説明

距離計測装置

【課題】発光素子の温度変化に対する計測精度の変化を抑制する。
【解決手段】投光手段1は、対象空間に投光する発光素子11を備え、受光手段2は、対象空間からの光を受光する受光素子21を備える。制御手段3は、投光手段1に変調信号を与えて発光素子11から時間経過に伴って強度が変化する変調光を投光させ、変調信号に同期する復調信号を受光手段2に与えて受光素子21の出力から変調光の成分を抽出する。演算手段4は、投光手段1から対象空間に投光された変調光が受光手段2に受光されるまでの時間を計測することにより、対象空間に存在する物体までの距離を算出する。温度測定手段6は、発光素子11の温度を計測し、精度維持手段7は、温度測定手段6が計測した温度が高いほど発光素子11の駆動電流を大きくし、発光素子11の温度変化に対して受光素子21に入射する変調光の変化を抑制する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、投光から受光までの時間を用いて光を反射した物体までの距離を計測する距離計測装置に関するものである。
【背景技術】
【0002】
従来から、投光から受光までの時間を計測し、投光された光を反射した物体までの距離を計測するアクティブ型の距離計測装置が知られている。この距離計測装置は、光の飛行時間(Time Of Flight)を距離に換算する。投光から受光までの時間を計測するには、受光した光が投光された時刻を知る必要があるが、数m程度の近距離であると、数十ns程度の短時間の計測が必要になるから、距離計測の精度を高めることが困難である。
【0003】
そこで、飛行時間を用いて距離測定を行う際に、投光から受光までの時間を精度よく計測するために、強度を変調した光を投光し、受光した光の強度変化を検出する技術が提案されている(たとえば、特許文献1参照)。特許文献1に記載された技術では、一定周期で正弦波状に強度が変化する変調光を投光するとともに、変調光に同期する複数のタイミングで受光強度を検出することにより、受光した変調光の投光した変調光に対する位相遅れを算出している。
【0004】
すなわち、変調光の位相の90度間隔のタイミングで受光強度が求められ、各タイミングにおける受光強度の既知の関係を用いて位相遅れを算出している。具体的には、変調光の0度、90度、180度、270度の4位相にそれぞれ同期したタイミングで得られる受光強度を、A0,A1,A2,A3とすると、位相差φは、φ=tan−1{(A0−A2)/(A1−A3)}という関係式で求められる。ここに、符号は無視している。
【0005】
上述のようにして位相差φが求められると、光束c[m/s]および変調光の周波数f[Hz]を用いることによって、物体までの距離L[m]が求められる。すなわち、位相差をφ[rad]とすれば、L=(φ/2π)(c/f)/2になる。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2004−45304号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところで、上述した関係式は、変調光が正弦波であることを前提にしており、受光強度を検出するタイミングが正確であっても、受光した変調光の波形に歪みがあると、位相差φを正確に求めることができない。すなわち、受光した変調光の波形が歪んでいると、距離を正確に計測することができない。
【0008】
受光した変調光の波形が歪む主な原因は、環境光の影響と、変調光を投光する発光素子の特性であると考えられる。とくに、屋外で使用する場合には、環境光である太陽光の影響が大きくなるから、太陽光を除去して受光することが必要である。
【0009】
したがって、太陽光の影響を軽減するために、変調光の波長付近の光のみを透過させる帯域通過フィルタが用いられている。また、屋外で使用する用途では、屋内用よりも光出力の大きい発光素子を採用している。これらの対策により、太陽光の影響による計測精度の低下が抑制される。
【0010】
一方、変調光を投光する発光素子は、応答性の要求から発光ダイオードもしくはレーザダイオードが用いられており、この種の発光素子は、光出力の大きさが温度に依存することが知られている。また、発光波長の波長域やピーク波長も温度の影響により変化する。さらに、発光素子への電気入力に対する光出力の応答も温度の影響を受ける。
【0011】
