説明

Fターム[2G040BA24]の内容

Fターム[2G040BA24]に分類される特許

121 - 140 / 145


【課題】 本発明は、金属融液などの高温液状物質の熱伝導度を精度良く測定することが可能であり、かつ耐久性を有するセンサーを提供することを課題とする。
【解決手段】 金属箔からなるセンサー部と該センサー部の両面を覆うように配置した絶縁性薄板とを有し、金属箔と絶縁性薄板との間に発生する隙間に無機微粉末が充填された構造を備えていることを特徴とする高温液状物質の熱伝導度測定用センサー。金属箔と絶縁性薄板を絶縁性厚板で保持した構造からなり、該絶縁性厚板は金属箔からなるセンサー部が前記絶縁性薄板を介して高温液状物質と接触するための開口部を備え、該開口部はセンサー部より大きく、熱伝導度測定を妨げない構造を備えていることを特徴とする請求項1記載の高温液状物質の熱伝導度測定用センサー。 (もっと読む)


【課題】 試料セルにおける容器部材及び封入される溶媒による発熱を極力防止することにより,高精度で試料分析を行うことが可能な光熱変換測定装置を提供すること。
【解決手段】 測定対象の試料が所定の試料セルに収容される場合に,フィルタ110aにより,励起光Eのうちの前記試料セル(容器,及び溶媒)における主な光の吸収波長帯の成分を除去若しくは減衰させた後に前記試料に照射し,特性変化(例えば,前記試料セルに照射される測定光の位相変化等)を測定する光熱変換測定装置である。 (もっと読む)


【課題】測定信号に含まれる複数の周波数成分を容易に抽出することができる信号検出方法、熱レンズ分光分析システム、蛍光検出システム、信号検出装置、信号検出システム、信号検出プログラム、及び記憶媒体を提供する。
【解決手段】熱レンズ分光分析システムは、第1の光源ユニット10と、第2の光源ユニット20と、第3の光源ユニット30と、第4の光源ユニット40と、プローブ51,52,53,54と、試料61,62,63,64を備えるマイクロ化学チップ60と、フォトダイオード70と、IVアンプ80と、PC90とを備える。PC90は、IVアンプ80から出力される電気信号を高速フーリエ変換によって周波数分析して、横軸を周波数、縦軸をデシベル単位で表した測定信号強度とする周波数スペクトルに変換し、変調周波数F1,F2,F3,F4の±50Hzの周波数帯域におけるピーク値を検出する。 (もっと読む)


【課題】基板から熱分離した熱容量が極めて小さな薄膜に温度センサと試料ホルダを形成して、消費電力が小さく、高速応答の外部からの加熱手段で、少なくとも試料ホルダを均一な温度分布にする熱分析センサを実現し、これを用いた熱分析装置を提供する。
【解決手段】SOI層などをカンチレバ状に形成した薄膜の先端部を試料ホルダとして利用し、この領域に薄膜温度センサを形成する。このSOI層のカンチレバの上側と下側に空隙を介して薄膜を挟むダイアフラムに加熱手段としての薄膜ヒータを形成するか、または薄膜を囲む薄膜ヒータを形成して試料ホルダを一様に加熱できるように加熱手段を有する熱分析センサを構成する。 (もっと読む)


【課題】対象の熱伝達特性の測定や,熱負荷を利用した非破壊検査を精度よく行うためには、対象の加熱乃至は冷却に、空間分布と時間制御の精度が必要になる。しかし、この二つの要求を同時に満足できる加熱・冷却法は少ない。本発明は、簡便で安価に、空間的一様性と時間制御性を兼ね備えた加熱・冷却法を提供し、さらにこの方法を利用した熱伝達特性測定法を提供することを目的とする。
【解決手段】 流体に圧力変動を加えて流体温度を変動させ、この温度変動を利用して対象を加熱乃至は冷却する。そして、流体乃至は流体に接する物体に生じる温度変化を検出し、検出された温度変化に基づいて、流体乃至は物体の熱伝達特性を測定する。 流体中の圧力変動は音速で伝播するから、広い領域にわたる一様な加熱冷却が可能である。さらに、流体中の温度変動の信号を得ることも容易であり、加熱冷却の時間制御を極めて高精度に行うことが可能である。 (もっと読む)


【課題】 ミスト爆発における限界支燃性ガス濃度を測定する方法および装置を提供すること。
【解決手段】 略密閉された燃焼筒内を、所定の支燃性ガス濃度に設定するとともに、被検可燃性液体をミスト状態で噴霧した後に、点火による爆発の有無を確認することによって、ミスト爆発における限界支燃性ガス濃度を測定する方法。 (もっと読む)


【課題】小さな滴のようにサンプルの体積が小さい場合に、サンプル内で生じるエンタルピー変化に対して、サンプルの表面からの蒸発による熱損失の影響が小さくなるような検出システム及び方法を提供する。
【解決手段】検出装置と反蒸発装置とを備える検出システム及び検出方法であって、反蒸発装置に設けられたキャビティ42が、分析物を含む滴52を配置するためのセンシング領域44を実質的に取り囲むことによって、滴52からの蒸発を制限することを特徴とする。 (もっと読む)


