説明

6ポート線形ネットワークシングルワイヤマルチスイッチ送受信機

衛星信号処理システム内で用いられる周波数変換モジュール(20)と復号器(60)との間の信号通信のために用いられる回路のアーキテクチャ。例である実施例によると、当該装置は、第1の周波数を有する第1のRF信号源と第1の伝送線との間に結合された第1のDC電圧遮断器、DC電位の電源と基準電位の電源との間に結合された第2のDC電圧遮断器、及び前記DC電位の電源と前記第1の伝送線との間に結合された、前記第1の周波数を除去する第1の帯域除去フィルタ、を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、概して信号通信に関し、より詳細にはシングルワイヤマルチスイッチ(SWM)送受信機及び従来のLNBモードを同一の衛星セットトップボックスに統合するアーキテクチャに関する。
【背景技術】
【0002】
衛星放送システムでは、1又は複数の衛星が、1又は複数の地上送信機からのオーディオ及び/又はビデオ信号を含む信号を受信する。衛星は、これらの信号を増幅し、顧客の住居にある信号受信機器へ、特定の周波数で動作し所定の帯域を有する中継器を介して中継放送する。このようなシステムは、上り回線送信部分(つまり、地表から衛星へ)、地球周回軌道衛星の送受信部分及び下り回線部分(つまり、衛星から地表へ)を有する。
【0003】
衛星放送システムから信号を受信する住居では、信号受信機器が用いられ、衛星の放送スペクトル全体を周波数シフトし、そして結果として生じた出力を単一の同軸ケーブルに周波数スタックしてよい。しかしながら、衛星放送システム内の衛星数が増大し、高解像度の衛星チャンネルが増設されると、全ての衛星を収容するために必要な帯域の合計が同軸ケーブルの伝送容量を超過してしまう。衛星復号器産業では、より多くの衛星スロットを彼らの配信システムに導入する必要がある。増加する衛星スロット数に対して伝送を提供するために、衛星構成を選択するための更に複雑な手段が必要である。このような種々の構成を選択するために現在用いられている2つの主要な方法は、従来のLNB電力供給方法及び新たな周波数変換モジュール(SWM)である。
【0004】
従来のLNB電力供給方法は、電圧レベル及び重畳された600mvp−p、22kHzトーンにより、衛星のRFトーンのオン及びオフの選択を制御する。トーンの選択は、一定のトーン又はパルス幅変調(PWM)トーンにより達成される。PWMトーンの業界標準は、DiSEqCと称され、EUTELSAT(欧州衛星通信機構)DiSEqC Bus Functional Specificationで規定されている。つまり入来衛星信号の極性を選択するために一般的に2つの段階の出力電圧(13又は18ボルト)が用いられ、トーンが空間内の種々の衛星スロットを選択する。
【0005】
従って、第2の方法(SWM)は電源内蔵式であり、LNB電源を必要とせず、UARTで制御された2.3MHz周波数偏移キーイング(FSK)変調方式を用い、選択コマンドを衛星構成スイッチへ伝達する。他の変調方法も、UART変調方法に適しうる。SWMスイッチは、衛星信号中継器を多数の衛星受信機アンテナから選択し、周波数領域で単一の中継器に変換する。この新たに周波数偏移された中継器の帯域は、次に、接続同軸ケーブルを通じて衛星復号器ボックスへ送信される。
【0006】
今日の衛星復号器システムは、これらの2つの通信方法の間で切り替え、他のシステムにより阻害されることなくいずれかのモードで動作する能力が必要である。衛星受信システムがSWM動作が可能な場合、従来のLNB電源は、利用可能な衛星信号の全ての制御及び選択が変調された2.3MHz、SWM通信チャネルで行われるよう、ディスエーブルされる。
【0007】
しかしながら、それぞれが異なるタスクを実行するよう要求される複数の回路が同軸ケーブルのRF導体に結合されている場合に問題が生じる。例えば、SWMは、屋外ユニットに、RFケーブルでの2.3MHzトーンと共に20Vの電力供給を要求する。20VDC電源の低インピーダンスは、2.3MHzトーンをグランドと短絡し、2.3MHzSWM障害を生じさせうる。更に、幾つかの現在の衛星システムは、5MHzから30MHzの帯域をホーム・ネットワークでの使用のために予約することを要求する。20ボルト電源の低インピーダンスも、この周波数帯域をグランドに短絡してしまうだろう。
【0008】
2.3MHzトーンが共有されたRFケーブルに高調波を生じうるという更なる問題が生じる。これらの高調波は、共有されたRFケーブルで動作している他のシステムを妨害しうる。2.3MHzSWMトーンは、0.7ボルトにまで高くなりうる。このような電圧がサージ保護ダイオード又はトランジスタのB−E接合に印加された場合、RF同軸ケ―ブルに高調波が生じ、同じ導体で動作中の他のユニットに影響を与える。
【0009】
また、SWMシステムの全ての回路は、照明のような環境条件により生成される電圧及び電流サージから保護されなければならない。SWMシステムは、このサージ保護及び高調波除去回路と共存しなければならない。
【発明の概要】
【発明が解決しようとする課題】
【0010】