したがって、発光素子の温度が変化すると、変調光の強度に変化が生じるから、受光する変調光の波形に歪みが生じる可能性がある。また、上述のように、帯域通過フィルタを通して変調光を受光している場合に、波長域やピーク波長が変化すると、帯域通過フィルタに対する透過率が変化するから、受光する変調光の波形が歪む可能性がある。さらに、発光素子の応答特性が温度の影響を受けるから、発光素子への電気入力が正弦波であっても、変調光としての光出力が歪む場合がある。
【0012】
屋外で使用する場合、屋内で使用する場合に比較すると、発光素子の周囲温度の変化が大きく、しかも、比較的短い時間内で温度変化が生じると考えられるから、発光素子の周囲温度の変化に対する対策が必要である。
【0013】
本発明は上記事由に鑑みて為されたものであり、その目的は、発光素子の温度変化に対する計測精度の変化を抑制した距離計測装置を提供することにある。
【課題を解決するための手段】
【0014】
本発明に係る距離計測装置は、対象空間に投光する発光素子を備えた投光手段と、前記対象空間からの光を受光する受光素子を備えた受光手段と、前記投光手段に変調信号を与えて前記発光素子から時間経過に伴って強度が変化する変調光を投光させ、前記変調信号に同期する復調信号を前記受光手段に与えて前記受光素子の出力から変調光の成分を抽出する制御手段と、前記投光手段から対象空間に投光された変調光が前記受光手段に受光されるまでの時間を計測する演算手段と、前記投光手段の温度を計測する温度測定手段と、
前記温度測定手段が計測した温度を用い前記受光素子に入射する変調光の変化を抑制する精度維持手段とを備えることを特徴とする。
【0015】
この距離計測装置において、前記精度維持手段は、前記温度測定手段で計測された温度が高いほど前記発光素子の駆動電流を大きくすることが好ましい。
【0016】
この距離計測装置において、前記精度維持手段は、前記温度測定手段で計測された温度が高いほど発光素子を駆動するタイミングを遅延させることが好ましい。
【0017】
この距離計測装置において、前記精度維持手段は、前記受光素子に入射する光の波長を選択する波長選択フィルタを備え、前記温度測定手段で計測された温度が高いほど前記波長選択フィルタの透過特性を短波長側に変化させることが好ましい。
【0018】
この距離計測装置において、前記投光手段は、発光波長が異なる複数種類の前記発光素子を備え、前記精度維持手段は、前記温度測定手段で計測された温度が高いほど発光波長の短い前記発光素子を用いて前記対象空間に投光することが好ましい。
【0019】
この距離計測装置において、前記投光手段は、前記発光素子の温度を調節する温調装置を備え、前記精度維持手段は、前記温度測定手段で計測された温度が規定の目標温度になるように前記温調装置を制御することが好ましい。
【発明の効果】
【0020】
本発明の構成によれば、発光素子の温度変化に対する計測精度の変化が抑制されるという利点がある。
【図面の簡単な説明】
【0021】
【図1】実施形態の構成例を示すブロック図である。
【図2】同上に用いる発光ダイオードの温度特性を示す図である。
【図3】実施形態の他の構成例を示すブロック図である。
【図4】実施形態のさらに他の構成例に用いる投光手段を示す正面図である。
【図5】実施形態の別の構成例を示すブロック図である。
【発明を実施するための形態】
【0022】
以下に説明する距離計測装置は、図1に示すように、対象空間に投光する発光素子11として発光ダイオードが用いられた投光手段1を備え、対象空間からの光を受光する受光素子21としてCCD撮像素子が用いられた受光手段2を備える。
【0023】
発光ダイオードは、順方向電流が1〜数Aの高輝度型であることが望ましく、投光手段1は、複数個の発光ダイオードを備えることが望ましい。投光手段1に用いる発光素子11は、目的に応じて100Hz〜1GHz程度の範囲の駆動信号で強度を変調することができればよく、用途によっては、発光ダイオードに代えてレーザダイオードなどを用いてもよい。また、発光素子11の発光波長は、赤外線領域を想定しているが、用途によっては、紫外線領域や可視光領域であってもよい。発光素子11が発光ダイオードである場合は、発光ダイオードは直列に接続され、MOSFETのような通電制御素子を通して通電電流が制御される。
【0024】