【課題】高精度な分析を行うことが可能で、且つ、携帯可能な重さ及び大きさである熱レンズ分光分析装置を提供する。
【解決手段】熱レンズ分光分析装置は、励起光Eの光源を構成する第一半導体レーザー発光手段1と、プローブ光Pの光源を構成する第二半導体レーザー発光手段2と、熱レンズを透過したプローブ光Pを受光してその光強度に応じた電気信号を出力する受光手段と、電気信号を処理する信号処理手段と、第一半導体レーザー発光手段1及び信号処理手段に共通して使用される変調信号を発生させる機能とともにインターフェイス機能を有する変調信号発生手段と、を備える。第一半導体レーザー発光手段1及び第二半導体レーザー発光手段2が組み込まれた半導体レーザー発光ユニットと受光手段とを含む光学ユニットは、縦200mm,横140mm,高さ85mmの直方体内に収納可能な形状である。 (もっと読む)


【課題】 前記ミストの下限界濃度や限界支燃性ガス濃度により、可燃性液体のミスト爆発を制御すること。
【解決手段】 可燃性液体を、当該可燃性液体の引火点未満の温度で取り扱う際に、当該可燃性液体を、当該可燃性液体に係わる、ミスト爆発におけるミストの下限界濃度以下および/またはミスト爆発における限界支燃性ガス濃度以下に調整することによって、可燃性液体のミスト爆発を制御する方法。 (もっと読む)


【課題】多量の試料および多くの時間と労力を必要とせず生体分子間の相互作用を迅速に形成することができ、しかも生体分子の相互作用をリアルタイムで検出することができる手段の提供。
【解決手段】基板上に生体分子が固定化された生体分子マイクロアレイ(1)、および、前記マイクロアレイの生体分子が固定化された面に対向するように設けられた透明電極(2)(対向電極)を有する生体分子の相互作用試験装置。前記装置は、前記マイクロアレイ(1)と対向電極(2)との間に、非導電性スペーサー(3)を有し、前記マイクロアレイ(1)、前記スペーサー(3)、および前記対向電極(2)によってキャビティ(4)が形成されており、前記マイクロアレイ(1)は、生体分子が固定化された面の少なくとも一部に導電性物質表面(6)を有し、かつ、前記キャビティ(4)に通じる貫通孔(5)を2つ有し、一方の貫通孔はキャビティへ溶液を注入するための孔であり、他方の貫通孔はキャビティから溶液を排出するための孔である。 (もっと読む)


【課題】 精度の高い濃度測定を行うべく、タンク内の液体還元剤に極力揺れがなく測定に最適な車両の停止状態を判別することのできる液体還元剤濃度測定方法を提供する。
【解決手段】 タンク10に貯蔵された液体還元剤の濃度を感熱式濃度センサ11で測定する排気浄化装置のECU9は、エンジン停止状態において、ドア12のオープンを感知する感知信号S1、シートの変位(荷重)を感知する感知信号S2、キャブ14の変位を感知する感知信号S3のいずれかに従い測定処理動作を開始し、感熱式濃度センサ11による濃度測定を実施する。すなわち、感熱式濃度センサによる測定を、車両に運転者が乗り込み、エンジンを始動させて車両が走り出すまでの間に実行することを特徴とする。 (もっと読む)


【課題】 反応熱測定装置において、物性の特定が難しく昇温過程で反応が起きる有機物などの高温高圧反応における反応熱を定量的に求める。
【解決手段】 水タンク21からの水を加圧、加熱し、高温高圧水として、断熱制御された反応器27に定量的に連続供給する。この間、反応器27内の温度を水加熱器25および反応器まわりの電気ヒータで安定させる。その後、水供給量の10%以下の試料を試料タンク23から取り出し、加圧、加熱後、反応器27の入口で、高温高圧水と混合し、反応器27に供給する。その後、反応器27の入口と出口の温度から求めた水のエンタルピー差と供給流体の流量の積から反応熱を求めることを特徴とする高温高圧反応の反応熱測定装置および測定方法 (もっと読む)


【課題】 ヒータ抵抗に供給するまでの回路素子の電圧降下分がある場合であっても、適切な電圧をヒータ抵抗に供給することができるヒータ駆動回路を提供する。
【解決手段】 液体に含まれる所定の要素の濃度に応じた温度変化を検出するに際して、ヒータ抵抗に電圧を印加させるヒータ駆動回路において、所定の基準電源を昇圧させて、昇圧電源を発生させる昇圧回路31と、昇圧回路31からの昇圧電源によって駆動し、ヒータ抵抗への出力電圧と所定の基準電源とを比較して、ヒータ抵抗への出力電圧を制御するオペアンプからなる電圧制御回路32と、電圧制御回路32からの出力電圧がベース端子に接続され、所定の基準電源がコレクタ端子に接続され、ヒータ抵抗がエミッタ端子に接続されたエミッタフォロア型の出力回路33とを備える。 (もっと読む)