従って、SWMシステムは、上述の問題を解決すると同時に、高いサージに耐え、RFプログラム信号、SWMトーン又はDC電源電圧を妨害することなくグランドとの低キャパシタンスを有する回路を有することが望ましい。本願明細書に記載された本発明は、上述の及び/又は現在存在している他の課題を解決する。
【課題を解決するための手段】
【0011】
本発明の別の態様によると、装置が提供される。当該装置は、第1の周波数を有する第1のRF信号源と第1の伝送線との間に結合された第1のDC電圧遮断器、DC電位の電源と基準電位の電源との間に結合された第2のDC電圧遮断器、及び前記DC電位の電源と前記第1の伝送線との間に結合された、前記第1の周波数を除去する第1の帯域除去フィルタ、を有する。
【0012】
本発明の別の態様によると、当該装置は、第2の周波数を有する第2のRF信号源と第2の伝送線との間に結合された第3のDC電圧遮断器、前記第1の伝送線と前記第2の伝送線との間に結合された、前記第2の周波数を除去する第2の帯域除去フィルタ、及び前記第1の伝送線と前記基準電位の電源との間に結合された低域通過フィルタ、を更に有する。
【0013】
添付の図面と併せて本発明の実施例の以下の記載を参照することにより、本発明の上述の及び他の特徴及び利点及びそれらの実現方法がより明らかになり、本発明がより理解される。
【0014】
本願明細書に示された例は、本発明の好適な実施例を説明する。またこのような例は、如何様にも本発明の範囲を制限するものではない。
【図面の簡単な説明】
【0015】
【図1】本発明を実施する環境の例を示す図である。
【図2】本発明の環境の例による図1のSWMの更なる詳細を示すブロック図である。
【図3】本発明の実施例によるLNB及びIRD LNB制御送受信機の更なる詳細を示す図である。
【図4】本発明の実施例によるSWM線形スイッチの更なる詳細を示すブロック図である。
【図5】本発明の例である実施例による送受信機の受動的な線形スイッチの詳細を示すブロック図である。
【図6】本発明の実施例によるマルチ・トーン送受信機の受動的な線形スイッチの詳細を示すブロック図である。
【図7】本発明の例である実施例による6ポートの線形ネットワークSWM LNBスイッチの詳細を示すブロック図である。
【図8】本発明の例である実施例による2段階サージ保護器の詳細を示すブロック図である。
【発明を実施するための形態】
【0016】
図、より詳細には図1を参照すると、本発明を実施する例である環境100が示される。図1の環境100は、複数のアンテナ又は1つのアンテナの一部又は伝送線入力又は低雑音ブロック増幅器又は信号を運ぶ情報を受信する他の手段のような信号受信素子10のような複数の信号受信手段、SWM20のような周波数変換手段、信号スプリッタ40のような複数の信号分離手段、及びIRD60のような複数の信号受信復号手段、を有する。信号受信素子10は、受信した信号の周波数を同軸ケーブルのような伝送線を介した送信の助けとなる周波数にシフトさせてよい。例えば、衛星テレビ信号の受信に用いられる低雑音ブロック増幅器は、受信した信号を約12GHzから1GHzへ又は「Ka」帯から「L」帯へ周波数シフトしてよい。本願明細書に記載された実施例によると、環境100の前述の要素は、同軸ケーブルのような伝送媒体を介して互いに結合される。しかしながら、本発明に従い他の種類の伝送媒体も用いられてよい。環境100は、例えば所与の家庭及び/又はビジネス施設における信号通信ネットワークを表す。
【0017】
各信号受信素子10は、オーディオ、ビデオ及び/又はデータ信号(例えば、テレビジョン信号など)を含む信号を、衛星放送システム及び/又は他の種類の信号放送システムのような1又は複数の信号源から受信する。ある実施例によると、信号受信素子10は、衛星受信アンテナのようなアンテナとして実施されるが、如何なる種類の信号受信素子として実施されてもよい。
【0018】
SWM20は、信号受信素子10からオーディオ、ビデオ及び/又はデータ信号(例えば、テレビジョン信号など)を含む信号を受信し、信号調整を含む機能及び周波数変換機能を用い該受信した信号を処理し、同軸ケーブル及び信号スプリッタ40を介してIRD60へ供給される対応する出力信号を生成する。例である実施例によると、SWM20は単一の施設内の最大12個のIRD60と通信しうる。例及び説明を目的として、図1は、簡易な双方向信号スプリッタ40を用いて8個のIRD60と接続されたSWM20を示す。SWM20に関する例である更なる詳細及びSWM20のIRD60と通信する機能は本願明細書で後述される。
【0019】
各信号スプリッタ40は、信号分光及び/又は中継機能を実行する。例である実施例によると、各信号スプリッタ40は、2方向信号分光機能を実行し、SWM20とIRD60との間の信号通信を実現する。 IRD60はそれぞれ、信号調整、変調及び復号機能を含む種々の信号受信及び処理機能を実行する。例である実施例によると、各IRD60は、SWM20から信号スプリッタ40を介し提供される信号を調整、変調及び復号し、受信した信号に対応する聴覚及び/又は視覚的出力を可能にする。本願明細書に後述されるように、該信号は、IRD60からの要求コマンドに応答してSWM20からIRD60へ提供される。該各要求コマンドはテレビジョン信号の所望の帯域に対する要求を表す。衛星放送システムでは、各要求コマンドは、例えば所望の衛星及び/又は所望の中継器を示してよい。要求コマンドは、ユーザ入力に応答して(例えば、遠隔制御装置などを介して)IRD60により生成されてよい。