受光素子21としてはCCD撮像素子のほか、CMOS撮像素子、それらに準じた撮像素子を用いることができる。撮像素子は、複数個の光電変換部が縦横に格子状に配列されているから、受光素子21が撮像素子である場合、撮像素子の視野内において複数箇所の距離を個別に計測することが可能である。したがって、画素値を距離値とする距離画像が生成される。ただし、受光手段2が撮像素子を備えることは必須ではなく、実空間の特定部位までの距離を計測すればよい場合には、フォトダイオードのような受光素子21を用いて実空間の特定部位からの光を受光する構成を採用してもよい。
【0025】
本実施形態は、太陽光が存在する屋外でも使用可能になることを目指しており、そのため、受光手段2は、入射光から変調光に相当する波長を光学的に選択する波長選択フィルタ22を備える。波長選択フィルタ22は、変調光のピーク波長を中心とする比較的狭い波長域の光のみを通過させる必要があるから、たとえば、薄膜を多層に積層した光学薄膜フィルタが用いられる。変調光に赤外線を用いる場合、波長選択フィルタ22は、赤外線を選択的に透過させるように設計される。
【0026】
このような波長選択フィルタ22を用いることにより、太陽光のうち可視光領域、紫外線領域の透過が阻止され、また赤外線領域についても不要範囲の透過が阻止される。すなわち、受光手段2への太陽光の入射を大幅に低減させることになる。
【0027】
投光手段1と受光手段2とは、制御手段3により制御される。制御手段3は、投光手段1から変調光が投光されるように、投光手段1に正弦波状の変調信号を与え、受光手段2には変調信号に同期して規定されるタイミングで変調光を受光するように復調信号を与える。投光手段1に与えられる変調信号は、正弦波でなくてもよく、一定周期で変化する矩形波、三角波、鋸歯状波などから選択される波形を採用してもよい。
【0028】
受光手段2に与える復調信号は、変調信号の波形に対して規定されるタイミングの受光光量が得られるように、受光手段2に受光のタイミングを指示する。たとえば、変調信号の波形が正弦波である場合、変調信号において位相が90度間隔で異なるタイミングの復調信号を受光手段2に与えればよい。変調波形が他の波形である場合は、波形に応じて投光から受光までの時間差を求める関係式が適用できるように、適宜のタイミングの復調信号を受光手段2に与えればよい。変調信号の波形に応じて時間差を求める関係式を定めることは容易である。
【0029】
受光手段2は、復調信号が与えられると、復調信号が与えられたタイミングの受光強度に応じた電荷を光電変換部で生成する。復調信号は、所定時間の幅を有しており、受光手段2は当該時間において受光した受光量に応じた電荷を生成する。変調信号の位相を用いて復調信号の時間の幅を例として示すと、復調信号は、たとえば、0〜30度、90〜120度、180〜210度、270〜300度の各区間を指示し、受光手段2は、区間ごとの受光量に応じた電荷を生成する。また、区間ごとに生成された電荷は混合されることなく、区間ごとに取り出される。受光手段2での電荷の生成は、変調信号の複数周期(数百〜数万周期)に亘って行われ、周期毎に同区間に生成された電荷が蓄積される。
【0030】
電荷を生成するタイミングを制御する技術は、電子シャッタと同様の原理を用いることが可能であるが、この場合は、区間ごとの電荷を蓄積するたびに受光手段2から電荷を読み出さなければならい。すなわち、距離の計測に4区間の電荷を用いるとすれば、4回の撮像によって距離が計測されることになる。
【0031】
なお、光電変換部を複数のグループに分けて電荷を生成するように設計された専用の撮像素子を用いることにより、距離を計測するための撮像回数を2回あるいは1回にすることが可能になる。また、フィールドトランスファ型のCCD撮像素子のように受光領域と蓄積領域(転送領域)とを設けた撮像素子であれば、変調信号の各区間ごとの電荷を受光領域で生成し、複数の区間の電荷を区別して蓄積可能となるように蓄積領域を構成してもよい。前者の構成を採用すれば、4回の撮像を行う場合と比較して距離の計測が可能になる電荷を生成するのに要する時間の短縮が可能になる。また、後者の構成を採用すれば、撮像素子からの電荷の読出を4回行う場合と比較して電荷の読出回数を低減させることが可能になる。これらの構成はすでに知られているからここでは詳述しない。
【0032】
