説明

Fターム[2G001BA30]の内容

放射線を利用した材料分析 (46,695) | 利用、言及された生起現象、分折手法 (5,017) | プリセッション(分析手法、現象等の種類) (199)

Fターム[2G001BA30]に分類される特許

161 - 180 / 199


【課題】本発明が解決しようとする問題点は、光電子分析装置で分析した位置が、位置読み取り機能付き光学顕微鏡で得た像のどこに位置するかを示すことが困難であったという点である。
【解決手段】試料を置載し、試料座標の基準点を有する試料ホルダと、前記試料の第1の像を読み取り、その座標を設定する第1の測定手段と、前記試料の第2の像を読み取り、その座標を設定する第2の測定手段と、前記第1の測定手段と前記第2の測定手段とに接続し、試料の像及び座標情報を処理する情報処理手段と、を備えた試料分析装置において、前記試料ホルダを前記第1の測定手段と第2の測定手段との間で付け替えて分析し、前記第2の測定手段で得た試料部位の位置を前記第1の測定手段で得た像に追加記録する試料分析装置。 (もっと読む)


【課題】レシピ作成及び欠陥確認の使い勝手がよく、かつ迅速に行うことのできるパターンの検査装置を提供する。
【解決手段】欠陥確認画面は、ウェハマップを表示する「マップ表示部」61、欠陥画像を一覧表示する「画像表示部」62、欠陥の詳細情報を表示及び設定する「リスト表示部」63、選択された欠陥項目についてグラフ表示する「グラフ表示部」64を有する。それぞれの表示部は連動して動作し、選択されたマップ情報に対応して欠陥画像、欠陥情報リスト、欠陥グラフが変化する。これら情報を利用して入力された分類コード及びクラスタリング条件及び表示フィルタはレシピに登録される。 (もっと読む)


【課題】 樹脂封止された電子部品内部の軽元素異物の位置や形状を非破壊で調べる。
【解決手段】 X線源16と、第1の結晶2、第2の結晶4及び第3の結晶6を備えるX線干渉計7と、X線検出器20を備えたX線撮像装置1において、第1のビームの光路上であって、第1の結晶2と第2の結晶4の間もしくは第2の結晶4と第3の結晶6の間に、第1の集光用ゾーンプレート26とそれと対になる第1の平行化用ゾーンプレート28が設定され、第2のビームの光路上であって、第1の結晶2と第2の結晶4の間もしくは第2の結晶4と第3の結晶6の間に、第2の集光用ゾーンプレート30とそれと対になる第2の平行化用ゾーンプレート32が設定されたことを特徴とするX線撮像装置を提供する。 (もっと読む)


【課題】
電子線を照射し、その二次電子などを検出する検出系では高速で検出するには検出器の面積が重要なファクタである。現在の電子光学系、検出器の技術では一定以上の面積の検出器が必要で、面積に逆比例する周波数で制約を受け、200Msps以上の検出は実質的に困難である。
【解決手段】
例えば必要面積4mm角、4mm角時の速度を150Mspsとして400Mspsで検出するには、単体の高速な2mm角の検出器を4個並べ、それらを増幅後、加算してA/D変換する。又は、二次電子偏向器で順次8mm角の検出器に二次電子を入射させ、100Mspsで検出、A/D変換後並べる。いずれも、4mm角の面積と400Mspsの速度を達成可能である。
(もっと読む)


【課題】 本発明は分析方法及び装置に関し、試料の構成元素及び組成比が未知な場合においても正確な定量分析を行なうことができる分析方法及び装置を提供することを目的としている。
【解決手段】 軽元素を主成分とする試料中に含まれる微量元素を分析する分析装置において、X線を放出する励起線源1と、該励起線源より放出される特性X線又はγ線の内の何れか一方が試料2によって弾性散乱された特性X線又はγ線の内の何れか一方と非弾性散乱されたコンプトン散乱線の強度比を算出する算出手段4aと、予め用意されている複数の種々の材質に対する検量線から実測された強度比に対応したものを読み出し、この検量線を用いて目的元素の定量を行なう定量手段4aとを有して構成される。 (もっと読む)


【課題】電子顕微鏡で観察される回折像を用いた各種結晶試料のナノメータ分解能を有する歪み、応力を測定し、2次元分布のための装置、手法方法を実現することを目的とする。
【解決手段】電子線を試料に微小かつ平行に照射し、これにより得られる結晶構造を反映した回折像のスポット間距離を画素検出器もしくは位置検出器で測定し、測定位置情報と合わせて電子顕微鏡拡大像上に応力の2次元分布を重ねて表示する。
【効果】高速かつ高分解能で微小な結晶中の歪み、応力を試料の構造情報に合せて表示できる。 (もっと読む)