【課題】超音波処理装置の処理能力を非接触で正確にかつ簡単に評価することができる超音波処理装置の評価方法を提供する。
【解決手段】超音波反応装置10は、超音波を照射するための超音波振動子13と、その超音波を被処理液体W1に照射してその被処理液体W1の化学反応を誘起させるための反応槽12とを備える。赤外線サーモグラフィ20は、超音波照射時に被処理液体W1から放射される赤外線放射エネルギーを反応槽12を介してその外部から検出し、反応槽12内の音場をその赤外線放射エネルギーに応じた温度分布として可視化する。制御装置30は、その温度分布のデータを赤外線サーモグラフィ20から取得して、反応槽12の処理能力を評価する。 (もっと読む)


【課題】 比熱測定の際に必要となる基準試料の数を低減することができ、かつ、任意の温度での正確な比熱を求めることが可能な比熱測定における校正直線の取得方法及び比熱測定装置を提供する。
【解決手段】 第1の温度における比熱が既知である第1の試料の熱時定数と密度、並びに、第1の温度における比熱が既知である第2の試料の熱時定数と密度を求める。そして、これらの値から、当該第1の温度における密度×比熱と熱時定数との関係を示す第1の校正直線L1を求め、当該第1の校正直線L1において、熱時定数をゼロとしたときの密度×比熱の値を示す第1の切片値を演算する。次に、所望温度における比熱が既知である第3の試料の密度及び熱時定数と、前記第1の切片値とに基づいて、所望温度の校正直線L2を求める。なお、必要に応じて、上記第1の切片値に代えて、所定の温度補償を行った補正値を用いて、所望温度の校正直線L2を求めてもよい。 (もっと読む)


【課題】 熱電対の片方の端部で化学反応などを起こさせて温度差を生じさせ、所定の物質を検出する化学センサにおいて、温接点と冷接点間での余分な熱の逃げを低減し、かつ十分な距離をとることでわずかな温度変化でも十分な温度差が得られる、高感度の熱電式化学センサを提供する。
【解決手段】 柱状のn型熱電半導体素子とp型熱電半導体素子とが複数配列し、各熱電半導体素子の両端面に設け、n型熱電半導体素子とp型熱電半導体素子を電気的に接続する配線電極を有し、温接点側の配線電極近傍に形成した触媒などを利用した反応層において、発熱反応などを伴う化学反応を発生させることで柱状素子の両端面に温度差を生じさせ、所定の物質を検出することを特徴とする熱電式化学センサ。 (もっと読む)


本発明は、(a)精油所供給原料又は精油所プロセスの生成物の沸点プロフィールを測定するための第1の分析機器;及び(b)それぞれがデータベース及びアルゴリズムを含むか又はそれに結合されており、その少なくとも一つが精油所供給原料又は精油所プロセスの生成物の密度を測定するように構成されており、その少なくとも一つが精油所供給原料又は精油所プロセスの生成物の全酸価を測定するように構成されている、少なくとも二つの更なる分析機器;
を含む、精油所供給原料又は精油所プロセスの生成物を分析するための携帯装置が提供される。 (もっと読む)


本発明は多機能流体の熱伝導率の連続的な測定(30)のための方法と装置に関係する。本考案の方法は多機能流体の供試体を入口面と出口面によって定義される空間(31)に置き、入口面を経由して供試体に少なくともひとつの熱流の極めて短いパルスを送り、供試体内部の一定間隔をおいた3点での時間の関数として多機能流体の温度変化を測定するよう少なくとも3個の温度センサー(S1,S2,S3)を用いて、レーザー装置(40)を使用し供試体の内部に一定間隔をおいた少なくとも3点で熱波を測定し、前述の温度変化から供試体の熱力学特性を推定し、Tは温度を表し、kは温度で変化する熱伝導率を表し、tは時間そしてαはkにより変化する熱拡散率を表すと同時に、k(T)/ρ*Cpに等しく、かつρ および Cpが全体密度と比熱を表す場合に、方程式(1)から熱伝導率を計算することにある。
(もっと読む)


【課題】 設備が大掛かりとならず、環境面に悪影響をあたえず、さらにはサンプル遅れがなく熱量制御を応答性よくできる液化天然ガスの熱量測定方法及び装置を得る。
【解決手段】 液化天然ガスの基準温度、基準圧力状態における液密度とガス発熱量との相関を予め求めておき、測定対象の液化天然ガスの液密度、温度、圧力を計測し、該計測した液密度を該計測した温度、圧力に基づいて前記基準温度、基準圧力状態における液密度に変換し、該変換した液密度に基づいて前記予め求めた相関から前記測定対象の液化天然ガスのガス発熱量を算出する。 (もっと読む)


本発明は石油製品の結晶消失温度の量定方法に関するものであり、分析される試料を低温槽内に準備された測定室(4)に導入する段階、分析される試料に光線ビームが通過するようレーザー放射体(6)と連携する光受信体(7)を連結する段階、受信体(7)により受けた光度を記録する段階、低温槽(1)の温度を徐々に下降させ次いで再度徐々に上昇させる段階、と同時に受信体(7)により受けた光度の、温度を基にした変化を表す曲線を記録し、前記曲線より結晶消失温度を量定する段階、より成ることを特徴とする。
(もっと読む)


121 - 140 / 145