上述した4区間の電荷は受光手段2から読み出されると演算手段4に入力され、演算手段4は受光手段2の出力を用いて距離を算出する。本実施形態では、受光手段2が撮像素子を備えることを想定しているから、撮像素子の視野内に規定した単位領域を画素として、画素ごとの距離が算出される。いま、変調信号の波形(変調光の強度の変化波形)が正弦波であって、変調信号の位相における90度間隔の4区間で電荷を生成している場合、各区間に生成された電荷量(受光手段2の出力値)をA0,A1,A2,A3と仮定する。この場合、投光した変調光と受光された変調光との位相差φと、電荷量A0,A1,A2,A3との関係は、理論的には、φ=tan−1{(A0−A2)/(A1−A3)}になる。
【0033】
演算手段4は、画素ごとに上述の演算を行うことにより、画素値を距離値に対応付けた距離画像を生成する。演算手段4が生成した距離画像は、出力手段5に設けた画像記憶部に記憶され利用に供される。制御手段3、演算手段4、出力手段5は、マイコン、DSP(Digital Signal Processor)、FPGA(Field-Programmable Gate Array)などから選択されるプロセッサを備え、プロセッサは、適宜のプログラムに従って距離の演算を行う。
【0034】
以下では、投光手段1の温度変化に伴う距離の計測精度の変化を抑制する構成について説明する。投光手段1は、発光素子11として備えており、距離の計測精度は発光素子11の温度変化に依存する。したがって、発光素子11の温度を計測するサーミスタなどの温度センサを備えた温度測定手段6が設けられる。温度測定手段6で計測された温度は制御手段3に与えられる。制御手段3は、温度測定手段6で計測された温度に応じて、温度の変化に対して距離の測定結果が変化しないように、以下に説明する精度維持手段7を制御する。精度維持手段7は、以下に具体例で説明するように、制御手段3の動作のみで追加する構成を用いずに実現される場合と、投光手段1や受光手段2に追加された構成を制御手段3が制御することにより実現される場合とがある。
【0035】
温度測定手段6で計測された投光手段1の温度に応じて距離の計測精度の変化を抑制する精度維持手段7を実現するために、本実施形態は、以下の5種類の構成を単独または適宜に組み合わせて用いる。
(1)発光素子11の駆動電流を調節する。
(2)発光素子11を駆動するタイミングを調節する。
(3)受光手段2に入射する波長域を調節する。
(4)発光素子11の発光波長を調節する。
(5)発光素子11の温度変化を抑制する。
【0036】
構成(1)は、発光素子11の光出力(輝度)と温度との関係に基づいて、光出力が温度によって変化しないように、発光素子11の駆動電流を調節することを意味する。すなわち、駆動電流が一定であれば、温度が高いほど発光素子11の光出力が低下することが知られているから、温度検出部6で検出された温度が高いほど、発光素子11の駆動電流を大きくするのである。温度と駆動電流との関係を適宜に設定すれば、投光手段1の温度にかかわらず光出力をほぼ一定に保つことが可能になる。なお、駆動電流を増加させると、発光素子11の発熱量が増加し、また駆動電流には上限があるから、構成(1)は、温度変化に対して光出力の微調整を行うために採用することが望ましい。構成(1)を採用した場合、投光手段1が制御手段3とともに精度維持手段として機能する。
【0037】
構成(2)は、温度測定手段6で計測された温度に応じて発光素子11を駆動するタイミングを調節することを意味する。すなわち、復調信号は変調信号に同期して生成されるから、発光素子11を駆動するタイミングを変調信号に対して遅延させる構成を採用し、遅延させる時間を温度測定手段6で測定された温度に応じて調節する構成を採用する。構成(2)を採用すれば、投光手段1の温度による距離値の変動分を考慮して距離を補正することになる。構成(2)を採用した場合、投光手段1が制御手段3とともに精度維持手段7として機能する。
【0038】
構成(3)は、受光手段2に設けた波長選択フィルタ22の透過特性を、温度測定手段6で測定された温度に応じて調節することを意味する。すなわち、発光素子11に用いる発光ダイオードの発光波長には温度依存性があるから、発光素子11の温度に応じて波長選択フィルタ22の透過特性を調節することにより、発光波長の変化に伴う受光手段2の出力への影響を抑制することが要求される。具体的には、発光素子11として用いる発光ダイオードは、図2に示すように、温度が高いほど光出力が低下するだけではなく、ピーク波長が長波長側に変化する。図2では、特性X1が−15℃、特性X2が25℃、特性X3が55℃にそれぞれ対応する発光波長を示している。