【課題】 成膜製品の製造工程に組み込み、製品を製造ラインから抜き取ることなく、薄膜検査を実施可能とする。
【解決手段】 検査対象を配置する試料台10と、試料台10を移動する位置決め機構20と、第1,第2の旋回アーム32,33を備えたゴニオメータ30と、第1の旋回アーム31に搭載され、かつシールドチューブ内にX線管およびX線光学素子を内蔵したX線照射ユニット40と、第2の旋回アーム33に搭載されたX線検出器50と、試料台10に配置された検査対象を画像認識するための光学カメラ70とを備える。 (もっと読む)


【課題】 任意の測定データを抽出して以前に得られた解析データと同一の解析データが得られることを証明できる分析装置を提供する。
【課題を解決するための手段】 画像を表示する表示装置4と、測定データを記憶する測定データファイル21と、測定データファイル21に記憶された測定データに対して解析を行う解析ソフト18と、解析によって得られた解析データを記憶する解析データファイル22と、解析に関する解析条件を記憶する解析データファイル22と、解析データファイル22に記憶された解析条件を表示装置4に表示させる解析条件表示ソフト19と、解析データファイル22に記憶された解析条件に基づいて解析ソフト18によって解析を行わせる解析再現ソフト20とを有する分析装置1である。既に存在する解析データと同一の解析データを再現でき、さらに同一であることを証明できる。 (もっと読む)


【課題】一台の装置で、小角散乱、X線回折、反射率測定等を容易に行える装置を提供する。
【解決手段】試料分析装置は、第1のX線収束ビームを試料表面に向け、第2のX線平行ビームを試料表面に向けるように構成された照射源を含む。動作アセンブリは、照射源を、X線が試料表面にかすめ角で向けられる第1の光源位置と、X線が表面に試料のブラッグ角近傍で向けられる第2の光源位置との間で移動させる。検出素子アセンブリは、照射源が、第1および第2の光源構成のいずれか、および第1および第2の光源位置のいずれかにあるときに、試料から散乱したX線を角度の関数として感知する。信号処理部は、検出素子アセンブリからの出力信号を受けてこれを処理し、試料の特性を判定する。 (もっと読む)


【課題】 試料への電子線照射ダメージが抑えられる電子線照射量で、S/Nが良く試料の状態分析を2次元イメージとして得る。
【解決手段】 透過電子顕微鏡又は走査型透過電子顕微鏡のエネルギーフィルターを用いた試料の分析方法であって、所望の観察領域に電子照射を行う工程と、前記試料を透過した電子のエネルギーをエネルギーフィルターにより分光してEELSスペクトルを得る工程と、前記EELSスペクトルにおけるプラズモン・ロス電子によるピークの位置及び強度を得る工程と、前記プラズモン・ロス電子のピーク位置及び強度を色情報及び輝度情報として2次元イメージを得る工程とを有する。 (もっと読む)


【課題】 2または3成分系の元素濃度の二次元分布データから作られる散布図を用いて相分析を行う際に、2または3成分系の状態図を簡単に参照できるようにする。
【解決手段】 公開されている状態図を画像ファイルとして取り込む手段と、画像ファイルとして取り込まれた状態図の濃度軸/温度軸、液相線/固相線などの線上の点をデジタル的に指定できるようにグラフ化する手段を備える。散布図と状態図を同時に表示し、状態図の濃度軸上である値をクロスカーソルで指示すると、散布図上の対応する濃度の位置にマーカーが表示される。また散布図上のマーカーが表す濃度位置が変わると、それに対応した状態図上のクロスカーソルの位置も移動する。 (もっと読む)


【課題】装置の小型化を実現し、かつ、真空容器内の圧力の増加や汚染が無く数μmの試料片が固着されるTEMホルダの導入手段を備え、迅速な観察を可能とする試料室容積が必要最小限の、占有面積の小さい、大口径ウエハ用の試料作製装置を提供すること。
【解決手段】試料を載置する試料ステージと、荷電粒子ビーム照射光学系と、荷電粒子ビームの照射によって発生する二次粒子を検出する二次粒子検出手段と、該試料から試料片を分離する試料片分離手段と、該試料を収納するカセットと、該カセットから該試料を該試料ステージに移載する試料移載手段と、該試料片を固定する試料ホルダと該試料ホルダを固定する試料載置部と該試料載置部を保持し、試料ステージ本体部と脱着可能な構成から成るカートリッジと、該カートリッジを収納するカートリッジステーションと、該カートリッジステーションから所望の該カートリッジを該試料ステージ上に、該容器の外部から移載する移載手段を備える。 (もっと読む)


【課題】高いコントラストで、アモルファスと結晶との差異を画像化して観察可能なSEM装置を提供する。
【解決手段】試料に対して電子顕微鏡を走査しながら観察を行う構成を有し、紫外光、X線の、少なくともいずれかを照射可能な、照射系15を具備している二次電子像観察装置10を提供する。 (もっと読む)


