説明

透明基板、電気光学装置、画像形成装置及び電気光学装置の製造方法

【課題】 発光素子から発光された光の取出し効率を向上した透明基板、電気光学装置、画像形成装置及び電気光学装置の製造方法を提供する。
【解決手段】 ガラス基板30の光取出し面30bに凹部32を形成し、有機EL層Oeを凹部32と相対向する位置に形成し、同凹部32内にマイクロレンズ40を形成した。そして、マイクロレンズ40の開口角θ1が、同マイクロレンズ40を光取出し面30b上に形成したときの開口角θ2に比べ、近接距離Hd分だけ増加するようにした。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、透明基板、電気光学装置、画像形成装置及び電気光学装置の製造方法に関する。
【背景技術】
【0002】
電子写真方式を用いた画像形成装置には、像担持体としての感光ドラムを露光して潜像を形成する電気光学装置としての露光ヘッドが利用されている。近年では、この露光ヘッドの薄型化と軽量化を図るために、露光ヘッドの発光源として発光素子としての有機エレクトロルミネッセンス素子(有機EL素子)を用いるものが提案されている。
【0003】
なかでも、こうした有機EL素子が、構成材料の選択幅を広くできる利便性から、この種の露光ヘッドにおいては、透明基板の一側面(発光素子形成面)上に有機EL層を形成し、同有機EL層の発光した光を発光素子形成面と相対向する他側面(光取出し面)から取り出す、いわゆるボトムエミッション構造が採用されている。
【0004】
ボトムエミッション構造では、光取出し面と有機EL層との間に、同有機EL層を発光させるための各種配線等が形成される。このため、有機EL素子の開口率を低下して、露光ヘッドの光取出し効率を低下させる問題があった。
【0005】
そこで、有機EL素子を備えた露光ヘッドでは、こうした光の取出し効率を向上するために、有機EL層から発光された光を集光して結像するレンズ、いわゆるマイクロレンズを光取出し面上に設ける提案がなされている(例えば、特許文献1)。特許文献1では、光取出し面に光吸収性樹脂を塗布してパターニングを行い、有機EL層と相対向する位置に、同光吸収性樹脂を内側壁とする孔を設けている。そして、同孔内に紫外線硬化性樹脂を噴射して、有機EL層と相対向する位置にマイクロレンズを形成している。
【特許文献1】特開平2003−291404号広報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、特許文献1では、発光素子形成面上に有機EL層を形成し、光取出し面上にマイクロレンズを形成するため、以下の問題を生じる。
すなわち、マイクロレンズは、常に透明基板の厚さに相対する距離だけ有機EL層から離間して形成される。換言すれば、有機EL層に対するマイクロレンズの開口角が、常に透明基板の厚さ分だけ小さくなる。その結果、有機EL層から発光された光の光取出し効率を常に透明基板の厚さ分だけ損なう問題となる。
【0007】
こうした問題は、透明基板の厚さを薄くすることによって軽減できると考えられるが、その機械的強度が不足して、有機EL素子の形成時や露光ヘッドの組立て時等に、透明基板の破損等を招く虞がある。
【0008】
本発明は、上記問題を解決するためになされたものであり、その目的は、発光素子から発光された光の取出し効率を向上した透明基板、電気光学装置、画像形成装置及び電気光学装置の製造方法を提供することである。
【課題を解決するための手段】
【0009】
本発明の透明基板は、光入射面側に入射した光を光取出し面側から出射する透明基板において、前記光取出し面に凹部を形成し、前記凹部にマイクロレンズを形成した。
本発明の透明基板によれば、凹部を形成した分だけ、マイクロレンズを光入射面側に形成することができ、光入射面に対するマイクロレンズの開口角を大きくすることができる。その結果、光入射面から入射した光の利用効率を向上することができる。
【0010】
この透明基板において、前記マイクロレンズは、前記光取出し面から突出しない大きさに形成されている。
この透明基板によれば、マイクロレンズが光取出し面から突出しない大きさで形成されるため、マイクロレンズを光取出し面よりも確実に光入射面側に形成することができ、かつ光取出し面によってマイクロレンズを保護することができる。
【0011】
この透明基板において、前記マイクロレンズは、凸形状のレンズである。
この透明基板によれば、マイクロレンズが凸形状のレンズで形成されるため、光入射面から入射した光をマイクロレンズによって集光する効率を向上することができる。
【0012】
本発明の電気光学装置は、透明基板の発光素子形成面に形成された発光素子から発光された光を前記発光素子形成面と相対向する前記透明基板の光取出し面側から出射する電気光学装置において、前記光取出し面に凹部を形成し、前記凹部に発光素子から発光された光を出射するマイクロレンズを形成した。
【0013】
本発明の電気光学装置によれば、発光素子から発光された光を出射するマイクロレンズが、光取出し面に形成された凹部内に形成されるようになる。従って、光取出し面上にマイクロレンズを形成する場合に比べ、凹部を形成する分だけ、発光素子とマイクロレンズとの距離を短くすることができる。また、凹部を形成した分だけ、凹部以外の透明基板の厚さを厚くすることによって、同透明基板の機械的強度の劣化を補うことができる。その結果、発光素子に対するマイクロレンズの開口角を大きくすることができ、発光素子から発光された光の利用効率を向上することができる。
【0014】
この電気光学装置において、前記凹部は、前記発光素子と相対向する位置に形成され、前記マイクロレンズの開口径と相対する内径を有する円形孔である。