【0039】
温度変化に伴って発光素子11の発光波長に変化が生じたとしても、受光手段2の出力に影響しないようにするには、透過する波長域が広い波長選択フィルタ22を用いることが考えられる。しかしながら、波長選択フィルタ22を透過する波長域が広いと、太陽光の影響を除去する効果が低減されるという問題が生じる。したがって、波長選択フィルタ22を透過する波長域はできるだけ狭くすることが要求される。そのため、温度測定手段6で測定された温度に応じて波長選択フィルタ22の透過特性を調節することが必要になる。波長選択フィルタ22の透過特性を調節するには、波長選択フィルタ22の配置を変更するか、透過特性の異なる複数の波長選択フィルタ22を交換して用いる。
【0040】
波長選択フィルタ22の配置を変更する場合、受光手段2の受光面に対する波長選択フィルタ22の角度を、温度測定手段6で測定した温度に応じて変化させる。すなわち、波長選択フィルタ22として、光学薄膜フィルタ(とくに、干渉フィルタ)を用いると、光の入射角度に応じて透過する波長域に変化が生じることが知られているから、この特性を利用するのである。この構成を採用する場合、図3に示すように、波長選択フィルタ22の向きを変化させるアクチュエータ23を受光手段2に付加する必要がある。アクチュエータ23は、波長選択フィルタ22の向きを微小角度(数度以下)で調節することが可能になるように構成されたギアードモータや超音波モータ、ピエゾ素子などを備え加えた電圧に応じて変位量が変化する電歪素子などが用いられる。
【0041】
一方、透過特性の異なる波長選択フィルタ22を交換して用いる場合には、透過特性の異なる複数種類の波長選択フィルタ22を受光手段2に設けておき、温度測定手段6が計測した温度に応じて、適宜の波長選択フィルタ22を選択する。この構成に用いる波長選択フィルタ22は、波長域の幅をほぼ等しくし、透過させる波長の範囲を異ならせておく。また、波長選択フィルタ22の交換は、図3に示す構成と同様に、アクチュエータ23を用いて行う。この構成に用いるアクチュエータ23は、たとえば複数個の波長選択フィルタ22を取り付けた回転式のタレットを駆動して、波長選択フィルタ22を選択できるように構成しておけばよい。構成(3)を採用する場合、波長選択フィルタ22およびアクチュエータ23を備える受光手段2が、制御手段3とともに精度維持手段7として機能する。
【0042】
構成(4)は、発光素子11である発光ダイオードの発光波長が温度により変化することを利用し、同温度のときに異なる発光波長である複数種類の発光ダイオードを用い、温度測定手段6で計測した温度に応じて1種類の発光ダイオードを選択することを意味する。たとえば、図4に示すように、常温において発光波長が異なる2種類の発光ダイオード111,112を並べておき、低温側では発光波長が長波長である発光ダイオード111を用い、高温側では発光波長が短波長である発光ダイオード112を用いる。発光ダイオード111のピーク波長は、たとえば850nm(at25℃)とし、発光ダイオード112のピーク波長は、たとえば820nm(at25℃)とすればよい。また、たとえば、−15〜25℃において発光ダイオード111を用い、たとえば、25〜55℃において発光ダイオード112を用いる。構成(4)を採用した場合、投光手段1が制御手段3とともに精度維持手段7として機能する。
【0043】
発光ダイオード111,112の発光波長は高温側では低温側よりも長波長になるから、高温側で短波長の発光ダイオード112を用いると、発光波長が長波長の発光ダイオード111の波長に近付くことになる。逆に、低温側で長波長の発光ダイオード111を用いると、発光波長が短波長の発光ダイオード112に近付くことになる。すなわち、温度変化に伴う投光手段1の発光波長の変化を抑制することができる。
【0044】
上述した例では、発光波長の異なる2種類の発光ダイオード111,112を用いているが、3種類以上の発光ダイオードを用いることも可能である。さらに、上述した構成例では、発光波長の異なる複数種類の発光ダイオード111,112を選択的に用いているが、すべての発光ダイオード111,112を点灯させてもよい。この場合、発光ダイオード111,112に流す電流を調節して都合のよい波長の発光ダイオード111,112を主に用いるようにすればよい。また、構成(4)を用いる場合、投光手段1の温度変化に対する受光手段2の受光波長の変化が抑制されているから、構成(3)のように波長選択フィルタ22の透過特性を変化させなくてもよい。つまり、構成(3)と構成(4)とは一方を選択して用いればよい。