【0020】
例である実施例によると、各IRD60は、標準精細度(SD)及び/又は高精細度(HD)ディスプレイ装置のような関連付けられたオーディオ及び/又はビデオ出力装置も含む。このようなディスプレイ装置は統合されてもされなくてもよい。従って、各IRD60は、テレビジョンセット、コンピュータ若しくはモニタのような統合ディスプレイ装置を有する装置、又はセットトップボックス、ビデオカセットレコーダー(VCR)、デジタルバーサタイルディスク(DVD)プレーヤー、ビデオゲームボックス、パーソナルビデオレコーダー(PVR)、コンピュータ又は統合ディスプレイ装置を有さない他の装置のような装置として実施されてよい。
【0021】
図2を参照すると、本発明の実施例による図1のSWM20の更なる詳細を提供するブロック図が示される。図2のSWMは、クロスオーバー・スイッチ22のような切り替え手段、チューナー24のような複数の調整手段、周波数アップコンバータ(UC)26のような複数の周波数変換手段、可変利得増幅器28のような複数の増幅手段、信号結合器30のような信号結合手段、送受信機32のような送受信手段及び制御部34のような制御手段、を有する。SWM20の前述の要素は集積回路(IC)を用い実施されてよく、1又は複数の要素は例えば所与のICに含まれてよい。更に、所与の要素は1より多いICに含まれてよい。記載の明確化のため、特定の制御信号、電力信号のようなSWM20と関連付けられた特定の従来の要素は及び/又は他の要素は図2に示されない。
【0022】
クロスオーバー・スイッチ22は、複数の入力信号を信号受信素子10から受信する。例である実施例によると、このような入力信号は種々の帯域の無線周波数(RF)テレビジョン信号を表す。衛星放送システムでは、このような入力信号は例えばL帯域信号を表し、クロスオーバー・スイッチ22は当該システム内で用いられる信号極性毎に入力を有してよい。例である実施例によると、クロスオーバー・スイッチ22は、制御部34からの制御信号に応答し、選択的にRF信号を入力から特定の指定されたチューナー24へ通過させる。
【0023】
各チューナー24は、制御部34からの制御信号に応答して信号調整機能を実行する。例である実施例によると、各チューナー24は、RF信号をクロスオーバー・スイッチ22から受信し、RF信号をフィルタリング及び周波数ダウンコンバート(つまり、単一又は複数段のダウンコンバート)し、それにより中間周波数(IF)信号を生成することにより信号調整機能を実行する。RF及びIF信号は、オーディオ、ビデオ及び/又はデータ・コンテンツ(例えば、テレビジョン信号など)を含んでよく、アナログ信号規格(例えば、NTSC、PAL、SECAMなど)及び/又はデジタル信号規格(例えば、ATSC、QAM、QPSKなど)であってよい。SWM20に含まれるチューナー24の数は、設計選択事項である。 各周波数アップコンバータ(UC)26は、周波数変換機能を実行する。例である実施例によると、各周波数アップコンバータ(UC)26は、混合素子及び局部発振器(図示されない)を有し、制御部34からの制御信号に応答して、対応するチューナー24から供給されたIF信号を指定された周波数帯域へ周波数アップコンバートし、それにより周波数アップコンバートされた信号を生成する。
【0024】
各可変利得増幅器28は、周波数変換機能を実行する。例である実施例によると、各可変利得増幅器28は、対応する周波数アップコンバータ(UC)26から出力された周波数変換された信号を増幅し、それにより増幅された信号を生成する。図2に明示的に示されないが、各可変利得増幅器28の利得は、制御部34からの制御信号を介し制御されてよい。
【0025】
信号結合器30は、信号結合(つまり、加算)機能を実行する。例である実施例によると、信号結合器30は可変利得増幅器28から供給された増幅された信号を結合し、信号スプリッタ40を介して1又は複数のIRD60へ送信するため、結果として生じた信号を同軸ケーブルのような伝送媒体で出力する。
【0026】
送受信機32はSWM20とIRD60との間の通信を可能にする。例である実施例によると、送受信機32はIRD60からの種々の信号を受信し、該信号を制御部34へ中継する。逆に、送受信機32は制御部34からの信号を受信し、該信号を1又は複数のIRD60へ信号スプリッタ40を介して中継する。送受信機32は、例えば1又は複数の所定の周波数帯域で信号を受信及び送信してよい。例えば、通信は、UART変調方式で2.3MHzのような低周波数帯域のRF信号により行われてよい。 制御部34は種々の制御機能を実行する。例である実施例によると、制御部34はIRD60からのテレビジョン信号の所望の帯域に対する要求コマンドを受信する。本願明細書で後述されるように、各IRD60は、制御部34により割り当てられた別個のタイム・スロット中にSWM20へ要求コマンドを送信してよい。衛星放送システムでは、要求コマンドは、テレビジョン信号の所望の帯域を提供する所望の衛星及び/又は所望の中継器を示す。制御部34は、要求コマンドに応答して、テレビジョン信号の所望の帯域に対応する信号を対応するIRD60へ送信させる。
【0027】