この電気光学装置によれば、凹部がマイクロレンズの開口径と相対する内径を備えるため、光取出し面に形成する凹部のサイズを最小限にすることができる。従って、透明基板の機械的強度の劣化を抑制して、発光素子から発光された光の利用効率を向上することができる。
【0015】
この電気光学装置において、前記発光素子は、前記光取出し面側に形成した透明電極と、前記透明電極と相対して形成した背面電極と、前記透明電極と前記背面電極との間に形成した発光層とを備えたエレクトロルミネッセンス素子である。
【0016】
この電気光学装置によれば、エレクトロルミネッセンス素子を備えた電気光学装置の光の利用効率を向上することができる。
この電気光学装置において、前記発光層は、有機材料で形成され、前記エレクトロルミネッセンス素子は、有機エレクトロルミネッセンス素子である。
【0017】
この電気光学装置によれば、有機エレクトロルミネッセンス素子を備えた電気光学装置の光の利用効率を向上することができる。
この電気光学装置において、複数の前記発光素子が前記発光素子形成面の一方向に沿って配列され、前記マイクロレンズは、前記複数の発光素子の各々に対応して配列された。
【0018】
この電気光学装置によれば、一方向に沿って配列された発光素子の各々に対応して形成されるマイクロレンズが、発光素子から発光された光の利用効率を向上することができる

【0019】
この電気光学装置において、前記マイクロレンズは、凸形状のレンズであって、前記発光素子から発光された光を集光して前記光取出し面から出射する。
この電気光学装置によれば、マイクロレンズが凸形状のレンズで形成されるため、集光機構などを介することなく、透明基板に形成したマイクロレンズによって集光することができる。従って、発光素子から発光された光の集光する効率を向上することができる。
【0020】
本発明の画像形成装置は、像担持体の外周面を帯電させる帯電手段と、帯電した前記像担持体の外周面を露光して潜像を形成する露光手段と、前記潜像に対して着色粒子を供給して顕像を現像する現像手段と、前記顕像を転写媒体に転写する転写手段とを備えた画像形成装置において、前記露光手段は、上記する電気光学装置を備えた。
【0021】
本発明の画像形成装置によれば、帯電した像担持体を露光する露光手段が上記電気光学装置を備えるようになる。従って、画像形成装置の露光における光の利用効率を向上することができる。
【0022】
本発明の電気光学装置の製造方法は、透明基板の光取出し面に、前記光取出し面から前記透明基板の内方に向かう凹部を形成した後に、前記光取出し面と相対向する前記透明基板の発光素子形成面上であって前記凹部と相対向する位置に発光素子を形成し、前記発光素子から発光された光を出射するマイクロレンズを前記凹部内に形成した。
【0023】
本発明の電気光学装置の製造方法によれば、光取出し面に凹部を形成する分だけ、発光素子とマイクロレンズとの距離を短くすることができる。その結果、発光素子に対するマイクロレンズの開口角を大きくすることができ、発光素子から発光された光の利用効率を向上した電気光学装置を製造することができる。
【0024】
この電気光学装置製造方法において、前記マイクロレンズは、液体噴射装置の前記凹部内に噴射する液体によって形成した。
この電気光学装置の製造方法によれば、マイクロレンズが、液体噴射装置の凹部内に噴射する液体によって形成されるため、例えば、レプリカ法等によって形成したマイクロレンズを凹部内取付ける場合に比べ、その取付け工程等を削減することができる。しかも、凹部のサイズに相対するマイクロレンズを同凹部内に確実に形成することができる。その結果、発光素子から発光された光の利用効率と電気光学装置の生産性を向上することができる。
【発明を実施するための最良の形態】
【0025】
以下、本発明を具体化した一実施形態を図1〜図9に従って説明する。図1は、画像形成装置としての電子写真方式プリンタを示す概略側断面図である。
(電子写真方式プリンタ)
図1に示すように、電子写真方式プリンタ10(以下単に、プリンタ10という。)は、箱体状に形成される筐体11を備えている。その筐体11内には、駆動ローラ12、従動ローラ13及びテンションローラ14が設けられ、各ローラ12〜14に対して転写媒体としての中間転写ベルト15が張設されている。そして、駆動ローラ12の回転によって、中間転写ベルト15は、図1における矢印方向に循環駆動可能に備えられている。
【0026】
中間転写ベルト15の上方には、4体の像担持体としての感光ドラム16が、中間転写ベルト15の張設方向(副走査方向Y)に回転可能に併設されている。その感光ドラム16の外周面には、光導電性を有する感光層16a(図4参照)が形成されている。感光層16aは、暗中でプラス又はマイナスの電荷を帯電し、所定の波長領域からなる光を照射
されると、照射された部位の電荷が消失されるようになっている。すなわち、電子写真方式プリンタ10は、これら4体の感光ドラム16によって構成されるタンデム式のプリンタである。
【0027】
各感光ドラム16の周囲には、それぞれ帯電手段としての帯電ローラ19、露光手段を構成する電気光学装置としての有機エレクロトルミネッセンスアレイ露光ヘッド20(以下単に、露光ヘッド20という。)、現像手段としてのトナーカートリッジ21、転写手段を構成する一次転写ローラ22及びクリーニング手段23が配設されている。
【0028】
帯電ローラ19は、感光ドラム16に密着する半導電性のゴムローラである。この帯電ローラ19に直流電圧を印加して感光ドラム16を回転すると、感光ドラム16の感光層16aが、全周面にわたり所定の帯電電位に帯電するようになっている。
【0029】