【0045】
構成(5)では、図5に示すように、発光素子11の温度変化を抑制する温調装置12を設ける。温調装置12は、吸熱と発熱との制御が可能であって、かつ小型である構成が望ましい。したがって、温調装置12にはペルチェ素子が用いられる。この構成では、制御手段3は、温度測定手段6が計測した温度が規定の目標温度に保たれるように、温調装置12の吸熱量あるいは発熱量を制御する。したがって、発光素子11の温度は周囲温度とは無関係にほぼ一定温度に保たれることになる。したがって、温度変化に伴う発光素子11の光出力および発光波長の変化が抑制され、結果的に、周囲で温度変化が生じても計測精度を維持することが可能になる。構成(5)を採用した場合、温調装置12を備える投光手段1が制御手段3とともに精度維持手段7として機能する。
【0046】
構成(5)を採用する場合は、構成(1)〜(4)を採用する必要はない。すなわち、構成(5)を採用しない場合、構成(3)と構成(4)との一方と、構成(1)と、構成(2)とは適宜に組み合わせて用いることができる。
【0047】
上述したように、構成(1)〜(5)を適宜に用いることによって、周囲温度の変化に伴う距離の計測精度の変化を抑制することになり、温度環境が変化しても、校正を行うことなく精度よく距離を計測することが可能になる。
【符号の説明】
【0048】
1 投光手段
2 受光手段
3 制御手段
4 演算手段
5 出力手段
6 温度測定手段
7 精度維持手段
11 発光素子
12 温調装置
21 受光素子
22 波長選択フィルタ
23 アクチュエータ
111 発光ダイオード
112 発光ダイオード

【特許請求の範囲】
【請求項1】
対象空間に投光する発光素子を備えた投光手段と、
前記対象空間からの光を受光する受光素子を備えた受光手段と、
前記投光手段に変調信号を与えて前記発光素子から時間経過に伴って強度が変化する変調光を投光させ、前記変調信号に同期する復調信号を前記受光手段に与えて前記受光素子の出力から変調光の成分を抽出する制御手段と、
前記投光手段から対象空間に投光された変調光が前記受光手段に受光されるまでの時間を計測する演算手段と、
前記投光手段の温度を計測する温度測定手段と、
前記温度測定手段が計測した温度を用い前記受光素子に入射する変調光の変化を抑制する精度維持手段と
を備えることを特徴とする距離計測装置。
【請求項2】
前記精度維持手段は、前記温度測定手段で計測された温度が高いほど前記発光素子の駆動電流を大きくする
ことを特徴とする請求項1記載の距離計測装置。
【請求項3】
前記精度維持手段は、前記温度測定手段で計測された温度が高いほど発光素子を駆動するタイミングを遅延させる
ことを特徴とする請求項1記載の距離計測装置。
【請求項4】
前記精度維持手段は、前記受光素子に入射する光の波長を選択する波長選択フィルタを備え、
前記温度測定手段で計測された温度が高いほど前記波長選択フィルタの透過特性を短波長側に変化させる
ことを特徴とする請求項1記載の距離計測装置。
【請求項5】
前記投光手段は、発光波長が異なる複数種類の前記発光素子を備え、
前記精度維持手段は、前記温度測定手段で計測された温度が高いほど発光波長の短い前記発光素子を用いて前記対象空間に投光する
ことを特徴とする請求項1記載の距離計測装置。
【請求項6】
前記投光手段は、前記発光素子の温度を調節する温調装置を備え、
前記精度維持手段は、前記温度測定手段で計測された温度が規定の目標温度になるように前記温調装置を制御する
ことを特徴とする請求項1記載の距離計測装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2013−92385(P2013−92385A)
【公開日】平成25年5月16日(2013.5.16)
【国際特許分類】
【出願番号】特願2011−232812(P2011−232812)
【出願日】平成23年10月24日(2011.10.24)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】