例である実施例によると、制御部34は、種々の制御信号をクロスオーバー・スイッチ22、チューナー24、及び周波数アップコンバータ(UC)26へ供給し、テレビジョン信号の所望の帯域に対応する信号をIRD60へ同軸ケーブルのような伝送媒体を介して送信させる。制御部34は、要求コマンドに応答してIRD60へ、(例えば、同軸ケーブルなどの)周波数帯域がテレビジョン信号の所望の帯域に対応する信号をIRD60へ送信するために用いられることを示す確認応答を提供する。このように、制御部34は伝送媒体(例えば同軸ケーブルなど)の利用可能な周波数スペクトルを割り当て、全てのIRD60が所望の信号を同時に受信できるようにする。
【0028】
図3は、本発明を実施する例である環境300の図である。図3は、図1のSWM20とIRD60との間の相互接続の更なる詳細を示す。図3の環境300は、保護回路31、送受信機32及び信号結合器30をSWM20内に有する。IRD60内には、チューナー36、送受信機37、LNB電源38、DiSEqC符号器/復号器39及び保護回路35が示される。
【0029】
保護回路31は、DC電圧上の22kHzトーン、SWM制御信号及びテレビジョン信号のような所望の信号を歪みなく通過させ、同時にSWM回路を雷サージ及び他の環境電気的外乱から保護する。例である実施例によると、保護回路31は、正及び負の雷サージの事象からエネルギーを吸収するために実装されたサージ保護ダイオードを有する。サージ保護ダイオードは、2.3MHzのSWM信号への非線形導電経路が存在しないよう構成される。
【0030】
信号結合器30は、信号結合(つまり、加算)機能を実行する。例である実施例によると、信号結合器30は可変利得増幅器28から供給された増幅された信号を結合し、信号スプリッタ40を介して1又は複数のIRD60へ送信するため、結果として生じた信号を同軸ケーブルのような伝送媒体で出力する。
【0031】
送受信機32はSWM20とIRD60との間の通信を可能にする。例である実施例によると、送受信機32はIRD60からの種々の信号を受信し、該信号を制御部34へ中継する。逆に、送受信機32は制御部34からの信号を受信し、該信号を1又は複数のIRD60へ信号スプリッタ40を介して中継する。送受信機32は、例えば1又は複数の所定の周波数帯域で信号を受信及び送信してよい。
【0032】
保護回路35は、SWM制御信号、22kHzDiSEqC信号及びテレビジョン信号のような所望の信号を歪みなく通過させ、同時にIRD60の回路を雷サージ及び他の環境電気的外乱から保護する。例である実施例によると、保護回路35は、正及び負の雷サージの事象からエネルギーを吸収するために実装されたサージ保護ダイオードを有する。サージ保護ダイオードは、2.3MHzのSWM信号への非線形導電経路又はSWM20から送信される入来テレビジョン信号が存在しないよう構成される。
【0033】
チューナー36はそれぞれ、ユーザからのチャンネル選択に応答してIRD制御部からの制御信号に応答して信号調整機能を実行する。例である実施例によると、チューナーは、保護回路35を介してRF信号を受信し、RF信号をフィルタリング及び周波数ダウンコンバート(つまり、単一又は複数段のダウンコンバート)し、それにより中間周波数(IF)信号を生成することにより信号調整機能を実行する。RF及びIF信号は、オーディオ、ビデオ及び/又はデータ・コンテンツ(例えば、テレビジョン信号など)を含んでよく、アナログ信号規格(例えば、NTSC、PAL、SECAMなど)及び/又はデジタル信号規格(例えば、ATSC、QAM、QPSKなど)であってよい。
【0034】
送受信機37はSWM20とIRD60との間の通信を可能にする。例である実施例によると、送受信機37はSWM20からの種々の信号を受信し、該信号をIRD制御部へ中継する。反対に、送受信機27は、IRD制御部から信号を受信し、該信号を同軸ケーブル並びに保護回路31及び35を介してSWMへ中継する。送受信機37は、例えば1又は複数の所定の周波数帯域で信号を受信及び送信してよい。
【0035】
LNB電源38は、システムが従来のLNBモードで動作しているときに、LNBの所望の動作DC電力を生成する。例である実施例によると、LNB電源38は、22kHzトーンをDC出力電圧に重畳する、線形レギュレータに給電するDC−DC、スイッチ式電源を有する従来のLNB電源である。LNB電源は、出力を電力を低下させる又は無効にする機能を有する。線形レギュレータの出力は、標準的にプッシュプル型であるが、エミッタ・フォロワ型の出力のような他の構成であってもよい。
【0036】
DiSEqC符号器及び復号器39は、IRDが従来モードで動作しているときに、22kHz信号又は所望の制御トーンを利用して、LNBへ伝達する。DiSEqC符号器及び復号器39は、22kHz電流パルスを更に生成し、LNBに伝達する。例である実施例によると、2つの22kHzトーンのモード、つまり一定トーンと2方向パルス幅変調(PWM)トーン制御モードがある。LNBレギュレータがトーンを送信しているとき、DiSEqC符号器及び復号器39は低インピーダンス出力をスイッチ33へ供給する。
【0037】
