1V乃至-2kVの範囲の直流電圧を有する、請求項6に記載の処理システム。
【請求項8】
前記圧力制御システムが:
排気ダクトを介して前記第2チャンバと結合する排気システム;
前記排気システムと前記第2チャンバの間に設けられていて前記排気ダクトと結合するバルブ;
前記第2チャンバと結合して前記第2圧力を測定するように備えられている圧力測定装置;並びに、
前記圧力測定装置及び前記バルブと結合して、前記第2圧力の監視、調節、又は制御のうちの少なくとも1つを行うように備えられている制御装置;
を有する、
請求項1に記載の処理システム。
【請求項9】
中性化装置グリッドをさらに有する処理システムであって、前記中性化装置グリッドは、前記の第2チャンバの排出口と結合し、かつ前記負に帯電したイオンの一部又は全部を中性化するように備えられている、請求項1に記載の処理システム。
【請求項10】
前記中性化装置グリッドはデバイ長未満の中性化装置グリッドを有する、請求項9に記載の処理システム。
【請求項11】
前記第2チャンバの下流に設けられた第3チャンバをさらに有する処理システムであって、
前記圧力バリアは、前記第2チャンバと前記第3チャンバの間に設けられ、かつ前記第2チャンバの第2圧力と前記第3チャンバ領域の第3圧力との間の差圧を生成するように備えられていて、かつ
前記第3圧力は前記第2圧力よりも小さい、
請求項1に記載の処理システム。
【請求項12】
前記圧力制御システムが前記第3チャンバと結合する、請求項11に記載の処理システム。
【請求項13】
中性化装置グリッドをさらに有する処理システムであって、前記中性化装置グリッドは、前記の第3チャンバの排出口と結合し、かつ負に帯電したイオンの一部又は全部を中性化するように備えられている、請求項11に記載の処理システム。
【請求項14】
前記中性化装置グリッドがデバイ長未満の中性化装置グリッドを有する、請求項13に記載の処理システム。
【請求項15】
負に帯電したイオンによって生成させる中性ビーム源であって:
第1プロセスガスを受け、かつ第1圧力で動作するように備えられた第1チャンバ領域と、前記第1チャンバの下流に設けられる第2チャンバ領域であって、第2プロセスガスを受け、かつ第2圧力で動作するように備えられた第2チャンバを有する中性ビーム発生チャンバ;
前記第1チャンバ領域と結合して前記第1プロセスガスを導入するように備えられた第1ガス注入システム;
前記第2チャンバと結合して前記第2プロセスガスを導入するように備えられた第2ガス注入システム;
前記第1チャンバと結合して前記第1プロセスガスからプラズマを生成するように備えられたプラズマ発生システム;
前記第1チャンバ領域と第2チャンバ領域の間に設けられた分離部材であって、前記第2チャンバ領域内に静かなプラズマを生成するため、前記第1チャンバ領域から前記第2チャンバ領域へ電子を供給するように備えられた1つ以上の開口部を有する、分離部材;
前記中性ビーム発生チャンバと結合する圧力制御システムであって、前記第1チャンバ領域から生じた電子が、前記第2プロセスガスとの衝突を抑制して、負の電荷を有する前記静かなプラズマを生成するエネルギーの小さな電子を生成するように前記第2圧力を制御するように備えられた圧力制御システム;並びに、
前記の第2チャンバ領域の排出口と結合して、前記負に帯電したイオンの一部又は全部を中性化するように備えられたデバイ長未満の中性化装置グリッド;
を有する中性ビーム源。
【請求項16】
前記第2チャンバ領域の下流に設けられた第3チャンバ領域をさらに有する中性ビーム源であって、前記第3チャンバ領域の排出口が前記デバイ長未満の中性化装置グリッドと結合する、請求項15に記載の中性ビーム源。
【請求項17】
圧力バリアをさらに有する中性ビーム源であって、
前記圧力バリアは、前記第2チャンバ領域と前記第3チャンバ領域の間に設けられ、かつ前記の第2チャンバ領域の第2圧力と前記の第3チャンバ領域の第3圧力の間に差圧を生じさせるように備えられ、かつ
前記第3圧力は前記第2圧力よりも小さい、
請求項16に記載の中性ビーム源。
【請求項18】
前記第1チャンバ領域の周囲を取り囲んで前記プラズマと接するように備えられている円筒形電極;及び、
前記円筒形電極と結合して電源を前記前記円筒形電極へ結合するように備えられている電源;
をさらに有する中性ビーム源であって、
前記円筒形電極は円筒形の中空の陰極として機能し、かつ
前記電圧は-1V(ボルト)乃至-5kVの範囲の直流(dc)電圧を有する、
請求項17に記載の中性ビーム源。
【請求項19】
前記圧力制御システムが、接地された又は電気的にバイアス印加された排出シリンダを介して前記第3チャンバ領域と結合し、かつ
前記排出シリンダは、該排出シリンダを貫通する1つ以上の超デバイ長開口部、若しくは該排出シリンダを貫通する1つ以上のデバイ長未満の開口部、又は前記超デバイ長開口部とデバイ長未満の開口部の結合を有する、
請求項18に記載の中性ビーム源。
【請求項20】
負に帯電したイオンを生成する処理システムであって:
第1チャンバ領域及び第2チャンバ領域を有する処理チャンバ;
前記第1チャンバ領域内の第1プロセスガスからプラズマを生成する手段;
前記第2チャンバ領域から前記第1チャンバ領域を分離する手段;
前記の第1チャンバ領域内のプラズマから前記第2チャンバ領域へ電子を輸送する手段;並びに、
前記の輸送された電子を用いることによって前記第2チャンバ領域内の第2プロセスガスから負に帯電したイオンを生成する手段;
を有する処理システム。

【図1】
image rotate

【図2】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公表番号】特表2010−541167(P2010−541167A)
【公表日】平成22年12月24日(2010.12.24)
【国際特許分類】
【出願番号】特願2010−527060(P2010−527060)
【出願日】平成20年9月22日(2008.9.22)
【国際出願番号】PCT/US2008/077163
【国際公開番号】WO2009/042534
【国際公開日】平成21年4月2日(2009.4.2)
【出願人】(000219967)東京エレクトロン株式会社 (5,184)
【Fターム(参考)】