露光ヘッド20は、所定の波長領域の光を出射する光源であって、図2に示すように、長尺板状に形成されている。その露光ヘッド20は、その長手方向を感光ドラム16の軸方向(図1において紙面に直交する方向:主走査方向X)と平行にして、感光層16aから所定の距離だけ離間した位置に位置決めされている。そして、露光ヘッド20が印刷データに基づく光を鉛直方向Z(図1参照)に出射して感光ドラム16が回転方向Roに回転すると、感光層16aが、所定の波長領域の光に露光される。すると、感光層16aは、露光された部位(露光スポット)の電荷を消失して、その外周面に静電的な画像(静電潜像)を形成する。ちなみに、この露光ヘッド20の露光する光の波長領域は、感光層16aの分光感度と整合した波長領域である。つまり、露光ヘッド20の露光する光の発光エネルギーのピーク波長は、前記感光層16aの分光感度のピーク波長と略一致するようになっている。
【0030】
トナーカートリッジ21は、箱体形状に形成されて、その内部に直径10μm程度の着色粒子としてのトナーTを収容する。なお、本実施形態における4体のトナーカートリッジ21には、それぞれ対応する4色(黒、シアン、マゼンタ及びイエロ)のトナーTが収容されている。そのトナーカートリッジ21には、感光ドラム16側から順に、現像ローラ21aと供給ローラ21bが備えられている。供給ローラ21bは、回転することによって、トナーTを現像ローラ21aまで搬送するようになっている。現像ローラ21aは、供給ローラ21bとの摩擦等によって、同供給ローラ21bの搬送したトナーTを帯電させるとともに、帯電したトナーTを同現像ローラ21aの外周面に均一に付着するようになっている。
【0031】
そして、感光ドラム16に前記帯電電位と略等しいバイアス電位を印加した状態で、供給ローラ21b及び現像ローラ21aを回転する。すると、感光ドラム16は、前記露光スポットと現像ローラ21a(トナーT)との間に、前記バイアス電位に相対する静電吸着力を付与する。静電吸着力を受けたトナーTは、同現像ローラ21cの外周面から前記露光スポットに移動して吸着する。これによって、各感光ドラム16(各感光層16a)の外周面には、それぞれ静電潜像に対応した単色の可視像(顕像)が形成される(現像される)。
【0032】
中間転写ベルト15の内側面15aであって前記各感光ドラム16と対峙する位置には、それぞれ一次転写ローラ22が設けられている。一次転写ローラ22は、導電性ローラであって、その外周面が中間転写ベルト15の内側面15aに密着しながら回転する。この一次転写ローラ22に直流電圧を印加して感光ドラム16及び中間転写ベルト15を回転すると、感光層16aに吸着したトナーTが、一次転写ローラ22側への静電吸着力よって中間転写ベルト15の外側面15bに順次移動して吸着するようになっている。すなわち、一次転写ローラ22は、感光ドラム16に形成した顕像を中間転写ベルト15の外
側面15bに一次転写する。そして、中間転写ベルト15の外側面15bは、各感光ドラム16と一次転写ローラ22によって、単色からなる顕像の一次転写を4回繰り返し、これらの顕像を重ね合わせることによってフルカラーの画像(トナー像)を得る。
【0033】
クリーニング手段23は、図示しないLED等の光源とゴムブレードを備え、前記一次転写後の感光層16aに光を照射して帯電した感光層16aを除電するようになっている。そして、クリーニング手段23は、除電した感光層16aに残留するトナーTをゴムブレードによって機械的に除去する。
【0034】
中間転写ベルト15の下側には、記録用紙Pを収容した記録用紙カセット24が配設されている。その記録用紙カセット24の上側には、記録用紙Pを中間転写ベルト15側に給紙する給紙ローラ25が配設されている。その給紙ローラ25の上側にあって駆動ローラ12と相対向する位置には、転写手段を構成する二次転写ローラ26が配設されている。二次転写ローラ26は、前記各一次転写ローラ22と同じく導電性ローラであって、記録用紙Pの裏面を押圧し、同記録用紙Pの表面を中間転写ベルト15の外側面15bに接触させている。そして、この二次転写ローラ26に直流電圧を印加して中間転写ベルト15を回転すると、中間転写ベルト15の外側面15bに吸着したトナーTが、記録用紙Pの表面上に順次移動して吸着する。すなわち、二次転写ローラ26は、中間転写ベルト15の外側面15bに形成されたトナー像を記録用紙Pの表面上に二次転写する。
【0035】
二次転写ローラ26の上側には、熱源を内蔵するヒートローラ27aと同ヒートローラ27aを押圧する押圧ローラ27bが配設されている。そして、二次転写後の記録用紙Pがヒートローラ27aと押圧ローラ27bとの間に搬送されると、記録用紙P上に転写されたトナーTが、加熱によって軟化し、記録用紙P内に浸透して固化する。これによって、記録用紙Pの表面にトナー像が定着する。トナー像を定着させた記録用紙Pは、排紙ローラ28によって筐体11の外側に排出されるようになっている。
【0036】
従って、プリンタ10は、帯電した感光層16aを露光ヘッド20によって露光し、同感光層16aに静電潜像を形成する。次に、プリンタ10は、感光層16aの静電潜像を現像して同感光層16aに単色の顕像を形成する。続いて、プリンタ10は、感光層16aの顕像を中間転写ベルト15上に順次一次転写して同中間転写ベルト15上にフルカラーのトナー像を形成する。そして、プリンタ10は、中間転写ベルト15上のトナー像を記録用紙P上に二次転写し、加熱加圧によってトナー像を定着させて印刷を終了する。
【0037】
次に、上記プリンタ10に備えられた電気光学装置としての露光ヘッド20について以下に説明する。図2及び図3は、それぞれ露光ヘッド20を示す平面図及び正断面図である。図4は、図2に示す一点鎖線A−Aに沿った概略断面図である。
【0038】