図4を参照すると、本発明の実施例によるSWM線形スイッチ・ブロック400の更なる詳細を示すブロック図が示される。SWM線形スイッチ・ブロック400は、2つの主要部分、つまり2段サージ保護回路401及び6ポートの線形ネットワーク・スイッチ回路402を有する。例である実施例によると、SWM線形スイッチ・ブロック400は、IRD内に存在し、RF入力との結合405、チューナー410、2.3MHz高インピーダンス負サージ経路415、2.3MHz高インピーダンス正サージ経路420、低インピーダンスサージ経路425、第1のDC遮断22kHz遮断2.3MHz通過回路430、2.3MHz送受信機435、第2のDC遮断22kHz遮断2.3MHz通過回路440、5−30MHz線形インピーダンス回路445、2.3MHz帯域除去回路450、第1のDC遮断22kHz通過2.3MHz通過回路460、22kHz送受信機455、22kHz遮断回路465、DC電源470、第2のDC遮断22kHz通過2.3MHz通過回路475及び第3のDC遮断22kHz遮断2.3MHz通過回路480、を有する。
【0038】
RF入力との結合405は、LNBからRF信号を受信し、2.3MHz送受信機435及び22kHz送受信機455からの制御信号をSWM及びIRDの外部にある従来のLNB回路へ供給する。RF入力405は、通常、雷サージ及び他の環境にかかる電気的外乱の回路への侵入点になる可能性が最も高い。2.3MHz高インピーダンス負サージ経路415は、負サージをグランドへ導電し、同時に2.3MHz信号に対して高インピーダンスを示す。2.3MHz高インピーダンス正サージ経路420は、正サージを低インピーダンス・サージ経路425へ導電し、同時に2.3MHz信号に対して高インピーダンスを示す。低インピーダンスサージ経路425は、2.3MHzをグランドへ導電し、22kHzトーンのグランドへの導電を遮断し、高電流サージ・パルスをグランドへ導電する。低インピーダンスサージ経路425の例である実施例は、ツェナー・ダイオードである。このように、2.3MHz高インピーダンス正サージ経路420を通過する如何なる高電流サージも、ツェナー・ダイオードによりクランプされる。低インピーダンス・サージ経路425の別の例である実施例は、過渡電圧抑制(TVS)ダイオードである。第1のDC遮断22kHz遮断2.3MHz通過回路430は、2.3MHz信号をグランドへ導電し、低インピーダンス・サージ経路425に起因する非線形の影響を補正する。
【0039】
2.3MHz送受信機435は、2.3MHz信号を用いてSWMへコマンドを送信及び受信する。第2のDC遮断22kHz遮断2.3MHz通過回路440は、2.3MHzSWM信号を導電するが、22kHz信号及びDC電圧が2.3MHz送受信機435へ導電されるのを阻止する。5−30MHz線形インピーダンス回路445は、22kHz信号、2.3SWM信号及びDC電圧をLNB、アンテナ又は他のスイッチング回路へ送信及び受信する。22kHz信号は、DiSEqC通信プロトコルを用いてよい。更に、5−30MHz線形インピーダンス回路445は、RF入力405に現れたRF衛星信号が送受信機435、455及びDC電源470へ伝達されるのを防ぐ。
【0040】
2.3MHz帯域除去回路450は、DC電源470からのDC電圧及び22kHz送受信機455からの22kHz信号を導電する。更に、2.3MHz帯域除去回路450は、2.3MHz信号の伝導を妨げる。特に、帯域除去回路450は、2.3MHzSWM制御信号がDC電源470へ導電するのを防ぐ。
【0041】
第1のDC遮断22kHz通過2.3MHz通過回路460は、22kHz送受信機455からの22kHz信号を導電するが、2.3MHz信号及びDC電圧が22kHz送受信機455へ導電されるのを阻止する。22kHz送受信機455は、22kHz制御信号を送信及び受信する。これらの22kHz制御信号は、通常、DiSEqC規格に従ってフォーマットされる。22kHz遮断回路465は、DC電力及び2.3MHz信号を導電するが、22kHz送受信機455により生成された22kHz信号を阻止する。第2のDC遮断22kHz通過2.3MHz通過回路475は、DC電圧を基準電位の電源から絶縁するが、22kHz及び2.3MHz信号の両方をグランドへ通過させる。第3のDC遮断22kHz遮断2.3MHz通過回路480は、DC電圧及び22kHz信号をグランドから絶縁するが、2.3MHz信号をグランドへ導電する。
【0042】
DC電源470は、任意の又は全ての必要なDC電圧をSWM又は従来のLNBへ供給する。例えば、SWMは、20VDC電源で動作しうるが、従来のLNBは一般に13、14及び/又は18ボルトDCを用いて動作する。
【0043】
RF入力チューナー410は、RF信号入力及びSWMからの衛星信号を受信及び調整する。例である衛星信号帯域は、940MHz乃至2150MHzの周波数範囲を有する。
【0044】
SWM線形スイッチ・ブロック400は、電圧及び信号をRF入力405へ向かい且つDC電源から離れる方向に導電するように構成される。従って、図4の例である実施例で分かるように、DC電力は22kHz遮断器465及び2.3MHz帯域除去器450の両方を通り導電される。22kHz遮断回路465及び2.3MHz帯域除去回路450を通じて導電される22kHz又は2.3MHzは、次にそれぞれグランドに結合され、DC電源又は他の送受信機と接続されるのを防ぐ。
【0045】
