説明

Fターム[2G001AA05]の内容

Fターム[2G001AA05]の下位に属するFターム

不活性 (2)

Fターム[2G001AA05]に分類される特許

101 - 120 / 285


少なくとも即発ガンマ線および中性子を発生させる入射ハドロンビーム(10)による上記標的(20)の衝突における、上記標的(20)の領域(25)が受ける局所線量をリアルタイム測定する方法であって、上記標的(20)から放出される粒子は、上記標的(20)の上記領域(25)をコリメートすることによって、かつ上記標的(20)における測定される上記領域(25)から距離Lの位置に検出器(45)を配置することによって、測定される方法。上記検出器(45)は、粒子エネルギーおよび粒子飛行時間を測定する上記手段を有しており、上記検出器(45)が受けた即発ガンマ線の数は、記録された事象を選択することにより決定され、即発ガンマ線についての空間情報を提供するために、上記標的(20)よりも前の入射ハドロンビーム(10)中に配置されている、二方向性荷電粒子検出システムが、入射ハドロン(10)の横断位置を取得するように用いられる。
(もっと読む)


【課題】TFTアレイの検査時間を長くすることなく、TFTアレイの電位をチャージ保持することで検出される欠陥を検出する。
【解決手段】荷電粒子ビームをTFT基板上で二次元的に走査して走査画像を形成し、この走査画像によりTFTアレイを検査するTFTアレイ検査装置であり、試料を支持するとともに二次元方向に移動するステージと、このステージを駆動制御するステージ制御部と、荷電粒子ビームの走査を制御するとビーム走査制御部と、TFT基板への検査信号の印加を制御する検査信号制御部と、走査画像を取得してアレイ検査を行う信号処理部とを備える。ステージ制御部およびビーム走査制御部は、荷電粒子ビームのX方向のビーム走査と、ステージのX方向と直交するY方向のステージ送りとによる二次元走査を一パスとして、TFT基板をビーム走査方向に複数のパスで分割して二次元走査し、各パスにおいて、同一のパスを往路と復路とで往復して走査する。 (もっと読む)


【課題】ナノビーム電子回折法の格子歪測定精度を向上し、結晶試料における局所領域の応力・格子歪を高精度に測定する。
【解決手段】回折スポット14と透過スポット15の間隔(あるいは異なる回折スポットの間隔)16(K)と格子面間隔dとの間には、K=1/dの関係がある。従って、スポット間隔Kの変化から格子面間隔の変化、すなわち格子歪を知ることができる。コンデンサレンズ絞り2を明瞭に観察することにより、回折スポット間隔の測定精度を高くする。この結果、格子歪の測定精度が向上する。そこで、電子回折図形を観察し記録するステップにおいて、コンデンサレンズ絞り2に焦点が合うように中間レンズ11を調整する。これにより、結晶試料4における局所領域の応力・格子歪を高精度に測定することが可能となる。 (もっと読む)


【課題】多価イオンを用いて、試料表面の分析を高精度で短時間に行うことができる表面分析装置を提供する。
【解決手段】表面分析装置1は、試料5を搭載する試料台6と、試料台6に搭載した試料5に価数が15以上の多価イオンビーム4を照射する多価イオン発生源3と、試料5に多価イオンビーム4を照射することにより生じる二次イオン7を検出する質量分析部8と、試料5に多価イオンビーム4を照射することにより生じる二次電子9を検出する二次電子検出部10と、二次電子検出部10からの二次電子検出信号を受け分析開始信号を生成し質量分析部へ送信する質量分析制御部12を、備えて構成される。 (もっと読む)


【課題】液体試料の観察又は検査を良好に行うことのできる検査方法及び検査装置に関し、該試料の光学像と、一次線(電子線、荷電粒子線)を用いた像の同時取得を可能にする検査装置及び検査方法を提供する。
【解決手段】試料検査装置は、第1の面32aに液体試料20が保持される膜32と、膜32の第2の面に接する雰囲気を減圧する真空室11と、真空室11に接続され、膜32を介して試料20に一次線7を照射する一次線照射手段1と、一次線7の照射により試料20に含まれる検査対象物から発生する二次的信号を検出する信号検出手段4と、該検査対象物の光学像を取得する光学像取得手段を備え、該一次線照射手段と該光学増取得手段とが該膜32を間に介して対向配置されており、該膜32が遮光性を有している。 (もっと読む)


【課題】液体試料の観察又は検査を効率良く行うことのできる検査方法等に関し、装置のメンテナンスの向上を可能にする検査方法及びそれに用いられる試液を提供する。
【解決手段】一部が膜32から構成された試料保持体40に液体試料20として培地39と細胞38が入れてある。この液体試料に閉塞物質41を混入させる。膜32の下方から膜32を介して一次線を細胞38に照射可能で、その時に発生する二次的信号を検出することで細胞の像や情報を得ることができる。膜32が一次線照射や、何らかの機械的刺激により破壊された場合であっても、閉塞物質41が膜の破損個所を閉塞するので液漏れを最小限にすることができる。従来、膜の破壊毎に装置を洗浄する必要があったが、本発明により少なくとも10回膜が破壊されても洗浄の必要性がなくなる。 (もっと読む)