図2及び図3に示すように、露光ヘッド20には、透明基板としてのガラス基板30が備えられている。ガラス基板30は、長尺状に形成された基板であって、その長手方向(主走査方向X)の幅が感光ドラム16の軸方向の幅と略同じ大きさで形成されている。そして、本実施形態では、そのガラス基板30について、上面(感光ドラム16側と反対の面)を光入射面としての発光素子形成面30aとし、下面(感光ドラム16側の面)を光取出し面30bとしている。
【0039】
まず、ガラス基板30の発光素子形成面30a側について以下に説明する。
図2及び3に示すように、ガラス基板30の発光素子形成面30aには、千鳥格子状に2次元に配列された複数の画素形成領域31が形成されている。各画素形成領域31には、それぞれ薄膜トランジスタ35(以下単に、TFT35という。)と発光素子36とからなる画素37が形成されている。TFT35は、印刷データに基づいて生成されたデー
タ信号によってオン状態となり、そのオン状態に基づいて、発光素子36を発光するようになっている。
【0040】
図4に示すように、TFT35は、その最下層にチャンネル膜Bを備えている。チャンネル膜Bは、発光素子形成面30a上に形成される島状のp型ポリシリコン膜であって、図4における左右両側には、活性化した図示しないn型領域(ソース領域及びドレイン領域)を備えている。つまり、TFT35は、いわゆるポリシリコン形TFTである。
【0041】
チャンネル膜Bの上側中央位置には、発光素子形成面30a側から順に、ゲート絶縁膜D0、ゲート電極Pg及びゲート配線M1が形成されている。ゲート絶縁膜D0は、シリコン酸化膜等の光透過性を有する絶縁膜であって、発光素子形成面30aの略全面に堆積されている。ゲート電極Pgは、タンタル等の低抵抗金属膜であって、チャンネル膜Bの略中央位置に形成されている。ゲート配線M1は、ITO等の光透過性を有する透明導電膜であって、ゲート電極Pgと図示しないデータ線駆動回路とを電気的に接続している。そして、データ線駆動回路がゲート配線M1を介してゲート電極Pgにデータ信号を入力すると、TFT35は、そのデータ信号に基づいたオン状態となる。
【0042】
チャンネル膜Bであって前記ソース領域及びドレイン領域の上側には、鉛直方向Zに沿って上側に延びるソースコンタクトSc及びドレインコンタクトDcが形成されている。各コンタクトSc,Dcは、チャンネル膜Bとのコンタクト抵抗を低くする金属シリサイド等の金属膜で形成されている。そして、これら各コンタクトSc,Dc及びゲート電極Pg(ゲート配線M1)は、シリコン酸化膜等からなる第1層間絶縁膜D1によってそれぞれ電気的に絶縁されている。
【0043】
各コンタクトSc,コンタクトDcの上側には、それぞれアルミニウム等の低抵抗金属膜からなる電源線M2s及び陽極線M2dが形成されている。電源線M2sは、ソースコンタクトScと図示しない駆動電源とを電気的に接続している。陽極線M2dは、ドレインコンタクトDcと発光素子36とを電気的に接続している。これら電源線M2s及び陽極線M2dは、シリコン酸化膜等からなる第2層間絶縁膜D2によってそれぞれ電気的に絶縁されている。そして、TFT35がデータ信号に基づいたオン状態となると、そのデータ信号に応じた駆動電流が、電源線M2s(駆動電源)から陽極線M2d(発光素子36)に供給される。
【0044】
図4に示すように、第2層間絶縁膜D2の上側には、発光素子36が形成されている。その発光素子36の最下層には、透明電極としての陽極Pcが形成されている。陽極Pcは、ITO等の光透過性を有する透明導電膜であって、その一端が陽極線M2dに接続されている。その陽極Pcの上側外周には、同陽極Pcを囲むように第3層間絶縁膜D3が堆積されている。第3層間絶縁膜D3は、感光性ポリイミドやアクリル等の樹脂膜で形成され、各発光素子36の陽極Pcを電気的に絶縁している。また、第3層間絶縁膜D3は、陽極Pcの上側を略円形孔状に開放して、その内周面からなる隔壁D3aを形成している。その隔壁D3aの陽極Pc側の内径は、後述する整合半径Rによって形成されている。
【0045】
陽極Pcの上側にあって隔壁D3aの内側には、有機材料からなる有機エレクトロルミネッセンス層(有機EL層)Oeが形成されている。有機EL層Oeは、正孔輸送層と発光層の2層からなる有機化合物層である。その有機EL層Oeの上側には、アルミニウム等の光反射性を有する金属膜からなる背面電極としての陰極Paが形成されている。陰極Paは、発光素子形成面30a側全面を覆うように形成され、各画素37が共有することによって各発光素子36に共通する電位を供給するようになっている。
【0046】
すなわち、発光素子36は、これら陽極Pc、有機EL層Oe及び陰極Paによって形成される有機エレクトロルミネッセンス素子(有機EL素子)であって、その発光面(有機EL層Oe)の内径が整合半径Rで形成されている。
【0047】
陰極Paの上側には、樹脂等のコーティング材で形成され、各種金属膜や有機EL層Oeの酸化等を防止するための封止部P1が形成されている。
そして、データ信号に応じた駆動電流が陽極線M2dに供給されると、有機EL層Oeは、その駆動電流に応じた輝度で発光する。この際、有機EL層Oeから陰極Pa側(図4における上側)に向かって発光された光は、同陰極Paによって反射される。そのため、有機EL層Oeから発光された光は、その殆どが、陽極Pc、第2層間絶縁膜D2、第1層間絶縁膜D1、ゲート絶縁膜D0及びガラス基板30を通過して光取出し面30b側(感光ドラム16側)に照射される。
【0048】
次に、ガラス基板30の光取出し面30b側について以下に説明する。