図5を参照すると、本発明の例である実施例による送受信機の受動的な線形スイッチ500の詳細を示すブロック図が示される。送受信機の受動的線形スイッチ500は、DC遮断回路505、帯域除去回路510及び帯域通過回路515を有する。
【0046】
DC遮断回路505は、トーン送受信機(トーンTx/Rx)と、送受信機の受動的線形スイッチ500をSWMに結合するRF信号経路への結合との間に結合される。DC遮断回路505は、SWMと通信するために用いられるSWMトーンを導電する。更に、DC遮断回路は、RF導体に現れるDC電源電圧がトーン送受信機に結合されるのを阻止する。DC遮断回路505は、トーン送受信機から生じる目的の周波数のみを導電する帯域通過フィルタとして構成されうる。更に、DC遮断回路505は、トーン送受信機から生じるトーンの目的の周波数より下を遮断する高域通過フィルタとして構成されうる。
【0047】
帯域除去回路510は、DC電源電圧をRF信号経路へ導電するが、SWMトーンがDC電圧源に導電されるのを防ぐ。帯域除去回路は、トーン送受信機から生じる目的の周波数のみの導電を阻止する帯域除去フィルタとして構成されうる。更に、帯域除去回路510は、SWMトーンがDC電源に導電されるのを常に防ぐように、各フィルタのカットオフが重なり合う並列高域通過フィルタ及び低域通過フィルタとして構成されうる。
【0048】
帯域通過回路515は、不要なRF信号をグランドへ導電するが、DC電圧源により供給されるDC電圧がグランドに導電されるのを防ぐ。
【0049】
従って、送受信機の受動的線形スイッチ500は、DC電源電圧をRF信号経路へ導電するが、SWM制御トーンが帯域除去回路510を通じてDC電圧源に結合されるのを防ぐ。帯域除去回路510を通じて導電される如何なるトーン・エネルギーもグランドに結合され、帯域通過回路515により干渉源として低減される。
【0050】
図6を参照すると、本発明の例である実施例によるマルチ・トーン送受信機の受動的な線形スイッチ600の詳細を示すブロック図が示される。本発明の例である実施例によるマルチ・トーン送受信機の受動的線形スイッチ600は、第1、第2及び第3のDC遮断回路615、630、645、第1、第2及び第3の帯域遮断回路610、625、640、第1、第2及び第3の帯域通過回路605、620、635並びに線形インピーダンス650、を有する。
【0051】
DC遮断回路615、630、645、帯域遮断回路610、625、640及び帯域通過回路605、620、635は、図5を参照して説明したのと同様の方法で動作する。しかしながら、各DC遮断回路615、630、645は、異なる周波数のトーンをRF信号経路へ導電する。例えば、第1のDC遮断回路615は、22kHzトーンをRF信号経路へ導電する。第2のDC遮断器630は、2.3kHz信号をRF信号経路へ導電する。第3のDC遮断回路645は、3.1kHz信号をRF信号経路へ導電する。
【0052】
同様に、帯域遮断回路610、625、640は、DC電源電圧をRF信号経路へ導電し、如何なるトーン信号もDC電源に導電され戻されるのを防ぐ。例えば、第3の帯域遮断回路640は、DC電圧、2.3MHzトーン信号及び22kHzトーン信号を導電するが、3.1MHzトーン信号の導電を阻止する。第2の帯域遮断回路625は、DC電圧及び22kHzトーン信号を導電するが、2.3MHzトーン信号及び5MHzトーン信号の導電を阻止する。第1の帯域遮断回路610は、DC電圧を導電するが、22kHzトーン信号、2.3MHzトーン信号及び3.1MHzトーン信号の導電を阻止する。
【0053】
帯域通過回路605、620、635は、DC電圧をグランド電位の電源から絶縁し、不要なトーン及びRF信号を基準電位の電源に結合する。従って、第1の帯域通過回路605は、DC信号を基準電位の電源から絶縁し、22kHz、2.3MHz及び3.1MHz信号のような全ての不要なトーン及びRF信号を基準電位の電源に結合する。第2の帯域通過回路620は、DC電源電圧及び22kHzトーンを基準電位の電源から絶縁し、2.3MHz及び3.15MHz信号を基準電位の電源に結合する。第3の帯域通過回路635は、DC電源電圧、2.3MHz及び22kHzトーンを基準電位の電源から絶縁し、3.1MHz信号を基準電位の電源に結合する。
【0054】
線形インピーダンス650は、チューナーへのRF信号にインピーダンスを提供する。このインピーダンスは、RF衛星信号がグランドに結合されるのを防ぐ。
【0055】
図7を参照すると、本発明の例である実施例による6ポート線形ネットワークSWM LNBスイッチ700の詳細を示すブロック図が示される。図7は、図4に示した6ポート線形ネットワーク・スイッチ402の特定の実施例を示す。6ポート線形ネットワークSWM LNBスイッチは、RF入力4との結合、サージ保護回路6との結合、基準電位の電源又はグランド5との結合、DC電圧源1との結合、22kHz送受信機2との結合及び2.3MHz送受信機3との結合、を有する。6ポート線形ネットワークSWM LNBスイッチ700は、DC遮断22kHz遮断2.3MHz通過回路740、5−30MHz線形インピーダンス回路745、2.3MHz帯域除去回路750、第1のDC遮断22kHz通過回路760、22kHz遮断回路765、第2のDC遮断22kHz通過2.3MHz通過回路775及び第3のDC遮断22kHz遮断2.3MHz通過回路780、を更に有する。