【課題】 超伝導X線検出器と、低温初段増幅器と、コリメータとからなる超伝導X線検出装置の先端部分において、該検出器と該コリメータとの位置の粗調整が容易な構造とし、かつ、ボンディング配線を保護できる超伝導X線検出装置およびそれを用いた超伝導X線分析装置を提供する。
【解決手段】 超伝導X線検出器の検出部とコリメータの貫通穴との位置を、該検出器と該コリメータの少なくとも外周の一部を位置の基準として製作し、基準とした外周の一部が一致するように該検出器と該コリメータを装着固定する、あるいはセンサーホルダに設けた溝の壁に基準とした外周の一部が接するように装着固定する構造としたものである。 (もっと読む)


【課題】反射電子線検出装置において、結晶粒界とその方位情報を得る他に、磁性材料解析機能や、特定結晶方位の分布検査機能を付加し、より広範な解析を行うことがでるようにする。
【解決手段】操作部14を使ったオペレータの操作により、解析情報の取得領域が電子線照射軸に対して垂直とされたとき、システム制御部15の制御に基づいて、前記電子線像における前記取得領域の縦方向に画素の輝度を積算し、解析情報として試料の磁区パターン情報を得、システム制御部15に送る。システム制御部15は、前記磁区パターン情報に応じた画像を表示部13に表示する。 (もっと読む)


【課題】試料の表面分析方法を提供する。
【解決手段】(イ)N個の相異なる元素を含む試料表面のM個の相異なるデータポイントを設定し、各データポイントでの元素成分比を測定するステップと、(ロ)測定された元素成分比からデータポイント間の濃度距離値を計算するステップと、(ハ)計算されたデータポイント間の濃度距離値を利用し、試片表面の相分布を決定するステップとを含む試料表面での構成元素の成分比を利用した相分布を決定する試料表面の分析方法である。 (もっと読む)


【課題】
測長SEMは、高真空に保たれた試料室にウェーハを搬入して半導体デバイスの線幅や穴径を測長する装置であり、測長SEMを使用して、真空中の装置状態を容易に把握する。他の真空装置についても適用できるようにする。
【解決手段】
真空中の駆動系の状態、真空バルブ、真空状態や電子光学系の状態を画面化したことにより真空中の装置状態の把握を可能とした。また、各種センサのON/OFFタイミング、Open/Closeタイミングおよび真空の状態をタイミングチャート化し時間計測や、リファレンスデータとの比較を可能とした。
この機能を有することにより、装置保守点検や装置修理時に的確な判断を行う
(もっと読む)


【課題】 スペクトルの半値幅を用いずに,スペクトルの面積に基づいて被解析層の厚さを解析することにより,解析処理の迅速化,解析処理にかかる時間の短縮化,解析精度の向上を図ること。
【解決手段】 単層或いは複数層からなる試料にイオンビームが照射されることによって上記試料で散乱した散乱粒子のエネルギースペクトルに基づいて,上記試料の深さ方向の組成分布の解析を行うよう構成されており,被解析層に相当するエネルギースペクトルが単独で出現するときの散乱角度(特定散乱角度)へ散乱した散乱粒子のエネルギーを実測し,この実測により得られた実測エネルギースペクトルに単独で出現する上記被解析層の単独エネルギースペクトルを抽出し,そして抽出された上記単独エネルギースペクトルの波形で囲まれたスペクトル面積に基づいて上記被解析層の厚さを算出する。 (もっと読む)


【課題】 サンプルの迅速なXRR及びXRDに基づいた分析用の装置及び方法を提供する。
【解決手段】 サンプルの分析用の装置は、サンプルの表面に向かってX線の収束ビームを案内するべく適合された放射源を含んでいる。同時に、サンプルから散乱したX線を、仰角の範囲にわたって、仰角の関数として検知し、この散乱したX線に応答して出力信号を生成するべく、少なくとも1つの検出器アレイが構成されている。この検出器アレイは、グレージング角で、サンプルの表面から反射したX線を検出器アレイが検知する第1の構造と、サンプルのBragg角の近傍において、表面から回折したX線を検出器アレイが検知する第2の構造と、を具備している。そして、信号プロセッサが、サンプルの表面層の特性を判定するべく、この出力信号を処理する。 (もっと読む)


【課題】タングステンを減速材として用いた場合と同等又はそれ以上のビーム強度を有し、かつエネルギー分布の幅が狭い低速陽電子ビームを発生することができるタングステンに替わる減速材を用いた陽電子ビーム装置を提供する。
【解決手段】結晶化されたニッケルメッシュを減速材2として用いる。ニッケルメッシュは、直径1μm以上100μmニッケル単線からなることが好ましく、ニッケル単線は、酸溶液によるエッチングで線径を細くしたものであることが更に好ましい。 (もっと読む)


161 - 180 / 199