図3に示すように、ガラス基板30の光取出し面30bには、各発光素子36と相対向する位置に凹部32が形成されている。凹部32は、光取出し面30bから鉛直方向Z上方(感光ドラム16側)に向かって開口された円形孔であって、その中心軸が有機EL層Oeの中心軸上に位置するように形成されている。また、凹部32は、その深さが近接距離Hd(図4参照)で形成され、かつ内径が有機EL層Oeの半径と同じ整合半径Rで形成されている。
【0049】
各凹部32内には、それぞれマイクロレンズ40が形成されている。マイクロレンズ40は、有機EL層Oe(図4参照)の発光波長に対して十分な透過率を有する凸形状のレンズである。
【0050】
そのマイクロレンズ40は、図4に示すように、鉛直方向Zに沿った光軸Aを有する軸対象のレンズであって、同光軸A方向から見て有機EL層Oeと相対向する位置に形成されている。また、マイクロレンズ40の開口径は、凹部32(有機EL層Oe)の内径、すなわち整合半径Rと同じ大きさで形成されている。これによって、マイクロレンズ40の周辺部における結像性能を劣化させることなく、有機EL層Oeから発光された光を集光して光取出し面30b側に出射できるようになっている。さらにまた、マイクロレンズ40は、図4に示すように、その下側曲面(出射面40a)の頂点と感光層16aとの間の距離を、マイクロレンズ40の像側焦点距離Hfにしている。つまり、マイクロレンズ40は、有機EL層Oeから光軸Aに沿って発光された光線(平行光線束L1)の光軸Aとの交点(像側焦点F)を感光層16a上に位置するようになっている。これによって、マイクロレンズ40から出射された光は、感光層16aに、所望するサイズの露光スポットを形成するようになっている。
【0051】
そして、マイクロレンズ40の出射面40aは、凹部32の底面32aから放物曲面形状に形成されている。つまり、マイクロレンズ40は、光取出し面30bから、近接距離Hd分だけ有機EL層Oe側に近接されている。
【0052】
従って、図5に示すように、光軸A上の有機EL層Oeからマイクロレンズ40の直径に対して張る角度、すなわち開口角θ1は、同マイクロレンズ40を光取出し面30b上に形成したとき(図5に示す2点鎖線40i)の開口角θ2に比べ、近接距離Hd分だけ増加する。そして、有機EL層Oeから所定の波長領域の光が発光されると、マイクロレンズ40は、その開口角θ1に相対する光量の光を有機EL層Oe側で集光し、感光層16a上に出射して同感光層16aを露光する。その結果、マイクロレンズ40は、その開口角θ1を増加した分だけ、感光層16aを露光するための光量を増加する。
(露光ヘッドの製造方法)
次に、露光ヘッド20の製造方法について以下に説明する。図6及び図7は、凹部32の形成方法を説明する説明図である。
【0053】
図6に示すように、まず、ガラス基板30の光取出し面30b全面に、サンドブラスト用のマスク剤Mkを塗布する。次に、同マスク剤Mkに、前記光軸Aを中心として、内径が整合半径Rとなる円形孔Mhをパターニングする。続いて、公知のサンドブラスト装置によって、無機酸化物等のサンドSbを光取出し面30bに向かって吹きつけ、円形孔Mh内の光取出し面30b(ガラス基板30)を所定の深さ(近接距離Hd)まで削り取る。そして、光取出し面30b上からマスク剤Mkを除去する。これによって、光取出し面30bに、内径が整合半径Rであって、深さが近接距離Hdからなる円形孔(凹部32)を形成する(図7参照)。
【0054】
凹部32を形成すると、続いて、発光素子形成面30a上に画素37を形成する。図8は、画素37の形成方法を説明する説明図である。
まず、発光素子形成面30a全面に、ジシラン等を原料ガスにするCVD法等によってアモルファスシリコン膜を堆積する。次に、エキシマレーザ等によって同アモルファスシリコン膜に紫外光を照射し、発光素子形成面30a全面に結晶化したポリシリコン膜を形成する。続いて、フォトリソグラフィ法及びエッチング法等によって同ポリシリコン膜をパターニングし、各凹部32に対応するチャンネル膜Bを形成する。
【0055】
チャンネル膜Bを形成すると、シラン等を原料ガスにするCVD法等によってチャンネル膜B及び発光素子形成面30aの上側全面にシリコン酸化膜等を堆積してゲート絶縁膜D0を形成する。ゲート絶縁膜D0を形成すると、スパッタ法等によって同ゲート絶縁膜D0の上側全面にタンタル等の低抵抗金属膜を堆積し、同低抵抗金属膜をパターニングすることによって、ゲート絶縁膜D0の上側にゲート電極Pgを形成する。ゲート電極Pgを形成すると、同ゲート電極Pgをマスクにしたイオンドーピング法によって、チャンネル膜Bにn型領域(ソース領域及びドレイン領域)を形成する。続いて、スパッタ法等によってゲート電極Pg及びゲート絶縁膜D0の上側全面にITO等の光透過性を有する透明導電膜を堆積し、同透明導電膜をパターニングすることによって、ゲート電極Pgの上側にゲート配線M1を形成する。
【0056】
ゲート配線M1を形成すると、TEOS(テトラエトキシシラン)等を原料にするCVD法によってゲート配線M1及びゲート絶縁膜D0の上側全面にシリコン酸化膜等を堆積して第1層間絶縁膜D1を形成する。第1層間絶縁膜D1を形成すると、フォトリソグラフィ法やエッチング法等によって、ソース領域及びドレイン領域から鉛直方向Zに沿って第1層間絶縁膜D1の上側までを開放する一対の円形孔(コンタクトホールHr,Hs)を形成する。コンタクトホールHr,Hsを形成すると、スパッタ法等によって同コンタクトホールHr,Hs内を金属シリサイド等で埋め込みながら第1層間絶縁膜D1の上側全面に金属膜を堆積する。そして、エッチング法等によって同コンタクトホールHr,Hs内以外の金属膜を除去し、ソースコンタクトSc及びドレインコンタクトDcを形成する。
【0057】