【0056】
第2のDC遮断22kHz遮断2.3MHz通過回路740は、2.3MHzSWM信号を導電するが、22kHz信号及びDC電圧が2.3MHz送受信機3へ導電されるのを阻止する。この例である実施例では、第2のDC遮断22kHz遮断2.3MHz通過回路740は、100nFのキャパシタC13を用いて実施される。5−30MHz線形インピーダンス回路745は、22kHz信号、2.3SWM信号及びDC電圧をLNB、アンテナ又は他のスイッチング回路へ送信及び受信する。更に、5−30MHz線形インピーダンス回路745は、RF入力4に現れたRF衛星信号が送受信機の結合点2、3及びDC電源770へ伝達されるのを防ぐ。この例である実施例では、5−30MHz線形インピーダンス回路745は、4.7μHのインダクタL13を用いて実施される。
【0057】
2.3MHz帯域除去回路750は、DC電源1からのDC電圧及び22kHz送受信機への結合2からの22kHz信号を導電する。更に、2.3MHz帯域除去回路750は、2.3MHz信号の伝導を妨げる。この例である実施例では、2.3MHz帯域除去回路750は、680pFのキャパシタC2、6.8μHのインダクタL2及び1kΩの抵抗器R2を有する並列RLC回路を用いて実施される。
【0058】
第1のDC遮断22kHz通過2.3MHz通過回路760は、22kHz送受信機2からの22kHz信号を導電するが、2.3MHz信号及びDC電圧が22kHz送受信機2との結合へ導電されるのを阻止する。この例である実施例では、第1のDC遮断22kHz通過2.3MHz通過回路760は、キャパシタC12を用いて実施される。22kHz遮断回路765は、DC電力及び2.3MHz信号を導電するが、22kHz送受信機455により生成された22kHz信号を阻止する。この例である実施例では、22kHz遮断回路765は、220nFのキャパシタC1、180μHのインダクタL1及び抵抗器R1を有する並列RLC回路を用いて実施される。
【0059】
第2のDC遮断22kHz通過2.3MHz通過回路775は、DC電圧を基準電位の電源から絶縁するが、22kHz及び2.3MHz信号の両方をグランドへ通過させる。この例である実施例では、第2のDC遮断22kHz通過2.3MHz通過回路775は、100μFのキャパシタC3を用いて実施される。第3のDC遮断22kHz遮断2.3MHz通過回路780は、DC電圧及び22kHz信号をグランドから絶縁するが、2.3MHz信号をグランドへ導電する。
【0060】
図8を参照すると、本発明の例である実施例による2段サージ保護回路800の詳細を示すブロック図が示される。図8は、図4に示した2段サージ保護回路401の特定の実施例を示す。2段サージ保護回路800は、2.3MHz高インピーダンス負サージ経路815、2.3MHz高インピーダンス正サージ経路820、低インピーダンス・サージ経路825、第1のDC遮断22kHz遮断2.3MHz通過回路830、線形インピーダンス回路845、2.3MHz帯域除去回路850、22kHz遮断回路865、SWM回路810及びLNB SWM電源回路890、を有する。
【0061】
更に、RF入力との結合は、LNBからRF信号を受信し、SWM回路810とLNB SWM電源回路890との結合を提供する。RF入力405は、通常、雷サージ及び他の環境にかかる電気的外乱の回路への侵入点になる可能性が最も高い。2.3MHz高インピーダンス負サージ経路815は、負サージをグランドへ導電し、同時に2.3MHz信号に対して高インピーダンスを示す。この例である実施例では、2.3MHz高インピーダンス負サージ経路815は、直列の3つの並列の抵抗器とダイオードの対D3、D4、D5、R30、R29、R28を用いて実施される。2.3MHz高インピーダンス正サージ経路820は、正サージを低インピーダンス・サージ経路825へ導電し、同時に2.3MHz信号に対して高インピーダンスを示す。この例である実施例では、2.3MHz高インピーダンス正サージ経路820は、直列の3つの並列の抵抗器とダイオードの対D6、D7、D8、R31、R32、R33を用いて実施される。低インピーダンス・サージ経路825は、2.3MHzをグランドへ導電し、22kHzトーンのグランドへの導電を遮断し、高電流サージ・パルスをグランドへ導電する。低インピーダンス・サージ経路825の例である実施例は、ツェナー・ダイオードD2である。このように、2.3MHz高インピーダンス正サージ経路820を通過する如何なる高電流サージも、ツェナー・ダイオードによりクランプされる。第1のDC遮断22kHz遮断2.3MHz通過回路830は、2.3MHz信号をグランドへ導電し、低インピーダンス・サージ経路825に起因する非線形の影響を補正する。この例である実施例では、2.3MHz高インピーダンス正サージ経路820は、10nFのキャパシタC4を用いて実施される。
【0062】
この例である実施例では、2.3MHz帯域除去回路850は4.7μHのインダクタL3を用いて実施され、22kH遮断回路865は6.8μHのインダクタL2を用いて実施される。SWM回路810は、SWM及びDiSEqC制御信号を送信及び受信する。LNB SWM電源回路890は、DC電圧をLNB及びSWM回路に必要に応じて供給する。