【課題】 本発明はたとえば電子顕微鏡で使用される環境セルに関する。
【解決手段】 当該環境セルは、前記電子顕微鏡によって生成されたビームを、当該環境セル内部に設けられた試料にまで通過させるアパーチャ(15)を有する。本発明による環境セルは、当該環境セルの一部分(14)が、たとえば後方散乱電子又はX線のような2次放射線に対して透明であることを特徴とする。これにより、当該環境セルの外部に設けられた検出器によってこの放射線を検出することが可能となる。前記検出器が当該環境セルの外部に設けられることによって、当該セルの構成をはるかに単純にすることが可能となる。 (もっと読む)


【課題】最表面2〜3原子層における元素と原子層とを選別した磁気構造解析を行う方法とその装置を提供する。
【解決手段】試料から散乱した散乱イオン強度を入射イオン種のスピン別に計測し、その計測データにより試料表面の磁気構造を解析する。 スピン偏極イオンを発生させるスピン偏極イオン発生部と、前記スピン偏極イオン発生部からのスピン偏極イオンを所望のエネルギーで試料表面に入射させるスピン偏極イオンビームラインと、試料を保持する真空槽と、前記真空槽内に位置して、前記試料に照射されて散乱したスピン偏極イオンを計測する計測器よりなる。 (もっと読む)


【課題】コヒーレントX線を用いた散乱測定において、測定部位を実デバイスと同様の条件で作製できるX線評価用試料及びその作製方法を提供する。
【解決手段】シリコン基板11に対し、実デバイス形成時と同様の工程を実施する。その後、シリコン基板11を切断して、測定部位13を含む所望の大きさの試料20を切り出す。次に、試料20の裏面側を研磨してX線が透過する厚さにした後、試料20の裏面にAu等の金属からなるX線吸収膜23を形成する。次いで、測定部位13の近傍に、試料20を貫通する参照光用穴24を形成する。また、X線吸収膜23をパターニングして、測定部位13の裏面側に物体光用開口部25を形成する。 (もっと読む)


【課題】
試料の欠陥を検査する装置において、装置が小型化できて省スペース,コストダウン,振動抑止と高速化,検査の信頼性が得られ、特に大口径化したウエハの場合に効果が大きい荷電ビーム検査装置を得る。
【解決手段】
少なくとも一つ以上の検査を荷電ビーム機構で行う複数の検査機構を具備し、各検査機構を概略一軸に配する共通の真空容器内に設けられた各検査機構間を一軸移動する一軸移動機構と、試料を載置し一軸移動機構上に回転軸を有した回転ステージと、試料を各検査機構間で一軸移動機構により移動させ、次に回転ステージで試料の検査位置を検査機構へ調整して合わせ、検査機構により試料の検査を行う。 (もっと読む)


【課題】断面加工方法および装置において、断面加工の加工効率を向上することができるようにする。
【解決手段】観察目標断面2、または観察目標断面2を含む観察領域で、試料1の断面観察を行うために、試料1に対して順次除去加工を施すことによって破断位置を移動させて破断面1cを形成していく断面加工方法であって、観察目標断面2の近傍において破断面1cが形成可能な範囲に、除去加工によって破断可能、かつ破断面1c内で破断形状が識別可能となるマーク部4A、4Bを形成するマーク部形成工程と、このマーク部形成工程で形成されたマーク部4A、4Bを含む範囲で、試料1およびマーク部4A、4Bに対して除去加工を施して、破断面1cを形成する断面形成工程と、この該断面形成工程で形成中または形成後の試料1の断面の観察像を取得する観察像取得工程とを備える。 (もっと読む)


【目的】二次イオン質量分析装置などの試料ホルダーにおいて、測定窓より小さな複雑な形状を持つ試料や微小試料を安定に保持して分析ができる試料ホルダーを提供する。
【解決手段】試料ホルダー100の試料設置部4aに導電性を持つ熱可塑性樹脂4a−1を配し、試料設置部4aを加熱し、該樹脂4a−1が変形可能となった時点で試料5の下部を埋め込み、冷却、硬化させることで、測定窓8より小さな粒子や微小試料など複雑な形状の試料5を容易に固定することが出来るようになり、二次イオン質量分析を行なうことができる。 (もっと読む)


【課題】 電子ビーム照射で変質しやすい試料を、操作性やスループットを損なわずに正確にイオンビームエッチング加工する手段を提供する。
【解決手段】 イオンビーム鏡筒1と電子ビーム鏡筒2を有し、イオンビームによるエッチング加工中の試料の状態を電子ビームによる観察あるいは計測可能な装置において、第一に加工部分全体を含む電子ビームによる二次信号による観察像を取得し、第二に前記観察像の中で照射可能領域7と照射禁止領域8を設定し、第三に前記照射可能領域7のみに電子ビーム照射を制限する。 (もっと読む)