各コンタクトSc,Dcを形成すると、スパッタ法等によって同コンタクトSc,Dc及び第1層間絶縁膜D1の上側全面にアルミニウム等の金属膜を堆積し、同金属膜をパターニングして各コンタクトSc,Dcに接続する電源線M2s及び陽極線M2dを形成する。次に、TEOS(テトラエトキシシラン)等を原料にするCVD法によって、これら電源線M2s、陽極線M2d及び第1層間絶縁膜D1の上側全面にシリコン酸化膜等を堆積して第2層間絶縁膜D2を形成する。続いて、フォトリソグラフィ法やエッチング法等によって、陽極線M2dの一部から鉛直方向Zに沿って第2層間絶縁膜D2の上側まで開放する円形孔(ビアホールHv)を形成する。ビアホールHvを形成すると、スパッタ法
等によって、同ビアホールHv内を埋め込みながら第2層間絶縁膜D2の上側全面にITO等の光透過性を有する透明導電膜を堆積する。そして、この透明導電膜をパターニングして、凹部32と相対向する位置周辺にビアホールHvを介して陽極線M2dと接続する陽極Pcを形成する。
【0058】
陽極Pcを形成すると、同陽極Pc上であって凹部32と相対向する位置にレジスト等のマスクを形成して、同陽極Pc及び第2層間絶縁膜D2の上側全面に感光性ポリイミドやアクリル等の樹脂膜を堆積する。そして、前記レジスト等を剥離して、整合半径Rを有する隔壁D3aを備えた第3層間絶縁膜D3を形成する。次に、第3層間絶縁膜D3を形成すると、インクジェット法等によって、隔壁D3aに囲まれた陽極Pc上に正孔輸送層の構成材料を噴射し、その構成材料を乾燥及び固化することによって正孔輸送層を形成する。さらに、インクジェット法等によって、同正孔輸送層上に発光層の構成材料を噴射し、その構成材料を乾燥及び固化することによって発光層を形成する。これによって、内径を整合半径Rにする正孔輸送層と発光層とを備えた有機EL層Oeを形成する。
【0059】
有機EL層Oeを形成すると、スパッタ法等によって、同有機EL層Oe及び第3層間絶縁膜D3の上側全面にアルミニウム等の金属膜を堆積して陰極Paを形成する。陰極Paを形成すると、CVD法等によって、陰極Paの上側全面に樹脂等のコーティング材を堆積して封止部P1を形成する。これによって、発光素子形成面30a上であって凹部32と相対向する位置に、発光素子36を備えた画素37を形成する(図8参照)。
【0060】
画素37を形成すると、続いて、凹部32内にマイクロレンズ40を形成する。図9は、マイクロレンズ40の形成方法を説明する説明図である。まず、マイクロレンズ40を形成するための液体噴射装置の構成について説明する。
【0061】
図9に示すように、光取出し面30bの上側には、液体噴射装置を構成する液体噴射ヘッド45が配置されている。その液体噴射ヘッド45には、ノズルプレート46が備えられている。そのノズルプレート46の一側面であって光取出し面30b側の面(ノズル形成面46a)には、液体としての紫外線硬化性樹脂Puを噴射する多数のノズルNが鉛直方向Zに沿って形成されている。なお、ガラス基板30は、その光取出し面30bをノズル形成面46aと平行にして、かつ各凹部32の中心位置をそれぞれノズルNの中心位置と相対向するように位置決めされている。
【0062】
各ノズルNの上側には、図示しない収容タンクに連通して紫外線硬化性樹脂PuをノズルN内に供給可能にする供給室46bが形成されている。各供給室46bの上側には、鉛直方向Zに沿って往復振動して供給室46b内の容積を拡大縮小する振動板47が配設されている。その振動板47の上側であって各供給室46bと相対向する位置には、それぞれ鉛直方向Zに沿って伸縮動して振動板47を振動させる圧電素子48が配設されている。
【0063】
次に、上記した液体噴射装置によるマイクロレンズ40の形成方法について説明する。
まず、液体噴射ヘッド45にマイクロレンズ40を形成するため駆動信号を入力する。すると、同駆動信号に基づいて圧電素子48が伸縮動し、供給室46bの容積が拡大縮小する。この時、供給室46bの容積が縮小すると、縮小した容積分の紫外線硬化性樹脂Puが、各ノズルNから液滴Dsとして対応する凹部32内に噴射される。続いて、供給室46bの容積が拡大すると、拡大した容積分の紫外線硬化性樹脂Puが、図示しない収容タンクから供給室46b内に供給される。つまり、液体噴射ヘッド45は、こうした供給室46bの拡大縮小によって、所定の容量の紫外線硬化性樹脂Puを凹部32内に噴射する。凹部32内に噴射された紫外線硬化性樹脂Puは、図9に示すように、その表面張力等によって放物曲面を備えた凸形状に凝集する。
【0064】
そして、凹部32内に所定の容量の紫外線硬化性樹脂Puを噴射すると、同凹部32内に向かって紫外光を照射し、凹部32内に凝集する紫外線硬化性樹脂Puを硬化する。これによって、開口径を整合半径Rにして凸型状の出射面40aを備えるマイクロレンズ40が凹部32内に形成される。
【0065】
次に、上記のように構成した本実施形態の効果を以下に記載する。
(1)本実施形態によれば、ガラス基板30の光取出し面30bに凹部32を形成し、同凹部32内にマイクロレンズ40を形成した。そして、マイクロレンズ40の開口角θ1が、同マイクロレンズ40を光取出し面30b上に形成したときの開口角θ2に比べ、近接距離Hd分だけ増加するようにした。
【0066】
従って、露光ヘッド20(プリンタ10)は、感光層16aを露光するための光量を近接距離Hd分だけ増加することができ、発光素子36から発光された光の取出し効率を向上することができる。
【0067】
しかも、ガラス基板30の厚さを薄くしないで凹部32を形成し、その凹部32内にマイクロレンズ40を形成したので、その分だけガラス基板30を厚くでき、ガラス基板30の機械的強度を強く保つことができる。
【0068】
(2)本実施形態によれば、各有機EL層Oeをそれぞれ凹部32と相対向する位置に形成し、同凹部32内にマイクロレンズ40を形成するようにした。