【0063】
本願明細書に記載されたように、本発明は施設内のSWMとIRDとの間の信号通信を可能にするアーキテクチャ及びプロトコルを提供する。本発明は好適な設計を有するとして記載されたが、本発明は、本開示の精神と範囲内で更に変更され得る。従って本出願は、本発明の基本原則を用いる如何なる本発明の変形、使用又は利用も包含する。更に、本出願は、本発明が属する分野の知られている又は慣習の範囲内に含まれる及び特許請求の範囲の範囲内に含まれる本願開示からの逸脱を包含する。
[関連出願]
本出願は2007年3月26日出願の米国仮出願番号60/920,055号に基づく優先権を主張するものであり、該米国仮出願の全内容を本出願に援用する。

【特許請求の範囲】
【請求項1】
第1の周波数を有する第1のRF信号源と第1の伝送線との間に結合された第1のDC電圧遮断器;
DC電位の電源と基準電位の電源との間に結合された第2のDC電圧遮断器;及び
前記DC電位の電源と前記第1の伝送線との間に結合された、前記第1の周波数を除去する第1の帯域除去フィルタ;
を有する装置。
【請求項2】
第2の周波数を有する第2のRF信号源と第2の伝送線との間に結合された第3のDC電圧遮断器;
前記第1の伝送線と前記第2の伝送線との間に結合された、前記第2の周波数を除去する第2の帯域除去フィルタ;及び
前記第1の伝送線と前記基準電位の電源との間に結合された低域通過フィルタ;
を有する請求項1記載の装置。
【請求項3】
前記第1のDC遮断器は、高域通過フィルタを有する、
請求項1記載の装置。
【請求項4】
前記第2のDC遮断器は、高域通過フィルタを有する、
請求項1記載の装置。
【請求項5】
前記第1の帯域除去フィルタは、並列に配置された抵抗器、キャパシタ及びインダクタを有する、
請求項1記載の装置。
【請求項6】
前記第1の帯域除去フィルタは、22kHzDiSEqCトーンを除去する、
請求項1記載の装置。
【請求項7】
前記第2の帯域除去フィルタは、2.3kHz信号を除去する、
請求項2記載の装置。
【請求項8】
前記第2のDC電圧遮断器は、22kHz信号及び2.3MHz信号を前記基準電位の電源へ導通する、請求項1記載の装置。
【請求項9】
前記第2の伝送線とチューナーとの間の線形インダクタンス、
を更に有する請求項2記載の装置。
【請求項10】
前記第2の周波数は、前記第1の周波数より高い、
請求項2記載の装置。
【請求項11】
第1の周波数を有する第1のRF信号源と第1の伝送線との間に結合された、DC電圧を遮断する第1の手段;
DC電位の電源と基準電位の電源との間に結合された、DC電圧を遮断する第2の手段;及び
前記DC電位の電源と前記第1の伝送線との間に結合された、前記第1の周波数を除去する手段;
を有する信号処理システム。
【請求項12】
第2の周波数を有する第2のRF信号源と第2の伝送線との間に結合されたDC電圧を遮断する第3の手段;
前記第1の伝送線と前記第2の伝送線との間に結合された、前記第2の周波数を除去する手段;及び
前記第1の伝送線と前記基準電位の電源との間に結合された、前記第1の周波数と前記第2の周波数を導電しDC電圧を遮断する手段;
を有する請求項11記載のシステム。
【請求項13】
前記DC電圧を遮断する第1の手段は、高域通過フィルタを有する、
請求項11記載のシステム。
【請求項14】
前記DC電圧を遮断する第2の手段は、高域通過フィルタを有する、
請求項11記載のシステム。
【請求項15】
前記第1の周波数を除去する手段は、並列に配置された抵抗器、キャパシタ及びインダクタを有する、
請求項11記載のシステム。
【請求項16】
前記第1の周波数を除去する手段は、22kHzDiSEqCトーンを除去する、
請求項11記載のシステム。
【請求項17】
前記第2の周波数を除去する手段は、2.3MHz信号を除去する、
請求項12記載のシステム。
【請求項18】
前記DC電圧を遮断する第2の手段は、22kHz信号及び2.3MHz信号を前記基準電位の電源へ導通する、
請求項11記載のシステム。
【請求項19】
線形インダクタンスを提供する手段を更に有し、前記線形インダクタンスを提供する手段は、前記第2の伝送線とRF信号を調整する手段との間に結合される、請求項12記載のシステム。
【請求項20】
前記第2の周波数は、前記第1の周波数より高い、
請求項12記載の装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公表番号】特表2010−523050(P2010−523050A)
【公表日】平成22年7月8日(2010.7.8)
【国際特許分類】
【出願番号】特願2010−500969(P2010−500969)
【出願日】平成20年3月26日(2008.3.26)
【国際出願番号】PCT/US2008/003946
【国際公開番号】WO2008/118458
【国際公開日】平成20年10月2日(2008.10.2)
【出願人】(501263810)トムソン ライセンシング (2,848)
【氏名又は名称原語表記】Thomson Licensing 
【住所又は居所原語表記】1−5, rue Jeanne d’Arc, 92130 ISSY LES MOULINEAUX, France
【Fターム(参考)】