【課題】8〜20keVの範囲内で読出しチップを放射線損傷から保護するセンサの必要がある。
【解決手段】ハイブリッド画像化検出器が、X線又は電子放射線又は他のイオン化放射線のようなイオン化放射線を検出するためにある。検出器は、読出しチップ(20)上にセンサ(10)を有する。センサ(10)は、異なる材料で異なる放射線吸収特性を有する重なり合った複数のセンサ材料層(12,14)を含む。材料は、例えば、Si及びSiGe、Si及びGe、又は、Si及びアモルファスSeであり得る。読出しチップは、それが閾値より上のパルスを検出するときに単一の計数を記録する光子計算読出しチップである。 (もっと読む)


微細要素の物質分析のためのシステムおよび方法であって、方法は、帯電粒子ビームによって、微細要素の少なくとも一部分を含むエリアを照明し、帯電粒子ビームに応答してそのエリア内に生成される粒子を検出し、検出された粒子を分析して、微細要素の物質特性についての指標をもたらすステップを含み、照明動作は、それぞれが、連続する物質分析期間同士の間にもたらされる一連の変位補償決定期間において実施され、方法はさらに、変位補償決定期間の間に、微細要素に対する帯電粒子ビームの変位を評価し、連続する物質分析期間の間に、必要に応じて空間調整対策を適用して、それによって、帯電粒子ビームのドリフトを補償するステップを含む。
(もっと読む)


【課題】サンプリング時に観察画像の状態によらず、プローブの形状を正確に自動認識させることが可能なプローブの制御方法及び装置を実現する。
【解決手段】プローブ12の断面は長方形でありマイクロサンプル23への接近時、プローブ12の長手方向における側壁を集束イオンビームの入射方向と平行になる方向となるようにプローブ12の姿勢を制御する。集束イオンビーム11の試料10への入射により励起された殻内電子のうち、仕事関数以上のエネルギーを有するものは、2次電子として試料表面より放出される。プローブ12からの2次電子放出量はプローブ12の側壁の端部で大となる。試料上のパターン部の凹凸は大きくても1ミクロンであるのに対し、プローブ12の断面は数ミクロンと大きいためプローブ12からの2次電子はウエハ面からの2次電子に比較して極端に大きな値となりプローブ12の外形は容易に判断可能である。 (もっと読む)


【課題】SIMSにおいては、分析試料は、真空容器中に搬入され、真空中において分析が行われる。このため、水を含有するバイオメディカル試料等のSIMSにおいては、分析試料中の水分の気化による分析試料の乾燥や凍結が発生し、バイオメディカル試料を「生のまま」分析することが難しく、大きな課題となっている。
【解決手段】上記課題を解決するため、本発明では、分析試料を真空雰囲気とする前に、分析試料表面を「イオン液体」により被覆するものである。 (もっと読む)


【課題】本発明の目的は、特に10μmを超えるような深い領域の分析において、分析クレータ側壁の影響をなくし、正確な分析のできる分析方法を提供することである。
【解決手段】分析対象領域の分析クレータの深さが深さ方向分解能に影響しない範囲で分析を中断し、分析クレータの周囲の部分を掘削して分析クレータの底と同一の高さにし、また、分析を再開する際に試料の高さを調節し、分析面を初期の高さにする。これにより、分析面に対する1次イオン照射状態を一定に保つことが可能であり、また、2次イオンの検出感度も安定に維持できる。したがって、深い領域の分析を正確に行うことができる。 (もっと読む)


【課題】微細に加工された半導体デバイス内の所望の箇所の3次元的構造を観察するための電子顕微鏡用試料作製装置、電子顕微鏡及びその方法を提供する。
【解決手段】試料片10の加工にダイサーを用い、試料片上の観察対象となる部分を突起状に削り出す加工に集束イオンビーム加工を用い、試料片10を1軸全方向傾斜試料ホルダに、突起11の中心軸と試料傾斜軸Zを一致させて固定し、高角に散乱された電子で結像したTEM像を投影像として用い、再構成を行う。 (もっと読む)


【課題】従来の冷却技術の欠点を解消する。
【解決手段】サンプル1の冷却に適した超急速冷凍装置100は、基板チップ10と、少なくとも一のサンプル担持体20と、を備える。基板チップ10は、サンプル1の冷却に適している。少なくとも一のサンプル担持体20は、サンプル1の収容に適していると共に少なくとも一の加熱可能支持体21を備える。少なくとも一のサンプル担持体20は、基板チップ10に少なくとも一の加熱可能支持体21を通じて取り付けられている。好ましくは、少なくとも一のサンプル担持体20は、懸架状態で基板チップ10に取り付けられている。さらに、サンプル1を超急速冷凍する方法が記載される。少なくとも一のサンプル担持体20を、基板チップ10に対して温度勾配が形成される加熱状態と、基板チップ10に対して熱平衡が形成される冷却状態との間で切り替え可能である。 (もっと読む)


101 - 120 / 285