従って、有機EL層Oeの中心位置とマイクロレンズ40の光軸Aとを凹部32によって整合させることができる。その結果、露光ヘッド20(プリンタ10)は、感光層16aを露光するための光量のバラツキを低減して、かつ発光素子36から発光された光の取出し効率を向上することができる。
【0069】
(3)本実施形態によれば、各有機EL層Oeを凹部32の内径(整合半径R)と同じ大きさで形成し、同凹部32内に紫外線硬化性樹脂Puを噴射してマイクロレンズ40を形成するようにした。
【0070】
従って、有機EL層Oeのサイズとマイクロレンズ40の開口径を凹部32によって整合させることができる。その結果、露光ヘッド20(プリンタ10)は、感光層16aを露光するための光量のバラツキを低減して、かつ発光素子36から発光された光の取出し効率を向上することができる。
【0071】
(4)上記実施形態では、凹部32を形成した後に画素37を形成するようにした。従って、凹部32を形成する時の衝撃等による画素37の破損を回避することができる。その結果、露光ヘッド20(プリンタ10)は、その生産性を維持して発光素子36から発光された光の取出し効率を向上することができる。
【0072】
(5)上記実施形態では、画素37を形成した後にマイクロレンズ40を形成するようにした。従って、画素37を形成する時の各種原料等によるマイクロレンズ40の汚染や破損を回避することができる。その結果、露光ヘッド20(プリンタ10)は、その生産性を維持して発光素子36から発光された光の取出し効率を向上することができる。
【0073】
尚、上記実施形態は以下のように変更してもよい。
・上記実施形態では、透明基板をガラス基板30として具体化したが、これに限らず、例えばポリイミド等のプラスチック基板であってもよく、有機EL層Oeから発光された光を透過する透明基板であればよい。
・上記実施形態では、凹部32をサンドブラスト法によって形成した。これに限らず、凹部32を形成する方法は、例えば、エキシマレーザやフェムト秒レーザ等によるレーザ加工であってもよく、発光素子36と相対向する位置に凹部32を形成できる方法であれば特に限定されるものではない。
・上記実施形態では、凹部32を形成した後にサンドブラスト用のマスク剤Mkを除去するようにした。これを変更して、同マスク剤Mkを除去すること無く、光取出し面30b上に残す構成にしてもよい。
・上記実施形態では、凹部32が整合半径Rを有する円形孔として具体化した。これに限らず、凹部32の形状は、例えば矩形孔であってもよく、光軸A方向に沿ってマイクロレンズ40を発光素子36に近接できる形状であればよい。
・上記実施形態では、隔壁D3aの内径、凹部32の内径及びマイクロレンズ40の開口径をそれぞれ整合半径Rに整合した。これに限らず、例えば各内径及び開口径が異なる大きさで形成されてもよく、マイクロレンズ40の周辺部における結像性能を劣化させることなく、有機EL層Oeから発光された光を集光して光取出し面30b側に所望するサイズの露光スポットを形成するものであればよい。
・上記実施形態における凹部32の底面32aは、マイクロレンズ40を形成するための液体に対する親液性を備えることが望ましい。これによれば、凹部32内に噴射された液体と底面32aとの密着性、すなわちマイクロレンズ40とガラス基板30との密着性を向上することができる。
・上記実施形態では、マイクロレンズ40の出射面40aを凹部32の底面32aから形成するようにした。これに限らず、同出射面40aを凹部32の鉛直方向Zの途中から形成するようにしてもよく、あるいは出射面40aの頂点が凹部32の外側に位置する構成であってもよい。つまり、凹部32によって、マイクロレンズ40が発光素子36に近接した構成であればよい。
・上記実施形態では、画素37を形成した後にマイクロレンズ40を形成するようにした。これに限らず、画素37を形成する前にマイクロレンズ40を形成するようにしてもよい。なお、この際、マイクロレンズ40の出射面40aは、本実施形態に示すように、同出射面40aの頂点を凹部32内に配置する構成であるのが望ましい。
・上記実施形態では、マイクロレンズ40は、紫外線硬化性樹脂Puの表面張力によって放物曲面形状を形成するようにした。これに限らず、例えばフッ素系プラズマ等の表面処理を凹部32内に施し、同表面処理による撥液化によって、紫外線硬化性樹脂Puが放物曲面形状を形成するようにしてもよい。
・上記実施形態では、マイクロレンズ40を凸レンズとして具体化したが、これに限らず例えば凹レンズとして具体化してもよい。
・上記実施形態では、マイクロレンズ40を紫外線硬化性樹脂Puによって形成する構成にしたが、これに限らず、熱硬化性樹脂等で形成してもよい。
・上記実施形態では、マイクロレンズ40の出射面40aを放物線曲面形状に具体化したが、これに限らず、例えば半球面形状であってもよく、発光素子36から発光された光を集光して感光層16aを露光できる形状であればよい。
・上記実施形態では、出射面40aの頂点と感光層16aとの間の距離を像側焦点距離Hfとし、有機EL層Oeから発光された光を感光層16a上で収束するようにした。これに限らず、出射面40aの頂点と感光層16aとの間の距離は、例えば有機EL層Oeの等倍像を得る距離にしてもよく、像側焦点距離Hf等に限定されるものではない。
・上記実施形態では、マイクロレンズ40を液体噴射装置によって形成する構成にした。これに限らず、マイクロレンズ40を形成する方法は、例えばレプリカ法等によって形成したマイクロレンズ40を凹部32内に取付ける構成にしてもよい。
・上記実施形態では、発光素子36の発光を制御するTFT35を各画素37毎に1個備える構成にした。これに限らず、発光素子36の発光を制御するTFT35を各画素37毎に2個以上備える構成にしてもよく、あるいはTFT35をガラス基板30に備えない構成にしてもよい。
・上記実施形態では、有機EL層Oeをインクジェット法によって形成する構成にした。これに限らず、有機EL層Oeの形成方法は、例えば、スピンコート法や真空蒸着法等であってもよく、インクジェット法に限定されるものではない。
・上記実施形態では、電気光学装置を露光ヘッド20として具体化したが、これに限らず、例えば液晶パネルに装着されるバックライト等であってもよく、あるいは平面状の電子放出素子を備え、同素子から放出された電子による蛍光物質の発光を利用した電界効果型ディスプレイ(FEDやSED等)であってもよい。
【図面の簡単な説明】
【0074】
【図1】本発明を具体化した画像形成装置を示す概略側断面図。
【図2】同じく、露光ヘッドを示す概略平面図。
【図3】同じく、露光ヘッドを示す概略正断面図。
【図4】同じく、露光ヘッドを示す拡大断面図。
【図5】同じく、露光ヘッドの作用を説明する説明図。
【図6】同じく、露光ヘッドの製造工程を説明する説明図。
【図7】同じく、露光ヘッドの製造工程を説明する説明図。
【図8】同じく、露光ヘッドの製造工程を説明する説明図。
【図9】同じく、露光ヘッドの製造工程を説明する説明図。
【符号の説明】
【0075】
10…画像形成装置としてのプリンタ、15…転写媒体としての中間転写ベルト、16…像担持体としての感光ドラム、19…帯電手段としての帯電ローラ、20…露光手段を構成する電気光学装置としての有機エレクロトルミネッセンスアレイ露光ヘッド、21…現像手段としてのトナーカートリッジ、22…転写手段を構成する一転写ローラ、26…転写手段を構成する二次転写ローラ、30…透明基板としてのガラス基板、30a…光入射面としての発光素子形成面、30b…光取出し面、32…凹部、36…発光素子、40…マイクロレンズ、45…液体噴射装置を構成する液体噴射ヘッド、Oe…EL層としての有機EL層、Pa…背面電極としての陰極、Pc…透明電極としての陽極、T…着色粒子としてのトナー、X…主走査方向。

【特許請求の範囲】
【請求項1】
光入射面側に入射した光を光取出し面側から出射する透明基板において、
前記光取出し面に凹部を形成し、前記凹部にマイクロレンズを形成したことを特徴とする透明基板。
【請求項2】
請求項1に記載する透明基板において、
前記マイクロレンズは、前記光取出し面から突出しない大きさに形成されていることを特徴とする透明基板。
【請求項3】
請求項1又は2に記載する透明基板において、
前記マイクロレンズは、凸形状のレンズであることを特徴とする透明基板。
【請求項4】
透明基板の発光素子形成面に形成された発光素子から発光された光を前記発光素子形成面と相対向する前記透明基板の光取出し面側から出射する電気光学装置において、
前記光取出し面に凹部を形成し、前記凹部に発光素子から発光された光を出射するマイクロレンズを形成したことを特徴とする電気光学装置。
【請求項5】
請求項4に記載する電気光学装置において、
前記凹部は、前記発光素子と相対向する位置に形成され、前記マイクロレンズの開口径と相対する内径を有する円形孔であることを特徴とする電気光学装置。
【請求項6】
請求項4又は5に記載する電気光学装置において、
前記発光素子は、前記光取出し面側に形成した透明電極と、前記透明電極と相対して形成した背面電極と、前記透明電極と前記背面電極との間に形成した発光層とを備えたエレクトロルミネッセンス素子であることを特徴とする電気光学装置。
【請求項7】
請求項6に記載する電気光学装置において、
前記発光層は、有機材料で形成され、前記エレクトロルミネッセンス素子は、有機エレクトロルミネッセンス素子であることを特徴とする電気光学装置。
【請求項8】
請求項4〜7のいずれか1つに記載する電気光学装置において、
複数の前記発光素子が前記発光素子形成面の一方向に沿って配列され、前記マイクロレンズは、前記複数の発光素子の各々に対応して配列されたことを特徴とする電気光学装置。
【請求項9】
請求項4〜8のいずれか1つに記載する電気光学装置において、
前記マイクロレンズは、凸形状のレンズであって、前記発光素子から発光された光を集光して前記光取出し面から出射することを特徴とする電気光学装置。
【請求項10】
像担持体の外周面を帯電させる帯電手段と、帯電した前記像担持体の外周面を露光して潜像を形成する露光手段と、前記潜像に対して着色粒子を供給して顕像を現像する現像手段と、前記顕像を転写媒体に転写する転写手段とを備えた画像形成装置において、
前記露光手段は、請求項4〜9のいずれか1つに記載する電気光学装置を備えたことを特徴とする画像形成装置。
【請求項11】
透明基板の光取出し面に、前記光取出し面から前記透明基板の内方に向かう凹部を形成した後に、前記光取出し面と相対向する前記透明基板の発光素子形成面上であって前記凹部と相対向する位置に発光素子を形成し、前記発光素子から発光された光を出射するマイクロレンズを前記凹部内に形成したことを特徴とする電気光学装置の製造方法。
【請求項12】
請求項11に記載する電気光学装置の製造方法において、
前記マイクロレンズは、液体噴射装置の前記凹部内に噴射する液体によって形成した
ことを特徴とする電気光学装置の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2006−116706(P2006−116706A)
【公開日】平成18年5月11日(2006.5.11)
【国際特許分類】
【出願番号】特願2004−303812(P2004−303812)
【出願日】平成16年10月19日(2004.10.19)
【出願人】(000002369)セイコーエプソン株式会社 (51,324)
【Fターム(参考)】